生物表面活性剂皂角苷对疏水性有机污染物在水和土壤间分配的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工农业的迅速发展,环境污染和生态破坏日益严峻,严重影响到人类的生存和健康。其中土壤污染问题已经成为一个亟待重视和解决的问题。土壤中的污染物包括有机物、重金属、放射性物质和各种病原菌等。有机物污染是造成土壤环境质量下降的重要原因之一,许多有毒有机污染物常常持久性地存在于土壤,很难被土壤微生物降解而从土壤环境中去除,却可通过土壤和食物链进一步富集,造成土壤和作物的污染,对人类健康和生态环境具有很大的潜在危害。
     疏水性有机污染物(Hydrophobic Organic Compounds,HOCs)由于在水中溶解度很小,大多数以吸附态存在于土壤中,是具有长期性和潜在性的一类有毒有机污染物。随着外界条件的变化,也有一部分可以缓慢溶解进入水相,因而造成地下水和饮用水源的污染。通常,对含有疏水性有机污染物的土壤采用以下两种修复转化方式:(1)使疏水性有机污染物以吸附态固定在土壤表面,从而减小了它们的流动性;(2)使其分配进入流动相,增加在水中的溶解度。对于后者,现场表面活性剂增效修复技术(SER)就是一种经济和有效的修复方法,即利用增效试剂使疏水性有机污染物溶解进入水相,从而提高其生物可利用性,促进微生物降解,降低其对土壤的危害。因此对疏水性有机污染物在地下环境中的迁移转化以及可行的修复技术的研究已经成为许多学者研究的热点课题。
     本文比较研究了生物表面活性剂皂角苷和化学表面活性剂Triton X-100对非极性有机污染物如多环芳烃在水和土壤间分配的影响以及其对多环芳烃菲的增溶作用,同时还比较探讨了生物表面活性剂皂角苷和Triton X-100对几种极性有机物在黄土上吸附行为的影响,从而为土壤有机物污染的控制和土壤修复提供了一定的理论依据。
     第一章综述
     文中较为详细地介绍了我国土壤有机污染现状及危害,有机污染物在土壤中的迁移转化规律,以及有机污染物在水和土壤间的分配理论,土壤有机污染的治理技术。最后介绍了表面活性剂增效修复技术治理有机污染土壤,以及生物表面活性剂的性质和利用前景。共引用文献68篇。
     第二章生物表面活性剂皂角苷对菲和萘在水和土壤间分配行为的影响
     本章选用甘肃兰州西北师范大学院内的深层未受污染的黄土和产自新疆托克逊县的膨润土作为供试样品,以菲和萘为非极性有机物的代表,比较研究了皂角苷、Triton X-100以及二者的混合物对菲和萘在水和黄土及膨润土间分配行为的影响。结果表明,在所选择的表面活性剂中,皂角苷对菲和萘在水和土壤间的分配具有最强的增溶能力。在竞争吸附的作用下,随着加入的表面活性剂的量不同,菲和萘在水和土壤间进行分配行为也有差异。当表面活性剂的浓度较低时,促进菲和萘在土壤上的吸附;当加入的表面活性剂的量超过其临界胶束浓度(CMC)时,菲和萘在水和土壤间的分配系数随着表面活性剂浓度的增大出现持续减小的趋势。并且在相同浓度下,皂角苷和Triton X-100组成的混合表面活性剂的增溶能力比单独使用非离子表面活性剂Triton X-100强得多,并且,在混合表面活性剂的协同作用下,菲和萘在水和土壤间的分配系数随着表面活性剂浓度的增加出现持续减小的趋势。
     第三章生物表面活性剂皂角苷对土壤中菲的增溶作用
     本章以深层未受污染的黄土为供试样品,在试样中掺杂一定量的菲,然后用皂角苷作为增溶剂,讨论了其对黄土中的菲的增溶洗脱效果,并与常用的非离子表面活性剂TritonX-100和Brij35对菲的增溶效果进行了比较。结果表明,在水体系和在水/土体系中,皂角苷对菲的增溶效果均比TritonX-100和Brij35好。同时,皂角苷与TritonX-100和Brij35相比有更高的质量增溶比(SR)和胶束假相和水相的分配系数(Kmc)。在水体系中皂角苷的质量增溶比是TritonX-100的1.6倍,是Brij35的1.9倍;在水-土体系中皂角苷的质量增溶比是TritonX-100的1.3倍,是Brij35的2.6倍。
     第四章表面活性剂对极性有机物在黄土上吸附行为的影响
     本章研究了极性有机物苯酚和苯甲酸在黄土上的等温吸附行为,以及不同浓度的表面活性剂溶液中,苯酚和苯甲酸在黄土上的吸附。结果表明,苯酚和苯甲酸在黄土上的吸附符合线性吸附模型;不同浓度的皂角苷溶液中苯酚和苯甲酸在黄土上的吸附量小于其在Triton X-100溶液中的吸附量。皂角苷溶液的浓度对几种极性有机物在黄土上的吸附也有很大影响,低浓度时,促进了几种极性有机物在黄土上的吸附;高浓度时,则抑制极性有机物在黄土上的吸附。并且在两种表面活性剂存在下,苯甲酸的吸附量均大于苯酚的吸附量。
In recent years, with the development of industry and agriculture, environmental pollution and ecological damage are very serious. They affect survive and health of people. And soil pollution is one of the most common problem and much need of recognition and settlement. There are mainly four kinds of soil pollution: hazardous organic compounds and biologic contamination, heavy metal-contamination, and radioactive substances. Hazardous organic compounds contamination is the important reason for degrading of soil quality, and many of them have disadvantages of biotic degradation and entire remove from soil, resulting in persistent existence of them in the surface of soil, easy to assimilate by crop, and transfer in food chain. When reached a high concentration, it can destroy the soil-plant system.
     The hydrophobic organic compounds (HOCs) sorbed on soils have very low aqueous solubility, they serve as a potential long-term source of contamination, slowly dissolving to form plumes of contaminant that can spread via groundwater flow into regions used for drinking water supply. Depending on particular side conditions, two complementary remediation alternatives are often considered: (1) HOCs sorption to an immobile phase that subsequently decreases HOCs mobility or (2) HOCs partitioning to a mobile phase that results in an increase in HOCs mobility in water. For the latter, in-situ surfactant-enhanced remediation (SER) which leads to the alternation of HOCs bioavailability, has been suggested as an economically and technically feasible remediation approach. At the same time, the widespread occurrence of HOCs in soil and groundwater has led to intensive studies of mobility and fate of these contaminants in subsurface environments and their remediation potential.
     In this thesis, the effects of bio-surfactant saponin compared with nonionic surfactant Triton X-100 on the partition of non-polar polycyclic aromatic hydrocabon compounds (PAHs) between aqueous phase and soil have been investigated. The solubilization of phenanthrene and naphthalene, and their distribution coefficients between aqueous phase and soil as well as the sorption behaviors of several polar organic compounds on loess soil in the presence of saponin and Triton X-100 have also been discussed in detail. The studies provide principles on the soil contamination control and remediation.
     Chaper 1.
     Summarize:Organic pollution and quality of biosurfactant
     In this review with 68 references cited, detailed introductions have been given on the current situation of soil contamination by organic compounds in China, the transfer and transform of organic compounds in soil, the theory of organic compounds partitioning between aqueous phase and soil, and the remedial techniques of soil contamination. The applications of surfactants, especially bio-surfactants, in the remediation of contaminated soil have also been described.
     Chaper 2.
     Effect of biosurfactant (Saponin) on the distribution of phenanthrene and naphthalene between water and soil
     The effects of saponin, Triton X-100 and their mixtures on the partition of phenanthrene and naphthalene between aqueous phase and loess or bentonite have been studied. Saponin exhibits the largest solubilization content among the selected surfactants. Phenanthrene and naphthalene distributions between the immobile and mobile phases varied with surfactant dose because of the competition between sorbed and micellar surfactants for PAH partitioning. The distribution coefficients decreased with increasing surfactant concentrations after the critical mucilage concentration (CMC) of surfactants. The solubilization by mixed saponin and Trinton X-100 were much larger than that by single nonionic one when the initial dosages of surfactants were the same.
     Chaper 3
     Solubility enhancements of phenanthrene by biosurfactant in loess soil
     The uncontaminated loess samples were taken from the campus of Northwest Normal Chaper 1. University with certain amount of phenanthrene as artificial addition. When saponin was used as the solubilizer, phenanthrene adsorbed on loess was dissolved in the aqueous phase. The mechanism of this process was discussed. Two nonionic surfactants, Triton X-100 and Brij35, were compared with saponin and the result showed that saponin was a better solubilizer for phenanthrene than the others in both aqueous phase and aqueous-soil phases, with higher solubilization ratio (SR) and the micelle-phase/aqueous phase partition coefficient (Kmc). The obtained SR for saponin is higher 1.6 and 1.3 times than Triton X-100 in aqueous phase and aqueous-soil phase, respectively; and 1.9 and 2.6 times than Brij35, respectively.
     Chaper 4
     Effect of biosurfactant on sorption of polar organic compounds in loess soil
     The sorption behaviours of phenol and benzoic acid on loess affected by saponin and TritonX-100 have been studied. The results showed that the sorption contents of the two compounds onto loess in presence of saponin were both smaller than those in presence of Triton X-100. The concentration of saponin had stronger influence on the sorption of polar organic compounds onto loess as well. The low concentration of saponin enhanced the sorption of organic compounds on loess, while the high concentration inhibited such sorption. Besides, the sorption contents of benzoic acid in saponin solution and in Triton X-100 solution were both larger than those of phenol under the same condition.
引文
[1]薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展.土壤与环境. 2002,11(1):90- 93.
    [2]陈刚才,甘露,万国江.土壤有机物污染及其治理技术.重庆环境科学. 2000,22(2):45- 62.
    [3]陈怀满.环境土壤学.科学出版社,21世纪环境科学.
    [4]胡枭,范耀波,王敏键.影响有机污染物在土壤的迁移、转化行为的因素.环境科学进展.1998,7(5):14-22.
    [5]党志,于虹,黄伟林,刘丛强.土壤-沉积物吸附有机污染物机理研究的进展.化学通报.2001,64(2):81-85.
    [6] Van Genuchten M T, Wagenet R J. Two-site/two region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci Soc Am J, 1989(53):1303-1310.
    [7] Kindred Scott J, Cellia Michael A. Contaminant transport and biodegradation 2: Conceptual model and test simulations.Water Resour Res,1989,25(6):1149-1159.
    [8] Hornberger George M, Mills Aaron L, Herman Janet S. Bacterial transport in pours media: evaluation of a model using laboratory observations. Water Resour Res, 1992, 28(3):925-938.
    [9] Kinniburgh D G. General purpose adsorption isotherms. Environ Sci Technol, 1986,20: 895-904.
    [10]薛强,梁冰.土壤环境中有机污染物运移环境预测模型的研究.水利学报.2003,6:48-55.
    [11] Youn Sim, Constantions V, Chrysikopoulos. Virus transpolrt in unsaturated porous media. Water Resour Res, 2000,36(1):173-179.
    [12] Teresa B. Modeling the desorption of organic contaminants from long-term contaminat- ed soil using distributed mass transfer rates. Environ Sci Technol, 1997,31:1580-1588.
    [13] Zysset A. Modeling of reactive groundwater transport governed by biodegradation. Water Resour Res, 1994,30(8):2423-2433.
    [14]陈华林,陈英旭.西湖底泥对多环芳烃的吸附性能.农业环境科学学报,2003,22(5):585- 589.
    [15]李咏梅,王郁.多环芳烃在天然水体中的自净机理研究-沉积物对多环芳烃的吸附过程模拟.中国环境科学,1997,17(3):208-211.
    [16]展惠英,袁建梅,陈慧.萘和菲在黄土上的吸附等温线和吸附热力学.安全与环境保护, 2004,4(3):60-64.
    [17]陈慧,周文军,姜梅,展惠英.表面活性剂对可离子化有机污染物在黄土中吸附行为的影响.第一届全国环境化学学术讨论会, 2002,10:66-67.
    [18]贾凌云,吴刚,杨凤林.表面活性剂在污染土壤生物修复重的应用.现代化工,2003,23(9):58-61.
    [19] David A.Edwards,Zafar Adeel,Rlchard G.Luthy.Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ Sci Technol.1994,28:1550-1560.
    [20] Jiunn-Fwu Lee,Pao-Mei Liao,Chun-Chih Kuo,Hsiu-Ting Yang,and Cary T.Chiou.Influence of a Nonionic Surfactant(TritonX-100) on Contaminant Distribution between Water and Several Soil Solids.Journal of Colloid and Interface Science,2000,229:445-452.
    [21] Valsaraj.K.T.,Thibodeaux.L.J.Water Res.1977,23,183.
    [22] Rosen.M.J.Surfactants and interfacial phenomena.2nded.,John Wiley and Sons:New York,1989.
    [23] Lee.J.F.,Crum.J.R.,Boyd.S.A.Environ.Sci.Technol.1989,23,1365.
    [24] Edwards.D.A.,Liu.Z.,Luthy.R.G.J.Environ.Eng.(N.Y.)1994,120,5.
    [25] Holsen.T.M.,Taylor.E.R.,Seo.Y.-C.,Anderson.P.R.(1991).Removol of sparingly soluble organic chemicals from aqueous solutions with surfactant-coated ferrihydrite.Environ.Sci.Technol.1991,25,1585-1589.
    [26]周明华,戴启洲,雷乐成,等.新型二氧化铅阳极电催化降解有机污染物的特性[J].物理化学学报,2004,20(8):871-876.
    [27]李琳,刘俊新.真菌降解挥发性有机污染物的特性和影响因素[J].环境污染治理技术和设备.,2003,4(3):125.
    [28]王俊岭,崔建国.焦化废水中有机污染物的特性及处理工艺方法研究[J].环境保护科学,2002,28(4):10-12.
    [29] Agrelot J.C et al.Proceeding of NWWA conference:New York,1984:346.
    [30]朱玫.应用表面活性剂治理包气带石油污染的研究.环境科学,1996,17(4):21.
    [31]刘新华.土壤石油污染治理的水力冲洗和表面活性剂冲洗技术初步实验研究.环境科学学报,1996,16(4):418.
    [32] Sahle R K,Dem essic E.Sorption and desorption of atrazine by sludge am ended soil environ progress.1996,15(3):173.
    [33]李统锦.某些剧毒有机废料在高温超临界水中的处理实验.环境科学,1998,19(4):43.
    [34]杨曦.磺酰脲类除草剂在环境中的光解研究.环境科学,1998,19(6):29.
    [35]冯克亮.化学栅在防治地下水污染方面的应用.环境科学动态,1995, (1):18.
    [36]陈玉成.土壤污染的生物修复.环境科学动态,1999, (2):7.
    [37]张春桂.污染土壤生物恢复技术.生态学杂志,1997, 16(4):52.
    [38]马瑛.生物修复技术处理有毒有害物质研究进展.环保科学,1997,18 (4):13.
    [39]桑伟莲,孔繁翔.植物修复研究进展.环境科学进展,1999,7 (3):40.
    [40]沈德中.污染环境的生物修复.北京:化学工业出版社,2002.
    [41]朱利中.土壤及地下水有机污染的化学与生物修复.环境科学进展,1999,7(2):65-71.
    [42] West C.C.,Harwell J.H.,Surfactant and subsurface remediation.Environ.sci.technol, 1993,26(12):2324-2330.
    [43] Harwell J.H.,Sabasini D.A.,Knox R.C.Surfactants for ground water remediation.Colloids and surface A:Physicochem and Engineering Aspect,1999,151(1-2):255-268.
    [44] Mayer A.S,Zhong L.Measurement of mass-transfer rates for surfactant-enhanced solubilization of nonaqueous phase liquids.Environ.sci,1999,33(17):2965-2972.
    [45] Hill A.J.,Ghoshal S.Micellar solubilization of naphthalene ang phenanthrene from nonaqueous phase liquids. Environ.sci.technol, 2002,36(18):3901-3907.
    [46] Tien T.H,Bettahar M.,Kumagai S,Optilization of the surfactant/alcohol formulations for the remediation of oily contamilated porous media. Environ.sci.technol, 2000,34(18):3977-3981.
    [47] Bettahar M.,Schaher G ,Baviere M.An Optimized surfactant formulation for the remediation of diesel oil polluted sandy aquifer. Environ.sci.technol, 1999,33(8): 1269-1273.
    [48] Jawiza J.W.,Annable M.D.,Rao P.S.C.,et al.Field implementation of a Winsor TypeⅠsurfactant/alcohol mixture for in situ solubilization of a complex LNAPL as a single phase microemulsion . Environ.sci.technol, 1998,32(4):523-530.
    [49] Ramsburg C.A.,Pennell K.D.Dencity-modified displacement for DNAPL source zoneremediation: Dencity conversion and recovery in heterogeneous aquifer cells. Environ.sci.technol, 2002,36(14):3176-3187.
    [50] Taylor T.P., Pennell K.D.,Abriola L.M.,et al.Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses.I.Experiment study .J.Contam.Hydro.,2001,48(3-4):325-350.
    [51] Grimber S.J.,Stringfellow W.T.,Yeh H.J.C.Quantifying the biodegradation of phenanthrene by Pseudom ouas stutzeri P16 in the presence of a nonionic surfactant.Appl.Environ.Microbiol.,1996,62:2387-2392.
    [52] Muller J.G.,Chapman P.T.,Pritchard P.H.Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl.Environ.Microbiol.,1989,55:3058-3090.
    [53]姜霞,井欣.表面活性剂对土壤中多环芳烃生物有效性影响的研究进展.应用生态学报,2002,13(9):1179-1186.
    [54]赵保卫,朱利中.表面活性剂增效修复土壤有机污染研究进展.环境污染治理技术与设备,2006,7(3):30-35.
    [55] Copper DG,Zajic JE.Surface-active compounds from microorganisms.Adv.Appl.Microbiol.,1980,26:229-253.
    [56]崔中利,刘卫东,曹慧,骆永明,赵其国.生物表面活性剂生物合成的研究进展.土壤,2005,37(6):607-612.
    [57]张天胜.生物表面活性剂及其应用.北京:化学工业出版社,2005.
    [58]方云,夏咏梅编译.生物表面活性剂.北京:中国轻工业出版社,1992.
    [59]徐志伟.生物表面活性剂的工业应用.生物技术,1995,5(3):6-8.
    [60]夏咏梅,方云.生物表面活性剂的开发和应用.日用化学工业,1999, (1):27-31.
    [61]李敬龙,刘晔,潘爱珍.生物表面活性剂及其应用.山东轻工业学院学报,2004,18(2):41-46.
    [62]方长云,谢嘉韵,源亮君.生物表面活性剂及其在环境工程中的应用.广东化工,2005, (12):48-50.
    [63]陈坚,华兆哲,伦世仪.生物表面活性剂在环境生物工程中的应用[J].环境科学,1996, 17(4):84-87.
    [64]包木太,李彩霞,孙培艳,崔文林,王修林.生物表面活性剂及其在重金属污染生态修复重的应用.城市环境与城市生态,2006, 19 (5): 1-5.
    [65] K.J.Hong,S.Tokunaga,Y.Ishigami,et al.Extraction of Heavy Metals from MSW incinerator Fly Ash Using Saponins J.Chemosphere, 2000, 41: 345-352.
    [66] Nils T. Nyberg, Lennart Kenne, Bengt Ronnberg, Bo G. Sundquist. Separtion and structural analysis of some saponins from Quillaja saponaria Molina [J]. Carbohydrate Research,2000,323:87-97.
    [67] Kyung-Jin Hong, Shuzo Tokunaga, Toshio Kajiuch. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils.Chemosphere,2002, 49 (4): 379-387.
    [68]蒋煜峰,展惠英,张德懿,吴应琴,陈慧.皂角苷络合洗脱污灌土壤中重金属的研究.环境科学学报,2006, 26 (8): 1315-1319.
    [69]吴应琴,马明广,张媛,童丹,陈慧.皂角苷及腐殖酸对微生物降解蒽的影响.环境科学学报,2007,27 (11): 1818-1822.
    [1]赵保卫,朱利中.表面活性剂增效修复土壤有机污染研究进展.环境污染治理技术与设备,2006,7(3):30-35.
    [2]张天胜.生物表面活性剂及其应用.北京:化学工业出版社,2005.
    [3] Yaws C L.Chemical Properties Handbook.McGraw-Hill Book Co.,New York,1999.
    [4] Kyung-Jin Hong, Shuzo Tokunaga, Toshio Kajiuch. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils.Chemosphere,2002, 49 (4): 379-387.
    [5]吴应琴.表面活性物质对多环芳烃的增溶作用及微生物可利用性的影响,西北师范大学,2007.
    [6]展惠英,袁建梅,蒋煜峰,陈慧.菲和萘在黄土上的吸附等温线和吸附热力学.安全与环境学报,2004,4(4):49-52.
    [7] David A.Edwards,Zafar Adeel,Rlchard G.Luthy.Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ Sci Technol,1994,28:1550-1560.
    [8] Jiunn-Fwu Lee,Pao-Mei Liao,Chun-Chih Kuo,Hsiu-Ting Yang,and Cary T.Chiou.Influence of a Nonionic Surfactant(TritonX-100) on Contaminant Distribution between Water and Several Soil Solids.Journal of Colloid and Interface Science,2000,229:445-452.
    [9] Seok-Oh Ko,Mark A Schlautman,and Elizabeth R. Carraway.Partitioning of Hydrophobic Organic Compounds to Sorbed Surfactants.1. Experimental Studies.Environ. Sci. Technol. 1998,32:2769-2775.
    [10] Shaobai Sun,and William P. Inskeep.Sorption of Nonionic Organic Compounds in Soil-Water Systems Containing a Micelle-Forming Surfactant. Environ. Sci. Technol.1995,29:903-913.
    [11] Lizhong Zhu,Baoliang Chen,Shu Tao,Cary T. Chiou.Interactions of Organic Contaminants with Mineral-Adsorbed Surfactants. Environ. Sci. Technol.2003,37,4001-4006.
    [12]余海粟,朱利中.混合表面活性剂对菲和芘的增溶作用.环境化学,2004,23(5):485-489.
    [13] Zhu L,Feng S.Synergistic Solubilization of Polycyclic Aromatic Hydrocarbons by Mixed Anionic-Nonionic Surfactants[J]. Chemosphere,2003,53:459-467.
    [14] Zhu L,Chiou C T.Water Solubility Enhancement of Polycyclic Aromatic Hydrocarbons by Mixed Surfactant Solution[J].J. Environ Sci.,2003,13:491-496.
    [15] Yoshikazu T,Hirotaka U,Masahiko A. Solubilization of Some Synthetic Perfumes by Anionic-Nonionic Surfactant Systems 1[J].Langmuir,1995,11:725-729.
    [16] Yoshikazu T,Hirotaka U,Masahiko A. Solubilization of Some Synthetic Perfumes by Anionic-Nonionic Surfactant Systems 2[J].J. Phys. Chem.,1994,98:6167-6171.
    [17]陈宝樑,朱利中,陶澎.非离子表面活性剂对菲在水/土壤界面间吸附行为的影响.环境科学学报,2003, 23 (1):1-5.
    [1]朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理.环境科学学报,2002,22(6):774-778.
    [2]张天胜主编.生物表面活性剂及其应用.北京:化学工业出版社,2005. 3.
    [3] K.J.Hong,S.Tokunaga,Y.Ishigami,ed.Extraction of heavy metals from MSW incinerator fly ash using saponins.Chemosphere,41 (2000): 345-352.
    [4] Yaws C L.Chemical Properties Handbook.McGraw-Hill Book Co.,New York,1999.
    [5] Kyung-Jin Hong, Shuzo Tokunaga, Toshio Kajiuch. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils.Chemosphere,2002, 49 (4): 379-387.
    [6]吴应琴.表面活性物质对多环芳烃的增溶作用及微生物可利用性的影响,西北师范大学,2007.
    [7] Baowei Zhao,Lizhong Zhu,Yanzheng Gao.A novel solubilization of phenanthrene using WinsorⅠmicroemulsion-based sodium castor oil sulfate.Journal of Hazardous Materials B,119(2005):205-211.
    [8] David A.Edwards,Zafar Adeel,Rlchard G.Luthy.Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ Sci Technol.1994,28:1550-1560.
    [9] Zhu Lizhong,Chen Baoliang and Shen Hanyan. Behavior of sorption and treatment organic contaminants in water by dual-cation organobentonites[J]. China Environmental Science,1999,19(4):325-329.
    [10] Edwards D A,Luthy R G,Liu Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solution J. Environ Sci Technol,1991,25:127-133.
    [11]张彦旭,潘波,刘文新等.天然土壤对菲吸附行为的动态变化.农业环境科学学报,2006,25(3):699-703.
    [12]陈宝梁,马战宇,朱利中.表面活性剂对苊的增溶作用及应用初探.J.环境化学,2003,22(1):53-58 .[13] An Y J,Carraway E R. Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles J.Water Research,2002,36(1):300-308.
    [14] Guha S,Faffe P R,Peters C A. Solubilization of PAH mixtures by a nonionic surfactantJ.Environ.Sci.Technal,1998,32(7):930-935.
    [15] Park D J L,Prichard P H. Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar nonionic surfactant solution J. Water Research,2002,36(14):3463-3472.
    [1] Kile Daniel E,Chiou Cary T.Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration J.Environmental Science & Technology,1989,23(7):832-838.
    [2] David A Edwards,Richard G Luithy,Zhongbao Liu.Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions J. Environmental Science & Technology,1991,25(4):127-133.
    [3] Lizhong Zhu,Cary T Chiou. Water solubility enhancements of pyrene by single and mixed surfactant solutions J.Journal of Environmental Science,2001,13(4):491-496.
    [4] Hsiao-Liu Huang,Whei-May Grace Lee.Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate:effect of critical micelle concentration J.Chemosphere,2001,5(44):963-972.
    [5] Bor Jier Shiou,Pavid A Sabatini,Jeffrey H Harwell.Properties of food gra de(edible) surfactants affecting subsurface remediation of chlorinated solvents J. Environmental Science & Technology,1995,29(12):2929-2935.
    [6] Paterson Iain F,Chowdhry Babur Z,Leharne Stephen A.Predicting surfactant modified soil/water distribution coefficients using micellar HPLC J. Chemosphere,1999,2(38):263-273.
    [7] Abu-zreig Majed,Rudra R P,Dickinson W T et al.Effect of surfactants on sorption of atrazine by soil J.Journal of contaminant Hydrology,1999,36(3-4):249-263.
    [8]朱利中,徐霞,胡松等.西湖底泥对水中苯胺、苯酚的吸附性能及机理J.环境科学,2000,21(2):28-31.
    [9]杨坤,朱利中,许高金等.分配作用对沉积物吸附对硝基苯酚的贡献J.中国环境科学,2001,21(4):297-300.
    [10] Yaws C L.Chemical Properties Handbook.McGraw-Hill Book Co.,New York,1999.
    [11]沈学优,马战宇,陈平,竺立峰,方婧.表面活性剂对极性有机物在沉积物上吸附的影响.环境科学,2003,24(5):131-135.
    [12]周文军.可离子化有机污染物在表面活性剂改性黄土中的吸附特性,西北师范大学,2002.
    [13]党志,于虹,黄伟林,刘丛强.土壤/沉积物吸附有机污染物机理研究的进展.化学通报,2001,2:81-85.
    [14]李晖,邹惠仙,许欧泳.土壤和沉积物的有机质组分对水中非离子有机物吸着的影响.环境化学,1995,14(2):124-127.
    [15]李铁,叶常明.酚类化合物在水体颗粒物上的吸附实验.环境化学,1997,16(3):227-232.
    [16]朱步瑶,赵振国.界面化学基础M.北京:化学工业出版社,1996.9.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.