高维化学计量学方法及其在土壤与水体分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境化学计量学是一门新兴的专门针对解决复杂环境问题的综合性学科分支,它与数学、统计学和物理方法相结合,借助于先进的计算机工具和现代分析仪器,使以经验、实验为基础的环境化学问题研究趋于理论化和更加科学化,扩展了环境化学研究成果的应用。随着环境研究体系的日益复杂化和环境考察因素的逐渐多样化,海量的环境多维数据很容易获得。这些庞大的数据阵包含大量的信息,如何从这些数据阵中获取有用的环境化学信息,就促使化学计量学多维分辨和多维校正理论和方法在环境分析化学中不断地应用和发展。高维校正方法因具有独特的“二阶优势”(即使有未知干扰共存,也能对感兴趣的目标分析物进行准确快速同时定量分析),为复杂环境问题如单组分和多组分污染物的无扰动、在线实时快速定量分析以及多组分平衡与动态过程的实时解析提供了强有力的分析手段。本文作者在查阅国内外大量文献资料的基础上,通过仔细分析当前化学计量学研究热点和环境分析难点问题,对高维化学计量学方法及其在环境土壤和水体中农残和植物激素定量分析等若干方面进行了研究。本论文主要涉及内容如下:
     第一部分三维校正方法在土壤和水体等复杂体系中的应用研究(第2章-第4章)
     克百威是一种高效内吸广谱氨基甲酸酯类杀虫剂,剧毒,广泛应用于水果、蔬菜和谷物类害虫的捕杀,能防治上百种害虫,其残留通过食物链和饮用水进入人体,对人体的健康构成了一定的危害。在第2章中,通过三维荧光与基于交替三线性分解(ATLD)算法的三维校正方法相结合(第2章),提出了直接快速定量分析土壤和污水样中的克百威残留量的方法。结果显示,该方法能够解决分析物与背景基体严重重叠的问题,在存在未知和未校正干扰物的情况下,能够准确、快速地测定克百威的浓度,为监测环境农残等污染物提供了一种很有潜力的分析工具。
     扑草净(PRO)、敌草胺(NAP)和甲草胺(ALA)是非常重要的除草剂,常被用于高粱、棉花、马铃薯、花生和蔬菜等各种农作物农田的一年生杂草和阔叶杂草的控制。这三种除草剂在农业生产中经常会两两混合使用。因此,同时检测它们在复杂环境体系如河泥和污水样中的残留量就显得十分有意义。在第3章中,我们提出了同时、快速、有效检测河泥和污水样中PRO、NAP和ALA残留量的方法(第3章)。它通过HPLC-DAD联用仪与基于白加权交替三线性分解(SWATLD)算法的三维校正方法相结合,在含有共保留和光谱重叠组分的复杂样本中,可同时获得PRO、NAP和ALA的含量。另外,通过分析不同复杂的基体,对该方法的二阶优势和分解的相对唯一性也进行了探讨。这种基于化学计量学方法的分析策略与传统的方法相比,显示了独特的优势,如样品预处理简单、方法绿色环保以及能够获得可靠的光谱和浓度信息,为环境中农药残留量的监测提供了一种很有潜力的分析手段。
     2-萘乙酸(2-NOA)和1-萘乙酸甲酯(1-NAAME)是人工合成的重要植物激素。这些植物激素的广泛应用也会使得它们在环境如土壤和污水中长期累积,对人体和动物都存在潜在的毒性。因此,亟需发展一种有效的方法来检测它们在环境如土壤和污水中的残留量。基于此目的,我们首先利用快速扫描三维荧光仪来获得复杂环境样的激发发射矩阵荧光数据,然后采用基于自加权交替三线性分解(SWATLD)算法的三维校正方法从中提取有用的化学信息,从而发展了一种有效、简单、低耗的方法来同时检测土壤和污水样中的2-NOA和1-NAAME的含量(第4章)。另外,为了探索所发展方法的预测能力,采用不同的策略如基于不同环境基体和不同仪器来建立相应校正模型并对其进行比较。这种结合了化学计量学数学分离分析步骤的方法非常有潜力发展成为环境监测中有效的分析手段,并为设计智能化、便携式小型分析仪器提供了理论依据和设计基础。第二部分四维校正新方法及其用于农药水解动力学过程分析研究(第5章-第6章)
     西维因是一种剧毒农药,被广泛地用于农业上如储粮、景观草坪、水果和蔬菜等各种昆虫的杀灭。已经发展了一些基于荧光和色谱的方法来探索西维因的水解动力学过程。然而,迄今尚无文献报道采用室温磷光(RTP)方法来对其水解动力学过程进行研究。在第5章中,我们发展了四维RTP数据分别结合基于交替四线性分解(AQLD)、交替加权残差约束四线性分解(AWRCQLD)和平行因子分析(PARAFAC)等算法的四维校正方法来探索其降解过程的分析策略(第5章)。在存在未校正磷光背景干扰下,该方法对实际自来水样中的西维因复杂动力学过程进行了准确的定量分析。另外,我们观测到样本皆存在严重的光谱背景漂移。而这种漂移与感兴趣组分一样,已被算法拟合成单个组分而被成功地扣除。
     在多维数据的量测过程中,由于受到诸如环境因素如温度、压力、时间和人为因素等影响,容易导致获得的多维数据其中一维或多维偏离多线性。常见的就是色谱中保留时间漂移导致色谱一维的偏离,光谱中瑞利散射导致激发发射光谱两维的偏离。如果在实验中引进动力学和温度两个维度,由于这两个实验条件的难以控制性以及不可重复性,也可能造成两维轮廓变动而产生偏离多线性。对于严重偏离多线性加和结构的数据,直接采用基于多线性模型的算法来处理,所获得的结果往往不太准确。在第6章中,我们针对获得的色谱-光谱-动力学-温度形式的非五线性五维数据,采用了一种先拓展后处理的思路,即将该非五线性五维数阵沿着不具有线性的动力学一维方向铺展成四线性四维数阵,然后采用基于四线性成分模型的四维平行因子分析(4-PARAFAC)、交替加权残差约束四线性分解(AWRCQLD)和本章提出的交替加权四线性分解(AWQLD)算法来对其进行解析(第6章)。在处理实际数据之前,我们还通过一组模拟的激发-发射-动力学-温度荧光光谱数据和一组模拟的色谱-光谱-动力学-温度色谱数据对提出的方法进行了验证。通过测试模拟数据和真实实验数据,新发展的AWQLD算法给出了与AWRCQLD和4-PARAFAC相似甚至更好的结果。第三部分五维校正新方法及其用于多种干扰体系中萘草胺水解动力学研究(第7章)
     萘草胺(NAP)是一种有选择性的芽前和苗后除草剂。在水体中能降解为萘胺(NAA)、邻苯二甲酸(PHT)和N-(1-萘基)邻苯二甲酰亚胺(NPI)。NAP低毒,但NAA却具有细胞毒性和遗传毒性。先前已有报道用磷光、傅立叶转换近红外光谱和色谱的方法来检测各种基体如河水、饮用水、尿液等分析体系中的NAP及其代谢物。在过去的几十年,多维校正方法也被用于分析NAP及其代谢物,如基于PLS的二维校正方法。但二维校正方法需要大量有代表性的校正集,且校正集样本中必须包含预测样中可能含有的所有响应组分,这对于分析存在许多未知干扰物的真实体系是非常困难的。
     在第7章中,我们使用HPLC-DAD来监测不同pH值下样本的动力学过程,从而获得了HPLC-DAD-动力学-pH形式的五维数阵。为了探索所得到的数据的分析属性,我们发展了一种新的算法——交替五线性分解(AQQLD)算法来对其进行分析(第7章)。新发展的方法用于研究三种复杂干扰体系包括(1)包含有吲哚乙酸和萘乙酰胺作干扰的样本,(2)包含有吲哚乙酸、萘乙酰胺和未知物作干扰的样本,(3)土壤样本中NAP的水解动力学过程,都获得了比较满意的结果,为探索高维数阵的分析性能提供了一个新的很有价值的研究工作,并为五维数阵的生成和后续的五维校正应用提供了一种新的思路和策略。
Environmental chemometrics is a burgeoning integrated subdiscipline which aims at studying complex and difficult problems in environmental chemistry. It combines with the methods of mathematics, statistics and physics science, and relys on the tools of advanced computer science and modern analytical instruments. Environmental chemometric methodologies not only make the study of chemistry of the environment, based on the experience and experiment, more theoretical and scientific, but also expand the application of the research in chemistry of the environment. With the increasing complication of environmental systems and the gradual diversification of environmental factors, huge of amounts of environmental multi-dimensional data can be produced in a relatively easy way. The data arrays contain a large amount of information, and then, how to extract useful chemical information from these complex data arrays promotes the continual application and development of the fundamental theories and methods of multi-dimensional resolution and calibration into chemistry of the environment. The benefit of multi-way calibration methods, known as "second-order or higher-order advantage", is capable to determine the content of analytes of interest even in the presence of unknown interferents. Such methods have provided a very potential analytical tool for direct and on-line quantitative analysis of single pollutant or mixture pollutants and their dynamic kinetic process in complex environmental systems. The work in this dissertation focuses on the research on multi-way chemometric methodologies and their applications in environmental soil and water analysis.
     1. Three-way calibration methods and their applications in soil and water analysis (Chapter2to Chapter4)
     Carbofuran (CF) is a highly effective, systemic and contact carbamate insecticide. It is deadly poisonous and widely applied to control hundreds of pests on a variety of agricultural crops such as fruits, vegetables and corns. The residue of it can reach the human population via food-chain and drinking water, which poses a threat to the health of human beings. A novel method was proposed for the rapid determination of CF in soil and wastewater using three-dimension fluorescence coupled with second-order calibration based on the alternating trilinear decomposition (ATLD) algorithm (Chapter2). It was shown that the proposed method could solve the problem of serious flourescence spectral overlapping of the sought-for analyte and background interferents and it can be applied to rapid determination of CF even in the presence of unknown, uncalibtation interference(s).
     Prometryne (PRO), napropamide (NAP) and alachlor (ALA) are important herbicides used on farmland for the control of annual grasses and some broad-leaved weeds in a variety of crops, including maize, cotton, potato, peanuts and some vegetables. The mixed use of the herbicides has become the main means in agricultural production. Therefore, it is very important for developing a method to quantify them in complex environmental system such as river sediment and wastewater samples. A new spectrofluorimetric method for the direct determination of PRO, NAP and ALA contents in river sediment and wastewater samples has been proposed and discussed in the chapter (Chapter3). It combines the HPLC-DAD data with second-order calibration method based on self-weighed alternating trilinear decomposition (SWATLD) algorithm. The method can simultaneously obtain the contents of PRO, NAP and ALA in complex matrices which contain coelution and overlapping spectra of compounds. Additionally, the second-order property of the adopted algorithm together with the uniqueness of the decomposition has been explored by analysis different complex matrices. Such a chemometrics-based protocol shows several advantages over the traditional methods, such as simple sample pretreatment, green, reliable spectral resolution and concentration prediction, and it may possess great potential to be extended as a promising alternative for more practical applications in environment monitoring.
     2-Naphthoxyacetic acid (2-NOA) and1-naphthaleneacetic acid methyl ester (1-NAAME) are important plant hormones by synthesis. The widely use of these plant hormones has led to their presence in soils and sewage waters. The potential toxicity of these compounds on humans or animals has raised the need for effective methods for their control. With the purpose of developing an effective and inexpensive method for simultaneous determination of2-NOA and1-NAAME in soil and sewage samples, firstly, fluorescence spectrophotometer was fully utilized to obtain excitation-emission matrix fluorescence (EEMF) data of complex environmental samples. Subsequently, second-order calibration method based on SWATLD was applied to extracted useful chemical information from the obtained data (Chapter4). In order to investigate the prediction quality of the proposed method, different strategies, such as taking spectroscopic measurements in the presence of different matrix interferents and at different fluorescence spectrophotometers, were introduced to build calibration models and comparisons among them were done subsequently. Such a chemometrics-based protocol may possess great potential to be extended as a promising alternative for more practical applications in environment monitoring and for the design of small intelligent and field-portable analytical instruments.
     2. New four-way calibration algorithms and their applications in analysis of the hydrolysis kinetic of pesticides (Chapter5to Chapter6)
     Carbaryl (CBL), a toxic pesticide for human systems, is widely used in agriculture to control a number of insect pests on stored grain, grass lawns, fruits and vegetables. Many fluorescence and chromatographic methods have been developed to investigate the hydrolysis kinetic of CBL. However, so far none of the published papers reported on the application of room-temperature phosphorescence (RTP) method to investigate the hydrolysis kinetic of it. A sensitive excitation-emission phosphorescence method with third-order calibration based on four-way parallel factor analysis (4-PARAFAC), alternating weighted residue constraint quadrilinear decomposition (AWRCQLD) and alternating quadrilinear decomposition (AQLD) algorithms, respectively, is proposed to investigate the hydrolysis kinetic of CBL (Chapter5). The latter was developed as an extension of alternating trilinear for decomposition (ATLD) for quadrilinear data and presented for the first time in this chapter. These methodologies are applied to investigate the hydrolysis kinetic of CBL even in the presence of an uncalibrated phosphorescence background in complex practical samples, i.e., tap water samples. Additionally, the serious spectral background drift which is observed in all the samples are overcome by means of regarding the drift as an additional factor as well as the analyte of interest in the mathematical model.
     In experiments, the multidimension data arrays may deviate from the multilinear structure due to changes in the environmental conditions (e.g. temperature, pressure, time, artificial factors and so on). This phenomenon often is observed in the retention time dimension of chromatography due to retention-time shifts, and the excitation or emission dimension of fluorescence due to Rayleigh scattering. When two of the data dimensions are a temperature and a reaction time, the temperature and temporal profiles may vary from sample to sample. For the data seriously deviating from multilinear structure, the classic algorithms based on multilinear model can not treat with them. In the chapter, a new method based on firstly expanding before processing is proposed to investigate the HPLC-DAD-kinetic-temperature non-quinquelinear five-way data produced in the dissertation for the first time (Chapter6). The five-way data array is firstly rearranged into an expanded four-way data array following the non-linear way, then it is decomposed by four-way calibration based on4-PARAFAC, alternating weighted residue constraint quadrilinear decomposition (AWRCQLD) and alternating weighted quadrilinear decomposition (AWQLD) presented for the first time in this chapter. Before processing real data, a simulated excitation-emission-kinetic-temperature fluorescence data and a simulated HPLC-DAD-kinetic-temperature chromatographic data are used to verify the proposed method. It is found that the results of AWQLD are similar to or ever better than the ones of4-PARAFAC and AWRCQLD.
     3. New five-way calibration algorithm and its application to the kinetic analysis of naptalam in the presence of interferences (Chapter7)
     Naptalam (NAP) is a selective pre-and post-emergent herbicide and it may degrade to1-naphthylamine (NAA), O-phthalic acid (PHT) and N-(1-naphthyl) phthalimide (NPI) in aqueous environment. NAP is estimated to be of low toxicity but NAA is well known for its cytotoxic and genotoxic effects. It has been previously reported that phosphorescence, Fourier transform infrared spectrometry and chromatographic methods can be applied to determination of NAP and its metabolites in diverse matrices such as river water, drinking water, urine, etc. Over the last decades, first-order calibration method has been employed for the analysis of NAP and its metabolites. Unfortunately, the first-order calibration methods require a sufficiently large and representative calibration sample set and the calibration samples containing all of the constituents present in the future unknown samples, which is very difficult for analysis of real systems containing many unknown interferents.
     In the chapter, HPLC-DAD is used to monitor the kinetic evolution of a mixture at different pH values and then the HPLC-DAD-kinetic-pH fourth-order data are produced for the first time. To process the obtained data, a new algorithm, which is called alternating quinquelinear decomposition (AQQLD) and presented for the first time, is developed in the chapter (Chapter7). The proposed methodology is applied to analyze the hydrolysis kinetic of NAP in three sample systems containing (1) Indole-3-acetic acid (IAA) and1-naphthaleneacetamide (NAD),(2) IAA, NAD and unexpected component(s) and (3) extracts from soil samples, respectively, as interferents. Satisfactory results were obtained for the determination of NAP in these samples. The present work was a new and successful example of investigating the analytical properties of fourth-order data, opening a new approach for fourth-order data generation and subsequent fourth-order calibration.
引文
[1]张宝贵,韩长秀,毕成良.环境仪器分析.北京:化学工业出版社,2008,1-3
    [2]韦进宝,钱沙华.环境分析化学.北京:化学工业出版社,2002,1-4
    [3]毛跟年,许牡丹,黄建文.环境中有毒有害物质与分析检测.北京:化学工业出版社,2003,1-9
    [4]江桂斌,蔡亚岐,张爱茜.我国环境化学的发展与展望.化学通报,2012,75(4):295-300
    [5]俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991,1-5
    [6]梁逸曾.白灰黑复杂多组份分析体系及其化学计量学算法.长沙:湖南科学技术出版社,1996,1-8
    [7]史永刚,冯新泸,李子存.化学计量学.北京:中国石化出版社,2002,1-10
    [8]梁逸曾,俞汝勤.分析化学手册(第十分册),化学计量学.北京:化学工业出版社,2000,1-3
    [9]梁逸曾,俞汝勤.化学计量学.北京:高等教育出版社,2003,1-4
    [10]M.奥托.化学计量学:统计学与计算机在分析化学中的应用.邵学广,蔡文生,徐筱杰(译).北京:科学出版社,2003,1-6
    [11]Lavine B K, Workman J. Chemometrics. Analytical Chemistry,2002,74 (12): 2763-2770
    [12]Lavine B K. Chemometrics. Analytical Chemistry,1998,70 (12):209-228
    [13]Brown S D, Sum S T, Despagne F, et al. Chemometrics. Analytical Chemistry, 1996,68 (12):21R-61R
    [14]Lavine B K. Chemometrics. Analytical Chemistry,2000,72 (12):91R-97R
    [15]Lavine B, Workman J. Chemometrics. Analytical Chemistry,2004,76 (12): 3365-3372
    [16]Lavine B, Workman J. Chemometrics. Analytical Chemistry,2006,78 (12): 4137-4145
    [17]Lavine B, Workman J. Chemometrics. Analytical Chemistry,2008,80 (12): 4519-4531
    [18]Lavine B, Workman J. Chemometrics. Analytical Chemistry,2010,82 (12): 4699-4711
    [19]Lavine B K, Workman J. Chemometrics. Analytical Chemistry,2012,85 (2): 705-714
    [20]Mostert M M R, Ayoko G A, Kokot S. Application of chemometrics to analysis of soil pollutants. Trends in Analytical Chemistry,2010,29 (5):430-445
    [21]Kaplunovsky A S. Factor analysis in environmental studies. Journal of Science and Engineering B,2005,2 (1-2):54-94
    [22]Galera M M, Garcia M D G, Goicoechea H C. The application to wastewaters of chemometric approaches to handling problems of highly complex matrices. Trends in Analytical Chemistry,2007,26 (11):1032-1042
    [23]Mas S, de Juan A, Tauler R, et al. Application of chemometric methods to environmental analysis of organic pollutants:A review. Talanta,2010,80 (3): 1052-1067
    [24]马宁,郁陵庄,李梦龙.环境化学计量学:现状与前景.见:第二届大西南分析化学学术年会论文集.昆明:云南化工出版社,1998,3-4
    [25]涂强.从自然科学基金资助项目看我国环境化学进展和趋势.化学进展,1999,9(4):431-438
    [26]刘静宜.环境化学若干研究动向.中国科学基金,1997,2:117-121
    [27]Breen J J, Robinson P E. Environmental applications of chemometrics. Washington, DC:American Chemical Society,1985,1-2
    [28]Einax J. Chemometrics in Environmental Chemistry-Applications. University of Michigan:Springer,1995,1-4
    [29]Einax J W, Zwanxiger H W, Geiβ S. Chemometrics in Environmental Analysis. British:Wiley-VCH Verlag GmbH,1997,1-20
    [30]Siddiqui K J, Eastwood D. Pattern recognition, chemometrics, and imaging for optical environmental monitoring. Massachusetts-Boston:SPIE,1999,1-3
    [31]Hanrahan G. Environmental Chemometrics:Principles and Modern Applications. California-USA:CRC press,2008,1-2
    [32]许禄,邵学广.化学计量学方法.北京:科学出版社,1995,1-8
    [33]李华昌,符斌.化学计量学在分析化学中的应用.冶金分析,1995,15(1):33-40
    [34]倪永年.化学计量学在分析化学中的应用.北京:科学出版社,2004,1-4
    [35]许禄.化学计量学:一些重要方法的原理及应用.北京:科学出版社,2004,1-6
    [36]Wold S. Chemometrics, why, what and where to next? Journal of Pharmaceutical and Biomedical Analysis,1991,9 (8):589-596
    [37]Wold S. Chemometrics; what do we mean with it, and what do we want from it? Chemometrics and Intelligent Laboratory Systems,1995,30 (1):109-115
    [38]Brereton R G. Chemometrics in analytical chemistry. A review. Analyst,1987, 112(12):1635-1657
    [39]Booksh K S, Kowalski B R. Theory of analytical chemistry. Analytical Chemistry,1994,66 (15):782A-791A
    [40]Wold S, Sjostrom M. Chemometrics, present and future success. Chemometrics and Intelligent Laboratory Systems,1998,44 (1):3-14
    [41]Hopke P K. The evolution of chemometrics. Analytica Chimica Acta,2003,500 (1):365-377
    [42]Booksh K, Henshaw J M, Burgess L W, et al. A second-order standard addition method with application to calibration of a kinetics-spectroscopic sensor for quantitation of trichloroethylene. Journal of Chemometrics,1995,9 (4):263-282
    [43]Martens H, Nas T. Multivariate calibration. West Sussex-U. K.:John Wiley & Sons,1989,116-163
    [44]Suykens J A K, Vandewalle J. Nonlinear modeling:Advanced black-box techniques. Boston, MA, U.S.A.:Kluwer Academic Publishers,1998,55-85
    [45]Hoskuldsson A. PLS regression methods. Journal of Chemometrics,1988,2 (3): 211-228
    [46]Escandar G M, Olivieri A C, Faber N M, et al. Second-and third-order multivariate calibration:data, algorithms and applications. Trends in Analytical Chemistry,2007,26 (7):752-765
    [47]Tucker L R. The extension of factor analysis to three-dimensional matrices. In N. Frederiksen and H. Gulliksen (Eds.). New York:Holt, Rinehart & Winston,1964, 110-182
    [48]Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika,1970,35 (3):283-319
    [49]Harshman R A. Foundations of the PARAFAC procedure:Models and conditions for an "explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics,1970,16:1-84
    [50]Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Analytical Chemistry,1986,58 (2):496-499
    [51]Sanchez E, Kowalski B R. Tensorial resolution:A direct trilinear decomposition. Journal of Chemometrics,1990,4 (1):29-45
    [52]Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. Journal of Chemometrics,1998,12:1-26
    [53]Chen Z P, Wu H L, Jiang J H, et al. A novel trilinear decomposition algorithm for second-order linear calibration. Chemometrics and Intelligent Laboratory Systems,2000,52 (1):75-86
    [54]Xia A L, Wu H L, Fang D M, et al. Alternating penalty trilinear decomposition algorithm for second-order calibration with application to interference-free analysis of excitation-emission matrix fluorescence data. Journal of Chemometrics,2005,19 (2):65-76
    [55]Jiang J H, Wu H L, Chen Z P, et al. Coupled vectors resolution method for chemometric calibration with three-way data. Analytical Chemistry,1999,71 (19):4254-4262
    [56]Jiang J H, Wu H L, Li Y, et al. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. Journal of Chemometrics,1999, 13 (6):557-578
    [57]Li Y, Jiang J H, Wu H L, et al. Alternating coupled matrices resolution method for three-way arrays analysis. Chemometrics and Intelligent Laboratory Systems, 2000,52(1):33-43
    [58]Chen Z P, Li Y, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. Journal of Chemometrics,2001,15 (3):149-167
    [59]Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. Journal of Chemometrics,2000,14 (1): 15-36
    [60]Xie H P, Chu X, Jiang J H, et al. Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2003,59 (4):743-749
    [61]Chen Z P, Wu H L, Li Y, et al. Novel constrained PARAFAC algorithm for second-order linear calibration. Analytica Chimica Acta,2000,423 (2):187-196
    [62]Xia A L, Wu H L, Zhu S H, et al. Determination of psoralen in human plasma using excitation-emission matrix fluorescence coupled to second-order calibration. Analytical Sciences,2008,24 (9):1171-1176
    [63]Hu L Q, Wu H L, Ding Y J, et al. Alternating asymmetric trilinear decomposition for three-way data arrays analysis. Chemometrics and Intelligent Laboratory Systems,2006,82 (1):145-153
    [64]Xia A L, Wu H L, Fang D M, et al. Determination of daunomycin in human plasma and urine by using an interference-free analysis of excitation-emission matrix fluorescence data with second-order calibration. Analytical Sciences, 2006,22 (9):1189-1195
    [65]Bro R, Kiers H A L. A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics,2003,17 (5): 274-286
    [66]Chen Z P, Liu Z, Cao Y Z, et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Analytica Chimica Acta,2001,444 (2): 295-307
    [67]Harshman R A, Lundy M E. The PARFAC model for three-way factor analysis and multi-dimensional scaling, in Law H G, Snyder C W, Hattie J A, McDonald R P(Eds.), Research Methods for Multi-mode Data Analysis. New York:Praeger, 1984,1-45
    [68]Louwerse D, Smilde A K, Kiers H A L. Cross-validation of multiway component models. Journal of Chemometrics,1999,13 (5):491-510
    [69]Durell S R, Lee C H, Ross R T, et al. Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilinear models. Archives of Biochemistry and Biophysics,1990,278 (1):148-160
    [70]Xie H P, Jiang J H, Shen G L, et al. Estimation of the chemical rank for the three-way data:a principal norm vector orthogonal projection approach. Computers & Chemistry,2002,26 (2):183-190
    [71]Xie H P, Jiang J H, Long N, et al. Estimation of chemical rank of a three-way array using a two-mode subspace comparison approach. Chemometrics and Intelligent Laboratory Systems,2003,66 (2):101-115
    [72]Hu L Q, Wu H L, Jiang J H, et al. Use of pseudo-sample extraction and the projection technique to estimate the chemical rank of three-way data arrays. Analytical and Bioanalytical Chemistry,2006,384 (7-8):1493-1500
    [73]Chen Z P, Liang Y Z, Jiang J H, et al. Determination of the number of components in mixtures using a new approach incorporating chemical information. Journal of Chemometrics,1999,13 (1):15-30
    [74]Hu L Q, Wu H L, Jiang J H, et al. Estimating the chemical rank of three-way data arrays by a simple linear transform incorporating Monte Carlo simulation. Talanta,2007,71 (1):373-380
    [75]Wang J H, Jiang J H, Xiong J F, et al. Chemical rank estimation for excitation-emission matrices using a morphological approach. Journal of Chemometrics,1998,12 (2):95-104
    [76]Xia A L, Wu H L, Zhang Y, et al. A novel efficient way to estimate the chemical rank of high-way data arrays. Analytica Chimica Acta,2007,598 (1):1-11
    [77]Nie J F, Wu H L, Wang J Y, et al. The chemical rank estimation for excitation-emission matrix fluorescence data by region-based moving window subspace projection technique and Monte Carlo simulation. Chemometrics and Intelligent Laboratory Systems,2010,104 (2):271-280
    [78]Olivieri A C. On a versatile second-order multivariate calibration method based on partial least-squares and residual bilinearization:Second-order advantage and precision properties. Journal of Chemometrics,2005,19 (4):253-265
    [79]Lozano V A, Ibanez G A, Olivieri A C. Three-way partial least-squares/residual bilinearization study of second-order lanthanide-sensitized luminescence excitation-time decay data:Analysis of benzoic acid in beverage samples. Analytica Chimica Acta,2008,610 (2):186-195
    [80]Linder M, Sundberg R. Second-order calibration:bilinear least squares regression and a simple alternative. Chemometrics and Intelligent Laboratory Systems,1998,42 (1-2):159-178
    [81]Garcia Reiriz A, Damiani P C, Culzoni M J, et al. A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data:Unfolded principal component analysis/residual bilinearization. Chemometrics and Intelligent Laboratory Systems,2008,92(1):61-70
    [82]Kiers H A L, ten Berge J M F, Bro R. PARAFAC2-Part I. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics,1999,13 (3-4): 275-294
    [83]Bahram M, Bro R. A novel strategy for solving matrix effect in three-way data using parallel profiles with linear dependencies. Analytica Chimica Acta,2007, 584 (2):397-402
    [84]Tauler R. Multivariate curve resolution applied to second order data. Chemometrics and Intelligent Laboratory Systems,1995,30 (1):133-146
    [85]Reis M M, Gurden S P, Smilde A K, et al. Calibration and detailed analysis of second-order flow injection analysis data with rank overlap. Analytica Chimica Acta,2000,422 (1):21-36
    [86]Goicoechea H C, Olivieri A C. New robust bilinear least squares method for the analysis of spectral-pH matrix data. Applied Spectroscopy,2005,59 (7):926-933
    [87]Olivieri A C. A combined artificial neural network/residual bilinearization approach for obtaining the second-order advantage from three-way non-linear data. Journal of Chemometrics,2005,19 (11-12):615-624
    [88]李元娜.多维校正方法及在植物激素与农药定量分析中的应用研究:[湖南大学博士学位论文].长沙:湖南大学化学化工学院,2011,79-97
    [89]Olivieri A C,WuH L, Yu R Q. MVC2:A MATLAB graphical interface toolbox for second-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems,2009,96 (2):246-251
    [90]Olivieri A C, Wu H L, Yu R Q. MVC3:A MATLAB graphical interface toolbox for third-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems,2012,116 (0):9-16
    [91]Olivieri A C, Arancibia J A, Munoz de la Pena A, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Analytical Chemistry,2004,76 (19):5657-5666
    [92]Xia A L, Wu H L, Li S F, et al. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays. Journal of Chemometrics, 2007,21 (3-4):133-144
    [93]Fu H Y, Wu H L, Yu Y J, et al. A new third-order calibration method with application for analysis of four-way data arrays. Journal of Chemometrics,2011, 25 (8):408-429
    [94]Kang C, Wu H L, Yu Y J, et al. An alternative quadrilinear decomposition algorithm for four-way calibration with application to analysis of four-way fluorescence excitation-emission-pH data array. Analytica Chimica Acta,2013, 758 (3):45-57
    [95]Liu Y J, Wu H L, Kang C, et al. Four-way self-weighted alternating normalized residue fitting algorithm with application for the analysis of serotonin in human plasma. Analytical Sciences,2012,28 (11):1097-1104
    [96]Arancibia J A, Olivieri A C, Gil D B, et al. Trilinear least-squares and unfolded-PLS coupled to residual trilinearization:New chemometric tools for the analysis of four-way instrumental data. Chemometrics and Intelligent Laboratory Systems,2006,80 (1):77-86
    [97]Damiani P C, Duran-Meras I, Garcia-Reiriz A, et al. Multiway partial least-squares coupled to residual trilinearization:a genuine multidimensional tool for the study of third-order data. Simultaneous analysis of procaine and its metabolite p-aminobenzoic acid in equine serum. Analytical Chemistry,2007,79 (18):6949-6958
    [98]Garcfa-Reiriz A, Damiani P C, Olivieri A C, et al. Nonlinear four-way kinetic-excitation-emission fluorescence data processed by a variant of parallel factor analysis and by a neural network model achieving the second-order advantage:malonaldehyde determination in olive oil samples. Analytical Chemistry,2008,80 (19):7248-7256
    [99]Maggio R M, Munoz de la Pena A, Olivieri A C. Unfolded partial least-squares with residual quadrilinearization:A new multivariate algorithm for processing five-way data achieving the second-order advantage. Application to fourth-order excitation-emission-kinetic-pH fluorescence analytical data. Chemometrics and Intelligent Laboratory Systems,2011,109 (2):178-185
    [100]Allegrini F, Olivieri A C. Analytical figures of merit for partial least-squares coupled to residual multilinearization. Analytical Chemistry,2012,84 (24): 10823-10830
    [101]Golobocanin D D, Skrbic B D, Miljevic N R. Principal component analysis for soil contamination with PAHs. Chemometrics and Intelligent Laboratory Systems,2004,72 (2):219-223
    [102]Gimeno R, Comas E, Marce R, et al. Second-order bilinear calibration for determining polycyclic aromatic compounds in marine sediments by solvent extraction and liquid chromatography with diode-array detection. Analytica Chimica Acta,2003,498 (1):47-53
    [103]Goicoechea H C, Yu S, Moore A F T, et al. Four-way modeling of 4.2K time-resolved excitation emission fluorescence data for the quantitation of polycyclic aromatic hydrocarbons in soil samples. Talanta,2012,101 (0): 330-336
    [104]Kemper T, Sommer S. Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy. Environmental Science & Technology,2002,36 (12):2742-2747
    [105]Andrade J M, Kubista M, Carlosena A, et al.3-Way characterization of soils by Procrustes rotation, matrix-augmented principal components analysis and parallel factor analysis. Analytica Chimica Acta,2007,603 (1):20-29
    [106]Gomez-Carracedo M P, Ballabio D, Andrade J M, et al. Comparing roadsoils pollution patterns extracted by MOLMAP and classical three-way decomposition methods. Analytica Chimica Acta,2010,677 (1):64-71
    [107]张卉枫,吴海龙,夏阿林,et al.荧光二阶校正法用于多环芳烃葸和菲的直接定量测定.计算机与应用化学,2007,24(1):117-120
    [108]聂重重,吴海龙,卿湘东,et al.三维荧光二阶校正法快速测定环境水体和淤泥样中麦穗宁残留量.环境化学,2011,30(11):1837-1843
    [109]Li Y N, Wu H L, Zhu S H, et al. Determination of indole-3-acetic acid in soil using excitation-emission matrix fluorescence with trilinear decomposition-based calibration methods. Analytical Sciences,2009,25 (1): 83-88
    [110]Li Y N, Wu H L, Qing X D, et al. The maintenance of the second-order advantage:Second-order calibration of excitation-emission matrix fluorescence for quantitative analysis of herbicide napropamide in various environmental samples. Talanta,2011,85 (1):325-332
    [111]李元娜,多维校正方法及在植物激素与农药定量分析中的应用研究:[湖南大学博士学位论文],长沙:湖南大学化学化工学院,2011:42-51
    [112]Li Y N, Wu H L, Qing X D, et al. Quantitative analysis of triazine herbicides in environmental samples by using high performance liquid chromatography and diode array detection combined with second-order calibration based on an alternating penalty trilinear decomposition algorithm. Analytica Chimica Acta, 2010,678(1):26-33
    [113]Kowalkowski T, Zbytniewski R, Szpejna J, et al. Application of chemometrics in river water classification. Water Research,2006,40 (4):744-752
    [114]Saurina J, Leal C, Compano R, et al. Determination of triphenyltin in sea-water by excitation-emission matrix fluorescence and multivariate curve resolution. Analytica Chimica Acta,2000,409 (1):237-245
    [115]Devos O, Fanget B, Saber A I, et al. Use of a Plackett-Burman design with multivariate calibration for the analysis of polycyclic aromatic hydrocarbons in micellar media by synchronous fluorescence. Analytical Chemistry,2002,74 (3): 678-683
    [116]Sahoo G, Ray C, Wade H. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecological Modelling,2005,183 (1):29-46
    [117]Rodriguez-Cuesta M, Boque R, Rius F, et al. Development and validation of a method for determining pesticides in groundwater from complex overlapped HPLC signals and multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems,2005,77 (1):251-260
    [118]Ni Y N, Cao D X, Kokot S. Simultaneous enzymatic kinetic determination of pesticides, carbaryl and phoxim, with the aid of chemometrics. Analytica Chimica Acta,2007,588 (1):131-139
    [119]Gil Garcia M, Culzoni M, De Zan M, et al. Solving matrix effects exploiting the second-order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms II. Prediction and figures of merit. Journal of Chromatography,2008,1179 (2):115-124
    [120]Bortolato S A, Arancibia J A, Escandar G M. Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon membranes. Simultaneous determination of benzo [a] pyrene and dibenz [a, h] anthracene at parts-per-trillion levels in the presence of the remaining EPA PAH priority pollutants as interferences. Analytical Chemistry,2008,80 (21):8276-8286
    [121]Bortolato S A, Arancibia J A, Escandar G M. Non-trilinear chromatographic time retention-fluorescence emission data coupled to chemometric algorithms for the simultaneous determination of 10 polycyclic aromatic hydrocarbons in the presence of interferences. Analytical Chemistry,2009,81 (19):8074-8084
    [122]Valero-Navarro A, Damiani P C, Fernandez-Sanchez J F, et al. Chemometric-assisted MIP-optosensing system for the simultaneous determination of monoamine naphthalenes in drinking waters. Talanta,2009,78 (1):57-65
    [123]Goicoechea H C, Yu S, Olivieri A C, et al. Four-way data coupled to parallel factor model applied to environmental analysis:Determination of 2,3,7,8-tetrachloro- dibenzo-para-dioxin in highly contaminated waters by solid-liquid extraction laser-excited time-resolved shpol'skii spectroscopy. Analytical Chemistry,2005,77 (8):2608-2616
    [124]Singh K P, Malik A, Singh V K, et al. Multi-way modeling of hydro-chemical data of an alluvial river system-a case study. Analytica Chimica Acta,2006,571 (2):248-259
    [125]Zhu S H, Wu H L, Xia A L, et al. Quantitative analysis of hydrolysis of carbaryl in tap water and river by excitation-emission matrix fluorescence coupled with second-order calibration. Talanta,2008,74 (5):1579-1585
    [126]Zhu S H, Wu H L, Xia A L, et al. Excitation-emission-kinetic fluorescence coupled with third-order calibration for quantifying carbaryl and investigating the hydrolysis in effluent water. Talanta,2009,77 (5):1640-1646
    [127]丁玉洁,吴海龙,方冬梅,et al.交替三线性分解算法与HPLC-DAD相结合用于硝基苯类化合物的二阶校正.高等学校化学学报,2005,26(7):1255-1257
    [128]Soler C, Manes J, Pico Y. Determination of carbosulfan and its metabolites in oranges by liquid chromatography ion-trap triple-stage mass spectrometry. Journal Of Chromatography A,2006,1109:228-241
    [129]Leppert B C, Markle J C, Helt R C, et al. Determination of carbosulfan and carbofuran residues in plants, soil, and water by gas chromatography. Journal of Agricultural and Food Chemistry,1983,37:220-223
    [130]Fu Z M, Jin M C, Jin Y G, et al. Study on the determination of carbofuran residues in vegetable by GC/MS. Chinese Journal of Health Laboratory Technology,2005,15:421-422
    [131]Delgado M J S, Barroso S R, Ferndez-Tostado G T, et al. Stability studies of carbamate pesticides and analysis by gas chromatography with flame ionization and nitrogen-phosphorus detection. Journal of Chromatography A,2001,921 (2): 287-296
    [132]Huertas-Perez J F, Gamiz-Gracia L, Garcia-Campana A M, et al. Chemiluminescence determination of carbofuran at trace levels in lettuce and waters by flow-injection analysis. Talanta,2005,65:980-985
    [133]Zhu G N, Jin M J, Gui W J, et al. Development of a direct competitive enzyme-linked immunoassay for carbofuran in vegetables. Food Chemistry,2008, 107:1737-1742
    [134]Chen J B, Zhao W J, Liu W, et al. Cloud point extraction coupled with derivative of carbofuran as a preconcentration step prior to HPLC. Food Chemistry,2009, 115:1038-1041
    [135]Shi J, Gong W, Liu H M, et al. Determination of carbofuran and pirimicarb in tobacco. Chinese Journal of Analysis laboratory,2008,27:22-24
    [136]JiJi R D, Cooper G A, Booksh K S. Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons. Analytica Chimica Acta,1999,397:67-75
    [137]Wu H L, Nie J F, Yu Y J, et al. Multi-way chemometric methodologies and applications:A central summary of our research work. Analytica Chimica Acta, 2009,650 (1):131-142
    [138]Lorber A. Error propagation and figures of merit for quantification by solving matrix equations. Analytical Chemistry,1986,58 (6):1167-1172
    [139]Damiani P C, Nepote A J, Bearzotti M, et al. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses:fluorescence determination of ciprofloxacin in human urine. Analytical Chemistry,2004,76: 2798-2806
    [140]Olivieri A C. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques:the need for further developments in net analyte signal theory. Analytical Chemistry,2005,77 (15):4936-4946
    [141]Lorber A. Net analyte signal calculation in multivariate calibration. Analytical Chemistry,1997,69 (8):1620-1626
    [142]Olivieri A C, M.Faber N. Standard error of prediction in parallel factor analysis of three-way data. Chemometrics and Intelligent Laboratory Systems,2004,70 (1):75-82
    [143]Nie J F, Wu H L, Zhu S H, et al. Simultaneous determination of 6-methylcoumarin and 7-methoxycoumarin in cosmetics using three-dimensional excitation-emission matrix fluorescence coupled with second-order calibration methods. Talanta,2008,75:1260-1269
    [144]Tan T Y, Cai L M, Jia F Y, et al. Determination of carbofuran and Its metabolites residues in soybean by GC. Agrochemicals,2009,48:58-59
    [145]Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta,2003,60:1113-1121
    [146]Gonzalez A G, Herrador M A, Asuero A G. Intra-laboratory testing of method acc racy from recovery assays. Talanta,1999,48:729-736
    [147]Tessier D M, Clark J M. Quantitative assessment of the mutagenic potential of environmental degradative products of alachlor. Journal of Agricultural and Food Chemistry,1995,43 (9):2504-2512
    [148]http://www.ars.usda.gov/Services/docs.htm?docid=14147
    [149]Jiang L, Huang J, Liang L, et al. Mobility of prometryne in soil as affected by dissolved organic matter. Journal of Agricultural and Food Chemistry,2008,56 (24):11933-11940
    [150]http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c:=ecfr&tpl=%2Findex.tpl
    [151]Murillo Pulgarin J A, Garcia Bermejo L F. Determination of napropamide in technical formulations, soil and vegetable samples by sensitised fluorescence: validation of the method. Analytica Chimica Acta,2003,491 (1):37-45
    [152]Murillo Pulgarin J A, Garcia Bermejo L F. Determination of the pesticide napropamide in soil, pepper, and tomato by micelle-stabilized room-temperature phosphorescence. Journal of Agricultural and Food Chemistry,2002,50 (5): 1002-1008
    [153]Aga D S, Thurman E M, Pomes M L. Determination of alachlor and its sulfonic acid metabolite in water by solid-phase extraction and enzyme-linked immunosorbent assay. Analytical Chemistry,1994,66 (9):1495-1499
    [154]Beale D J, Porter N A, Roddick F A. A fast screening method for the presence of atrazine and other triazines in water using flow injection with chemiluminescent detection. Talanta,2009,78 (2):342-347
    [155]Dores E F G C, Navickiene S, Cunha M L F, et al. Multiresidue determination of herbicides in environmental waters from Primavera do Leste Region (Middle West of Brazil) by SPE-GC-NPD. Journal of the Brazilian Chemical Society, 2006,17:866-873
    [156]Boyd Boland A A, Magdic S, Pawliszyn J B. Simultaneous determination of 60 pesticides in water using solid-phase microextraction and gas chromatography-mass spectrometry. Analyst,1996,121 (7):929-937
    [157]Nelson W M, Tang Q, Harrata A K, et al. On-line partial filling micelllar electrokinetic chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A,1996,749 (1-2):219-226
    [158]Lai F, White L. Automated precolumn concentration and high-performance liquid chromatographic analysis of polynuclear aromatic hydrocarbons in water using a single pump and a single valve. Journal of Chromatography A,1995,692 (1-2):11-20
    [159]Cheng J H, Liu M, Zhang X Y, et al. Determination of triazine herbicides in sheep liver by microwave-assisted extraction and high performance liquid chromatography. Analytica Chimica Acta,2007,590 (1):34-39
    [160]Ouyang L Q, Wu H L, Nie J F, et al. Simultaneous determination of psoralen and isopsoralen in plasma and Chinese medicine Xian Ling Gu Bao capsule by using HPLC-DAD coupled with alternating trilinear decomposition algorithm. Analytica Chimica Acta,2009,650 (2):160-166
    [161]Bezemer E, Rutan S C. Three-way alternating least squares using three-dimensional tensors in MATLAB. Chemometrics and Intelligent Laboratory Systems,2002,60 (1-2):239-251
    [162]Olivieri A C, Faber N M. A closed-form expression for computing the sensitivity in second-order bilinear calibration. Journal of Chemometrics,2005,19 (11-12): 583-592
    [163]Ryan P W, Li B, Shanahan M, et al. Prediction of cell culture media performance using fluorescence spectroscopy. Analytical Chemistry,2010,82 (4):1311-1317
    [164]Qing X D, Wu H L, Li Y N, et al. Simultaneous determination of pre-emergence herbicides in environmental samples using HPLC-DAD combined with second-order calibration based on self-weighted alternating trilinear decomposition algorithm. Analytical Methods,2012,4 (3):685-692
    [165]Gimenez D, Sarabia L, Ortiz M C. The maintenance of a PARAFAC calibration and the second-order property:application to the determination of ciprofloxacin in presence of enrofloxacin by excitation-emission fluorescence. Analytica Chimica Acta,2005,544 (1-2):327-336
    [166]Rinnan A, Riu J, Bro R. Multi-way prediction in the presence of uncalibrated interferents. Journal of Chemometrics,2007,21 (1-2):76-86
    [167]Shahzad A, Knapp M, Edetsberger M, et al. Diagnostic application of fluorescence spectroscopy in oncology feld:hopes and challenges. Applied Spectroscopy Reviews,2010,45 (1):92-99
    [168]Fitch J. Application of fluorescence spectroscopy to environmental studies. knoxiville-USA:University of Tennessee at Chattanooga, Chemistry,2002,1-4
    [169]Sadecka J, Tothova J. Fluorescence spectroscopy and chemometrics in the food classification-a review. Czech Journal of Food Science,2007,25 (4):159-173
    [170]Li Y N, Wu H L, Nie J F, et al. Interference-free determination of abscisic acid and gibberellin in plant samples using excitation-emission matrix fluorescence based on oxidation derivatization coupled with second-order calibration methods. Analytical Methods,2009,1 (2):115-122
    [171]Murillo Pulgarin J A, Garcia Bermejo L F, Sanchez Ferrer Robles I, et al. Simultaneous determination of plant growth regulators 1-naphthylacetic acid and 2-naphthoxyacetic acid in fruit and vegetable samples by room temperature phosphorescence. Phytochemical Analysis,2011,29:1099-1107
    [172]Casado Terrones S, Fernandez Sanchez J F, Segura Carretero A, et al. The development and comparison of a fluorescence and a phosphorescence optosensors for determining the plant growth regulator 2-naphthoxyacetic acid. Sensor Actuators. B:Chemistry,2005,107 (2):929-935
    [173]Ibrahim A D, Abubakar A, Aliero A A, et al. Volatile metabolites profiling for discriminating tomato fruits Inoculated with some bacterial pathogens. Joural of Pharmaceutical Biomedical Science,2011,1 (5):79-84
    [174]Currie L A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities:(IUPAC Recommendations 1995). Analytica Chimica Acta,1999,391 (2):105-126
    [175]Martinez Galera M, Lopez Lopez T, Gil Garcia M D, et al. A comparative study of the correction of systematic errors in the quantitation of pyrethroids in vegetables using calibration curves prepared using standards in pure solvent. Analytical and Bioanalytical Chemistry,2003,375 (5):653-660
    [176]Lars N. Direct standardisation in multi wavelength fluorescence spectroscopy. Chemometrics and Intelligent Laboratory Systems,1995,29 (2):283-293
    [177]Feudale R N, Woody N A, Tan H, et al. Transfer of multivariate calibration models:a review. Chemometrics and Intelligent Laboratory Systems,2002,64 (2):181-192
    [178]Thygesen J, van den Berg F. Calibration transfer for excitation-emission fluorescence measurements. Analytica Chimica Acta,2011,705 (1-2):81-87
    [179]Kunz M R, Kalivas J H, Andries E. Model updating for spectral calibration maintenance and transfer using 1-Norm variants of Tikhonov regularization. Analytical Chemistry,2010,82 (9):3642-3649
    [180]Chen Z P, Li L M, Yu R Q, et al. Systematic prediction error correction:A novel strategy for maintaining the predictive abilities of multivariate calibration models. Analyst,2011,136 (1):98-106
    [181]Nahorniak M L, Cooper G A, Kim Y C, et al. Three- and four-way parallel factor (PARAFAC) analysis of photochemically induced excitation-emission kinetic fluorescence spectra. Analyst,2005,130 (1):85-93
    [182]Rodriguez N, Ortiz M C, Sarabia L A. Fluorescence quantification of tetracycline in the presence of quenching matrix effect by means of a four-way model. Talanta,2009,77 (3):1129-1136
    [183]Arancibia J A, Damiani P C, Escandar G M, et al. A review on second-and third-order multivariate calibration applied to chromatographic data. Journal of Chromatography B,2012,910 (0):22-30
    [184]Johnson K, De Juan A, Rutan S C. Three-way data analysis of pollutant degradation profiles monitored using liquid chromatography-diode array detection. Journal of Chemometrics,1999,13 (3-4):331-341
    [185]de la Pena A M, Meras I D, Giron A J. Four-way calibration applied to the simultaneous determination of folic acid and methotrexate in urine samples. Analytical and Bioanalytical Chemistry,2006,385 (7):1289-1297
    [186]She L K, Brinkmana U A T, Freia R W. Liquid chromatographic residue analysis of carbaryl based on a post-column catalytic reactor principle and fluorigenic labelling. Analytical Letters,1984,17 (10):915-931
    [187]Ni Y N, Xiao W Q, Kokot S. Application of chemometrics methods for the simultaneous kinetic spectrophotometric determination of aminocarb and carbaryl in vegetable and water samples. Journal of Hazardous materials,2009, 168 (2-3):1239-1245
    [188]Vo-Dinh T, Hooyman J R. Selective heavy-atom perturbation for analysis of complex mixtures by room-temperature phosphorimetry. Analytical Chemistry, 1979,51 (12):1915-1921
    [189]Vannelli J J, Schulman E M. Solid surface room-temperature phosphorescence of pesticides. Analytical Chemistry,1984,56 (6):1030-1033
    [190]Love L J C, Skrilec M, Habarta J G. Analysis of micelle-stabilized room temperature phosphorescence in solution. Analytical Chemistry,1980,52 (4): 754-759
    [191]Scypinski S, Love L J C. Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls. Analytical Chemistry,1984,56 (3):331-336
    [192]Arancibia J A, Escandar G M. Room-temperature excitation-emission phosphorescence matrices and second-order multivariate calibration for the simultaneous determination of pyrene and benzo[a]pyrene. Analytica Chimica Acta,2007,584 (2):287-294
    [193]Arancibia J A, Boschetti C E, Olivieri A C, et al. Screening of oil samples on the basis of excitation-emission room-temperature phosphorescence data and multiway chemometric techniques. Introducing the second-order advantage in a classification study. Analytical Chemistry,2008,80 (8):2789-2798
    [194]Munoz de la Pena A, Mora Diez N, Bohoyo Gil D, et al. Second-order data obtained by time-resolved room temperature phosphorescence. A new approach for PARAFAC multicomponent analysis. Journal Of Fluorescence,2009,19 (2): 345-352
    [195]Harshman R A, Hong S.'Stretch'vs'slice'methods for representing three-way structure via matrix notation. Journal of Chemometrics,2002,16 (4):198-205
    [196]Kim Y C, Jordan J A, Nahorniak M L, et al. Photocatalytic degradation-excitation-emission matrix fluorescence for increasing the selectivity of polycyclic aromatic hydrocarbon analyses. Analytical Chemistry, 2005,77 (23):7679-7686
    [197]Machicote R G, Bruzzone L. Simultaneous determination of carbaryl and 1-naphthol by first-derivative synchronous non-protected room temperature phosphorescence. Analytical Sciences,2009,25 (5):623-626
    [198]Zhang Y, Wu H L, Xia A L, et al. Trilinear decomposition method applied to removal of three-dimensional background drift in comprehensive two-dimensional separation data. Journal of Chromatography A,2007,1167 (2): 178-183
    [199]Rinnan A, Booksh K S, Bro R. First order Rayleigh scatter as a separate component in the decomposition of fluorescence landscapes. Analytica Chimica Acta,2005,537 (1-2):349-358
    [200]Olivieri A C, Faber K. New developments for the sensitivity estimation in four-way calibration with the quadrilinear parallel factor model. Analytical Chemistry,2011,84 (1):186-193
    [201]Olivieri A C, Escandar G M, Munoz de la Pena A. Second-order and higher-order multivariate calibration methods applied to non-multilinear data using different algorithms. Trends in Analytical Chemistry,2011,30 (4):607-617
    [202]Wang H B, Zhang Y J, Xiao X, et al. Application of excitation-emission matrix fluorescence combined with second-order calibration algorithm for the determination of five polycyclic aromatic hydrocarbons simultaneously in drinking water. Analytical Methods,2011,3 (3):688-695
    [203]Leitao J M M, Simoes E F C, Esteves da Silva J C G. PARAFAC based methods for the analysis of Diltiazem drug excitation emission matrices of fluorescence obtained by a derivatization reaction. Analytical Methods,2011,3 (12): 2758-2769
    [204]Fu H Y, Wu H L, Nie J F, et al. Highly sensitive fluorescence quantification of irinotecan in biological fluids with the aid of second-order advantage. Chinese Chemical Letters,2010,21 (12):1482-1486
    [205]Fang D M, Wu H L, Ding Y J, et al. Interference-free determination of fluoroquinolone antibiotics in plasma by using excitation-emission matrix fluorescence coupled with second-order calibration algorithms. Talanta,2006,70 (1):58-62
    [206]Nagele E, Vollmer M, Horth P, et al.2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert Review of Proteomics,2004,1 (1):37-46
    [207]Bailey H P, Rutan S C. Chemometric resolution and quantification of four-way data arising from comprehensive 2D-LC-DAD analysis of human urine. Chemometrics and Intelligent Laboratory Systems,2011,106 (1):131-141
    [208]Vanrobaeys F, Van Coster R, Dhondt G, et al. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. Journal of Proteome Research,2005,4 (6): 2283-2293
    [209]Blomberg J, Schoenmakers P J, Beens J, et al. Compehensive two-dimensional gas chromatography (GC X GC) and its applicability to the characterization of complex (petrochemical) mixtures. Journal of High Resolution Chromatography, 1997,20(10):539-544
    [210]Zeng Z D, Hugel H M, Marriott P J. Chemometrics in comprehensive multidimensional separations. Analytical and Bioanalytical Chemistry,2011,401 (8):2373-2386
    [211]Quigley W W, Fraga C G, Synovec R E. Comprehensive LC×GC for enhanced headspace analysis. Journal of Microcolumn Separations,2000,12 (3):160-166
    [212]de Koning S, Janssen H G, van Deursen M, et al. Automated on-line comprehensive two-dimensional LC X GC and LC X GC-TOFMS:Instrument design and application to edible oil and fat analysis. Journal of Separation Science,2004,27 (5-6):397-409
    [213]Michels D A, Hu S, Dambrowitz K A, et al. Capillary sieving electrophoresis-micellar electrokinetic chromatography fully automated two-dimensional capillary electrophoresis analysis of Deinococcus radiodurans protein homogenate. Electrophoresis,2004,25 (18-19):3098-3105
    [214]Liu H, Yang C, Yang Q, et al. On-line combination of capillary isoelectric focusing and capillary non-gel sieving electrophoresis using a hollow-fiber membrane interface:a novel two-dimensional separation system for proteins. Journal of Chromatography B,2005,817 (1):119-126
    [215]聂瑾芳,吴海龙,张云,et al.三线性分解方法用于激发-发射矩阵荧光数据中一阶瑞利散射的扣除.中国科学:化学,2011,41(11):1740-1749
    [216]Rinnan A, Booksh K S, Bro R. First order Rayleigh scatter as a separate component in the decomposition of fluorescence landscapes. Analytica Chimica Acta,2005,537(1):349-358
    [217]Yu Y J, Wu H L, Niu J F, et al. A novel chromatographic peak alignment method coupled with trilinear decomposition for three dimensional chromatographic data analysis to obtain the second-order advantage. Analyst,2013,138 (2):627-634
    [218]Comas E, Gimeno R A, Ferre J, et al. Time shift correction in second-order liquid chromatographic data with iterative target transformation factor analysis. Analytica Chimica Acta,2002,470 (2):163-173
    [219]Arenas-Garcia J, Petersen K B, Hansen L K. Sparse kernel orthonormalized PLS for feature extraction in large data sets. Advances in Neural Information Processing Systems,2007,19:33-40
    [220]Zhang X H, Wu H L, Wang J Y, et al. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm. Food Chemistry,2013,138 (1):62-69
    [221]Qing X D, Wu H L, Nie C C, et al. Simultaneous determination of plant growth regulators in environmental samples using chemometrics-assisted excitation-emission matrix fluorescence:Experimental study on the prediction quality of second-order calibration method. Talanta,2013,103 (0):86-94
    [222]Wang J Y, Wu H L, Chen Y, et al. Fast analysis of synthetic antioxidants in edible vegetable oil using trilinear component modeling of liquid chromatography-diode array detection data. Journal of Chromatography A,2012, 1264 (0):63-71
    [223]Tan F Y, Tan C, Zhao A P, et al. Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. Journal of Agricultural and Food Chemistry,2011,59 (20): 10839-10847
    [224]Liu J J, Ma X, Wen Y D, et al. Online near-Infrared spectroscopy combined with alternating trilinear decomposition for process analysis of industrial production and quality assurance. Industrial & Engineering Chemistry Research,2011,50 (12):7677-7681
    [225]Jimenez Giron A, Duran Meras I, Munoz de la Pena A, et al. Photoinduced fluorimetric determination of folic acid and 5-methyltetrahydrofolic acid in serum using the kinetic evolution of the emission spectra accomplished with multivariate second-order calibration methods. Analytical and Bioanalytical Chemistry,2008,391 (3):827-835
    [226]Bauza M C, Ibanez G A, Tauler R, et al. Sensitivity equation for quantitative analysis with multivariate curve resolution-alternating least-squares:theoretical and experimental approach. Analytical Chemistry,2012,84 (20):8697-8706
    [227]Diaz T G, Acedo Valenzuela M I, Salinas F. Multicomponent determination of the pesticide naptalam and its metabolites in river water, by applying partial least squares calibration to the derivative spectrophotometric signals. Fresenius' Journal of Analytical Chemistry,1994,350 (12):692-701
    [228]Salinas-Castillo A, Fernandez-Sanchez J F, Segura-Carretero A, et al. A facile flow-through phosphorimetric sensing device for simultaneous determination of naptalam and its metabolite 1-naphthylamine. Analytica Chimica Acta,2004, 522 (1):19-24
    [229]Kargosha K, Hamid Ahmadi S, Ghassempour A, et al. Simultaneous determination of the pesticide naptalam and its metabolites in natural water by Fourier transform infrared spectrometry. Analyst,1999,124 (3):367-371
    [230]Diaz T G, Acedo M I, de la Pena A M, et al. Determination of 1-naphthylamine and the related pesticides, naptalam and antu, in river-water by high-performance liquid chromatography. Application to the study of the degradation processes of naptalam. Analyst,1994,119 (6):1151-1155
    [231]Granados A, Nassetta M, de Rossi R H. Kinetic study on the hydrolysis of 1-N-naphthylphthalamic acid (naptalam). Journal of Agricultural and Food Chemistry,1995,43 (9):2493-2496
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.