先天性马蹄内翻足动物模型中后肢芽软骨发育水平的量化评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的: Neubert和Barrach在1977年提出一套肢芽软骨评分系统,但该系统仅主要应用于体外培养的肢芽。另外该系统本身有许多不足,并没有考虑到软骨内成骨等因素。我们通过大量的实验,通过连续切取不同时期胚胎后肢芽,充分研究其骨骼、软骨内成骨的形成规律,对Neubert等人的评分系统进行改良完善。本文主要介绍改良后的评分系统和对先天性马蹄内翻足后肢芽发育进行初步的量化评分。
     材料和方法:60只SD母鼠,体重220-250g,被随机分成6个实验组和对照组,下午雌雄合笼,第二天早上阴道涂片发现精子为怀孕天数0天。分别在受孕第13天,14天,15天,16天,17天和18天取出胎鼠的后肢芽并经过一系列处理并用改良后的评分系统对制取的后肢芽进行量化评分。
     结果:从E13到E18实验组和对照组的软骨量化评分差异有统计学意义(T-检验, P <0.05),发现对照组从第14天起软骨开始发育并在第17天到达顶峰。第13天、16天、17天和18天实验组和对照组后肢芽长度差异有统计学意义(P<0.05)。
     结论:改良后的评分系统主要应用于在活体内发育的后肢芽软骨及形态学分化水平的量化评分。
Background and Objective The Limb Morphogenetic Differentiation Scoring system introduced by Neubert and Barrach in 1977 has been used in drug testing as a measure of the degree of cartilage growth inhibition especially for forelimb in vitro. But the in-vitro system is not applicable to in-vivo assessment. Besides, there are some limitations associated with their system. Therefore, in this study, we have investigated the differentiation of cartilage in a series of experiments using the hindlimb buds obtained from different embryonic stages in vivo, and developed a new scoring system for limb morphogenetic differentiation.
     Materials and Methods A total of 60 female Sprague-Dawley rats weighing 220–250g were assigned at random to six control groups and six experimental groups on day 0 of embryonic. The experimental groups were treated with all-trans-retinoic acid (ATRA). A new limb morphogenetic differentiation scoring system was developed and used to quantify the degree of development of the hindlimb buds from the fetuses at embryonic days E13 to E18.
     Results The differentiation of cartilages assessed by our new scoring system showed a statistically significant difference between the experimental group and the control group from E13 to E18 (T-test, p <0.05). Cartilage growth (the proximodistal length) in the control group increased gradually from E14, reaching its peak at E17, but in the experimental group the growth at E13, E16, E17, and E18, was significantly shorter (p <0.05).
     Conclusions Our new limb morphogenetic differentiation scoring system described here in can be used to quantify the degree of inhibition of the hindlimb bud development by teratogenic drugs or materials, and morphogenetic differentiation in vivo.
引文
[1]周海涛,孙开来先天性马蹄内翻足研究进展国外医学遗传学分册2003 vo26(6):346-349
    [2] Chung CS et al. Genetic and Epidemiological Studies of Clubfoot in Hawaii. Hum Hered, 1969, 19:321-342.
    [3] Cartilidge I. Observations on the epidemiology of club foot in Polynesian and Caucasian populations. J Med Genet, 1984, 21:290-292.
    [4]吉士俊,王继孟.小儿骨科学[M].济南:山东科学技术出版社. 1998; 177-178.
    [5] Windish G, Anderhuber F, Haldi-Brndle V, et al. Additional muscle in idiopathic club foot[J]. Eur J Pediatr Surg, 2006, 16(4):294.
    [6] Gray DH.A histochemical study of muscle in clubfoot[J]。J Bone Joint Surg.198l:63B:417—422.
    [7] Handelsman JE,Badalamente MA.Club foot:a neuromuscular disease[J]. Dev Med Child Neuro1.1982;24(1):3-12.
    [8]杜世新,吉士俊,潘晓丽,等.先天性马蹄内翻足的神经电生理研究[J].中国矫形外科杂志,2004,24:1842.
    [9] Gilbert JA, Roach HI, Clarke NM. Histological abnormal ities of the calcaneum in congenital talipes equinocarus[J]. J Orthop Sci. 2001;6(6):519-526.
    [10] Erlebacher A, Filvaroff EH, Gitelman SE, et al. Toward a molecular understanding of skeletal development. Cell 1995:80:371-8.
    [11] Hoffman LM, Garcha K, Karamboulas K, et al. BMP action in skeletogenesis involves attenuation of retinoid signaling. J Cell Biol 2006:174:101-13.
    [12] Barker S, Chesney D, Miedzybrodzka Z, et al. Genetics and epidemiology of idiopathic congenital talipes equinovarus [J]. J Pediatr Orthop, 2003, 23(2):265-272.
    [13]杜世新,吉士俊等.类先天性马蹄内翻足动物模型的建立及病理演变研究[J].中华小儿外科杂志, 2003, 24(2):158-160.
    [14] Alles AJ, Sulik KK, Retinoic acid-induce spina bifida: evidence for a pathogenetic mechanism. Development, 1990, 108:73-81.
    [15] Underhill TM et al. Annu Rev Cell Dev Biol, 2002, 18:747-783.
    [16] D. Neubert, H.-J. Merker, T. Knaisgroch, Eds. Techniques applicable to study morphogenetic differentiation of limb buds in organ culture In Methods in pre-natal toxicology; evolution of embryotoxic effects in experimental animals. Pp. 241–251. Georg Theme Pubs, Stuttgart, Germany.
    [17] Summerbell D Lewi JH, Wolpert L. Positional information in chick limb morphogenesis. Nature, 1973, 244(5471):492-6
    [18] Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell, 1995 Sep 8;82(5):803-14.
    [19] Parr, A. B, and McMahon, A, P. Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb. Nature, 1995, 374, 350– 353.
    [20] Lee GS, Kochhar DM, Collins MD. Retinoid-induced limb malformations. Curr Pharm Des, 2004, 10:2657-99.
    [21] White JC, Shankar VN, Highlad M, Epstein ML, Deluca HF, Clagett-Dame M. Ddfects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding phaemacological level of all-trans-retinoic acid[J]. Proc Natl Acad Sci USA, 1998, 95(23):13459-13464.
    [22]余家康,夏慧敏,Juan A Tovar等.维甲酸致胎鼠骨骼畸形模型的建立.中华实验外科杂志, 2006,23(10):1263-1264
    [23] Gudas, L. J., Sporn, M. B. & Roberts, A. B. (1994) in The Retinoids: Biology, Chemistry, and Medicine, eds. Spom, M.B., Roberts, A. B. & Goodman, D. S. (Raven, New York), 2nd Ed., pp. 443–520.
    [24] Ali-Khan SE, Hales BF. Retinoid receptor antagonists alter the pattern of apoptosis in organogenesis stage mouse limbs. Toxicol Sci, 2006,90:208-20.
    [25] Iwamoto M, Yagami K, Shapiro IM, Leboy PS, Adams SL, Pacifici M. Retinoic acid is a major regulator of chondrocyte maturation and matrix mineralization. Microsc Res Tech. 1994 Aug 15;28(6):483-91.
    [26] Underhill, T.M., Kotch, L.E., and Linney, E. (1995) Retinoids and mouse embryonic development. Vit. Horm., 51:403–457.
    [27] Desbiens X, Meunier L, Lassalle B. Specific effects of retinoic acid on the skeletal morphogenesis of the 11-day mouse embryo forelimb bud in vitro. Biol Cell. 1990;68(3):213-20.
    [28] Bitoh Y, Shimotake T, Kubota Y, Kimura, Iwai N. Impaired distribution of retinoic acid receptors in the hindgut-tailgut region of murine embryos with anorectal malformations [J]. J Pediatr Surg, 2001, 36(2):377-380.
    [29]李勇,李竹.体外动物器官培养模型及其在外源性化学物发育毒性研究中的应用.中国优生优育[J].1999 10(4):183-186.
    [30] Suemori H, Takahashi N, Noguchi S. Hoxc-9 mutant mice show anterior transformation of the vertebrae and malformation of the sternum and ribs. Mech Dev, 1995, 51:265-273.
    [31] Davis AP, Witte DP, Heieh-LI HM, er al. Absence of radius and ulna in mice lacking hoax-11 and hoxd-11. nature, 1995, 375:791-795.
    [32] Mic FA, Sirbu IO, Duester G. Retinoic acid synthesis controlled by Raldh2 is required early for limb bud initiation and then later as a proximodistal signal during apical ectodermal ridge formation. J Biol Chem, 2004,279:26698-706.
    [33]李增刚,纪虹,富伟能等人.马蹄内翻足大鼠模型踝部骨骼、组织及脊髓蛋白质组学分析.中国医学遗传学杂志,2006,24(1):52-58.
    [34] Zakeri ZF, Ahuja HS. Apoptotic cell death in the limb and its relationship to pattern formation. Biochem Cell Biol, 1994,72:603-13.
    [35] Lee GS, Kochhar DM, Collins MD. Retinoid-induced limb malformations. Curr Pharm Des, 2004,10:2657-99.
    [36] Mic FA, Sirbu IO, Duester G. Retinoic acid synthesis controlled by Raldh2 is required early for limb bud initiation and then later as a proximodistal signal during apical ectodermal ridge formation. J Biol Chem, 2004,279:26698-706.
    [37] Erlebacher A, Filvaroff EH, Gitelman SE, et al. Toward a molecular understanding of skeletal development. Cell 1995:80:371-8.
    [38] Kochhar, D.M. (1967) Teratogenic activity of retinoic acid. Acta Pathol. Microbiol. Scand., 70:398–404.
    [39] Underhill TM, Weston AD. Retinoids and their receptors in skeletal development. Microsc Res Tech 1998:43:137-55.
    [40] Hoffman LM, Garcha K, Karamboulas K, et al. BMP action in skeletogenesis involves attenuation of retinoid signaling. J Cell Biol 2006:174:101-13.
    [41] Pennypacker, J.P., Lewis, C.A., and Hassell, J.R. (1978) Altered proteoglycan metabolism in mouse limb mesenchyme cell cultures treated with vitamin A. Arch. Biochem. Biophys. 186:351–358.
    [42] Tsuiki H, Kishi K. Retinoid-induced limb defects 1: inhibition of cell proliferation in distal mesenchyme of limb buds in rats. Reprod Toxicol 1999:13:103-11.
    [43] Santos-Alvarez I, Martos-Rodriguez A, Delgado-Baeza E. Embryonic blastemic changes in retinoic acid-induced hindlimb deformity. Cells Tissues Organs 2003:173:217-26.
    [44] Ede, D.A. (1978) An Introduction to Developmental Biology. Scotland, Thomson Litho Ltd.
    [45] Kochhar DM. Skeletal morphogenesis: comparative effects of a mutant gene and a teratogen. Prog Clin Biol Res 1985:171:267-81.
    [46] Alles AJ, Sulik KK, Retinoic-acid-induced limb-reduction defects: perturbation of zones of programmed cell death as a pathogenetic mechanism. Teratology 1989:40:163-71.
    [47] Xie WF, Kondo S, Sandell LJ. Regulation of the mouse cartilage-derived retinoic acid-sensitive protein gene by the transcription factor AP-2. J Biol Chem 1998:273:5026-32.
    [48] Xie WF, Zhang X, Sakano S, et al. Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. J Bone Miner Res 1999:14:757-63.
    [49] Cho SH, Oh CD, Kim SJ, et al. Retinoic acid inhibits chondrogenesis of mesenchymal cells by sustaining expression of N-cadherin and its associated proteins. J Cell Biochem 2003:89:837-47.
    [50] Zhou J, Kochhar DM. Cellular anomalies underlying retinoid-induced phocomelia. Reprod Toxicol 2004:19:103-10.
    [51] Downie, S.A., and Newman, S.A. (1995) Different roles for fibronectin in the generation of fore and hind limb precartilage condensations. Dev. Biol., 172: 519–530.
    [52] Kirimoto A, Takagi Y, Ohya K, et al. Effects of retinoic acid on the differentiaion of chondrogenic progenitor cells. ATDC5. J Med Dent Sci, 2005. 52:153-162.
    [53] Iwamoto M, Shapiro IM, Yagami K, et al. Retinoic acid induces rapid mineralization and expression of mineralization-related genes in chondrocytes. Exp Cell Res 1993:207:413-20.
    [54] Marini JC, Hill S, Zasloff MA 1988 Dense metaphyseal bands and growth arrest associated with isotretinoin therapy. Am J Dis Child 142:316–318.
    [55] Y Sakai, C Meno, H Fujii, J Nishino, H Shirator. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes & Development, 2001 Jan 15;15(2):213-25.
    [56] Mendelsohn C, Ruberte E, LeMeur M, et al. Developmental analysis of the retinoic acid-inducible RAR-beta 2 promoter in transgenic animals. Development 1991:113:723-34.
    [57] Tabin CJ. Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 1991:66:199-217.
    [58] Horton, W., and Hassell, J.R. (1986) Independence of cell shape and loss of cartilage matrix production during retinoic acid treatment of cultured chondrocytes. Dev. Biol., 115: 392–397.
    [59] De Luca F, Uyeda JA, Mericq V, Mancilla EE, Yanovski JA, Barnes KM, Zile MH, Baron J. Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology. 2000 Jan;141(1):346-53.
    [60] Ong DE, Newcomer ME, Chytil F. Cellular retinoid-binding proteins. In: Sporn MB, Roberts AB, Goodman DS, eds. The retinoids: biology, chemistry, and medicine, 2nd edition. New York: Raven Press; 1994:283–317.
    [61] De Luca F, Uyeda JA, Mericq V, et al. Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology 2000:141:346-53.
    [62] Tabin CJ. A developmental model for thalidomide defects. Nature 1998:396:322-3.
    [1] Robertson WW Jr, Corbett D. Congenital clubfoot. Month of conception. Clin Orthop Relat Res. 1997 May;(338):14-8.
    [2]赵东风.先天性马蹄足的相关基础研究[J].中国矫形外科杂志,1999,6(12):949.
    [3] Gehring WJ. Affalter M. Burglin T. Homeodomain proteins[J]. Annu Rev Biochem, 1994, 63: 487-526.
    [4]杜世新吉士俊孙开来.实验性先天性马蹄内翻足的病因病理研究[J].中华骨科杂志,2003,22(7):440-442.
    [5] Fromental-Ramain C, Warot X, Lakkaraju S, et al. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development, 1996, 122:461-472.
    [6]王大佳,陈秋,吉士俊.先天性马蹄内翻足的病因与Hox基因研究进展.中华骨科杂志,2002,22:440-442.
    [7] Kenyon C. If birds can fly, why can't we? Homeotic genes and evolution. Cell. 1994, 29;78(2):175-80.
    [8] Bruce B. Wang, Michael M. Müller-Immergluck, Judith Austin, Naomi Tamar Robinson, Andrew Chisholm, Cynthia Kenyon. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell199., 74(1) pp. 29– 42.
    [9] Lawrence PA, Morata G. Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell. 1994, 78(2):181-9
    [10] Tickle C, Eichele G, Vertebrate limb development. Annu Rev Cell Biol, 1994, 10:121-152.
    [11] Goodman FR, Scambler PJ. Human HOX gene mutations. Clin Genet, 2001, 59:1-11.
    [12] Mortlock DP. Innis JW. Mutation of HoxA13 in hand-foot-genital syndrome. Nature Gene, 1997, 15: 179-180.
    [13] Cohen AJ, Lassova L, Golden EB, Niu Z, Adams SL. Retinoids directly activate the collagen X promoter in prehypertrophic chondrocytes through a distal retinoic acid response element. J-Cell-Biochem. 2006 99(1): 269-78.
    [14]王大佳马瑞雪陈秋高红麻宏伟.先天性马蹄内翻足与HoxD基因传递连锁不平衡研究[J].中华小儿外科杂志,2003,24(4):348-350.
    [15] Atlas S; Menacho LCS; Sres S. Some new aspects in the pathology of clubfoot. Clin Orthop, 1980, 149:224 .
    [16] Grelider TD; Siff SJ; Gerson P, et al. Arteriography in club foot. J Bone Joint Surg(Am), 1982, 64:837.
    [17] Davis AP, Capecchi MR. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development. 1994 120(8):2187-98.
    [18] Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR. Absence of radius and ulna in mice lacking hoxa-11 andhoxd-11. Nature. 1995 375(6534):791-5.
    [19] Power SC,Lancman J, Smith SM. Retinoic acid is essential for Shh/Hoxd signaling during rat limb outgrowth but not for limb initiation. Dev-Dyn. 1999 216(4-5): 469-80.
    [20] Goff DJ, Tabin CJ. Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development.1997 124(3): 627-36.
    [21] Yokouchi Y, Nakazato S, Yamamoto M, Goto Y Kameda T, Iba H, Kuroiwa A. Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes-Dev. 1995 9(20): 2509-22.
    [22] Logan M, Tabin CJ. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999 283(5408):1736-9.
    [23] Mortlock DP, Innis JW. Mutation of HoxA13 in hand-foot-genital syndrome. Nat Genet, 1997 Feb;15(2):117-8.
    [24] Del campo M, Jones MC, Veraksa AN, Monodactylous limbs and abnormal genitalia are associated with hemizygosity for the human 2q31 region that includes the HoxD cluster. Am J Hum Genet, 1999 Jul; 65(1):104-10.
    [25] Reijntjes S, Blentic A, Gale E, Maden M. The control of morphogen signalling: regulation of the synthesis and catabolism of retinoic acid in the developing embryo. Dev-Biol. 2005 285(1): 224-37.
    [26] Mic FA, Sirbu IO, Duester G. Retinoic acid synthesis controlled by Raldh2 is required early for limb bud initiation and then later as a proximodistal signal during apical ectodermal ridge formation. J-Biol-Chem. 2004 279(25): 26698-706.
    [27] Yashiro K, Zhao X, UehRA M, Yamashita K, Nishijima M, Nishino J, Saijoh Y, Sakai Y, Hamada H. Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev-Cell. 2004 6(3): 411-22.
    [28] Rafael E. Hernandez, Aaron P. Putzke Jonathan P. Myers, Lilyana Margaretha and Cecilia B. Moens. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 2007 134:177-187.
    [29] Lindberg C, Wunderlich M, Ratliff J, Dinsmore J, Jacoby DB. Regulated expression of the homeobox gene, rPtx2, in the developing rat. Brain-Res-Dev-Brain-Res. 1998 110(2): 215-26.
    [30] Zhang L, Zhong T, Wang Y, Jiang Q, Song H, Gui Y. TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid. Int-J-Dev-Biol. 2006 50(1): 55-61.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.