一个参与拟南芥抗寒/抗旱的基因功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着拟南芥,水稻等模式植物基因组全序列测序工作的完成,植物科学界普遍认为其整体研究工作的重点应转为“功能基因组”的研究。借助已有的基因表达谱分析,发现拟南芥中一个功能未知的基因LWT1被低温和干旱诱导表达。然而,LWT1基因是否在低温和干旱胁迫中起重要的作用尚不清楚。
     为了阐明LWT1基因的功能,从拟南芥种质资源中心获得了两个T-DNA插入LWT1基因的功能缺失型突变体lwt1-1和lwt1-2。本文研究了拟南芥野生型和突变体lwt1-1和lwt1-2对低温和干旱胁迫响应的特征。研究结果如下:
     1.在低温胁迫条件下,lwt1-1和lwt1-2突变体的存活率都明显低于野生型;电导率的测定结果进一步证实lwt1-1和lwt1-2突变体在细胞水平上受到的低温伤害比野生型更轻。表明lwt1-1和lwt1-2突变体对低温胁迫表现敏感性。
     2.在干旱胁迫条件下,lwt1-1和lwt1-2突变体的存活率显著低于野生型;lwt1-1和lwt1-2突变离体体叶片的失水率进一步证明了突变体的保水能力比野生型差。表明lwt1-1和lwt1-2突变体对干旱胁迫表现敏感性。
     3.在低温和干旱胁迫条件下野生型和lwt1-1和lwt1-2突变体体内可溶性总糖无明显的差异,而脯氨酸的积累表现出较大差异性,这表明lwt1-1和lwt1-2突变体对低温和干旱的敏感性与其体内可溶性糖积累无关,而与脯氨酸含量的积累有关。
     4.低温和干旱胁迫的相关基因表达分析结果也表明,lwt1-1和lwt1-2突变体在低温和干旱的胁迫下突变体与野生型中CBF上下游基因的表达量无明显差异,说明lwt1-1和lwt1-2突变体对低温和干旱的敏感性可能与CBF途径无关。
     5.低温和干旱胁迫下脯氨酸合成基因P5CS和脯氨酸降解基因PDH分析表明,突变体lwt1-1和lwt1-2中P5CS基因的表达量与野生型无明显差异,而PDH基因在lwt1-1和lwt1-2突变体中的表达远远高于野生型。这表明,LWT1基因抑制了脯氨酸降解基因的表达,从而在低温和干旱胁迫下完成脯氨酸的积累,达到适应外界逆境环境胁迫。
     6.lwt1-1和lwt1-2突变体对甘露醇,ABA,以及NaCL的胁迫表现出无明显的差异。因此推测,LWT1基因对脯氨酸的调控导致的细胞内积累的脯氨酸含量是突变体植株表现出对低温和干旱敏感的主要原因。
     综上所述,本研究结果证明了LWT1基因调节植物对低温和干旱的响应,主要是通过对脯氨酸降解基因PDH的调控来实现的。
With the completion of genome sequence of arabidopsis, rice and other model plants, plant scientists generally felt that its overall research focus should face to "functional genomics" research. Using gene expression microarray analysis data, expression of the LWT1 gene encoding a unkown protein was found to be induced by low temperature and drought stresses. However, it is unclear whether the LWT1 gene plays important roles in the regulation of the responses of Arabidopsis plants to low temperature and drought stresses.
     To elucidate the function of the LWT1 gene, two T-DNA insertion loss-of-function mutants lwt1-1 and lwt1-2 were obtained from the Arabidopsis Biological Resource Center. In this study, the responses of the lwt1-1 and lwt1-2 mutants to low temperature and drought stresses were investigated. The main results are as follows:
     1. Under low temperature stress, survival rates of the lwt1-1 and lwt1-2 mutant plants were lower than those of the wild type, and the electrolyte leakages of the lwt1-1 and lwt1-2 mutants were higher than the wild type, suggesting that the injury of the lwt1-1 and lwt1-2 mutants to low temperature stress in cellular level is more serious than to the wild type, and that the lwt1-1 and lwt1-2 mutants are more sensitive to low temperature stress than the wild type.
     2. Under drought stress, survival rates of the lwt1-1 and lwt1-2 mutant'plants were lower than those of the wild type, and the water loss rates of leaves in the lwt1-1 and lwt1-2 mutants were higher than the wild type, suggesting further evidence that mutant water-retention capacity is worse than wild-type and that the lwt1-1 and lwt1-2 mutants are more sensitive to drought stress than the wild type.
     3. Under low temperature and drought stress conditions, no significant difference in the level of soluble sugar was detected between the wild type and the lwtl-1 and lwtl-2 mutants, while a higher accumulation of proline was found in the wild type than in the lwt1-1 and lwt1-2 mutants, suggesting that the lwtl-1 and lwtl-2 mutants were sensitive to low temperature and drought, which is related to the accumulation of proline,not to the accumulation of soluble sugar.
     4. Analysis of expression of low temperature and drought stress-related genes showed that no significant difference in the pattern of CBFs gene expression was found between lwt1-1 and lwt1-2 mutants as well as the wild type, indicating that the sensitivity of the lwt1-1 and lwtl-2 mutants to low temperature and drought stresses was not related to CBFs signaling transduction pathway.
     5. Analysis of expression of proline synthesis-related gene P5CS and proline degradation-related gene PDH showed that the P5CS gene expression in the mutant lwt1-1 and lwt1-2 had no significant difference compared with the wild-type, while the PDH gene expression in lwt1-1 and lwt1-2 mutants was significantly higher than in the wild type, suggseting that LWT1 gene inhibited the expression of proline degradation gene, resulting in the accumulation of proline to low temperatures and drought stresses to adapt to the adverse environmental stresses.
     6. No significant differences in responses to mannitol, ABA, and NaCl treatments were found beween the lwt1-1 and lwt1-2 mutants and the wild-type. Our results suggusted that the intracellular accumulation of proline content which was regulated by LWT1 gene is the main reason for the sensitivity of lwt1-1 and lwtl-2 mutants to low temperature and drought stresses.
     In summary, the results provided evidence that LWT1 gene regulated plant responses to low temperature and drought stresses, mainly by controling the exprssion of proline degradation-related PDH gene.
引文
[1]陈璋.1994.植物分子生物学研究的模式物种.植物学通报.11(1):6-11.
    [2]David W M, Jmichael C, Caroline D, e t al.1998. Arabidopsis thaliana:A model plant for genome analysis. Science.282:662-682.
    [3]Grover A, Kapoor A, Lakshmi O S, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M, and Dubey H.2001. Understanding molecular alphabets of the plant abiotic stress responses. Plant Mol. Biol.80:206-216.
    [4]何若韫.草莓在寒冷驯化中游离脯氨酸含量的变化与耐冷性的发育[M].见:植物耐寒性及防寒技术.北京:学术书刊出版社,1989:169-175
    [5]龚明,刘友良,朱培仁.低温下稻苗叶片中蛋白质及游离脯氨酸的变化[J].植物生理学通讯,1989,4:18-22
    [6]Sagisaka S. Araki T. Amino add pools in perennial plants at the wintering stage and at the beginning of growth[J]. Plant and Cell Physiol,1983,24(3):479-494
    [7]李建设,耿广东,程智慧.低温胁迫对茄子幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报(自然科学版),2003,01:93-95
    [8]Ydenosky G. Accumulation of flee proline in dtrus leaves during cold hardening of young trees in controlled temperature regimes[J]. Plant Physiol,1979,64:425-427
    [9]Los D A, Murata N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochim. Biophy. Acta(BBA)-Biomembranes,2004,1666(1 —2):142—157.
    [10]Sangwan V, Foulds I, Sinsh J, et al.. Cold—activation of Brassica napus BNI15 promoter is mediated by structural changes in membranes and cytoskeleton, and mquires Ca2+ influx[J]. Plant J.,2001,27(1):1—12.
    [11]Orvar B L, Sangwan V, Omann F, et al.. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and mⅢ—brane fluidity[J]. Plant J.,2000,23(6): 785—794.
    [12]Vanhier M N, Cantrel c, Vergnolle C, et al.. Desaturase murants reveal that membrane rigidification acts as acold perception mechanism upstream of the diacylglycerot kinase pathway in Arabidopsis ceils[J]. FEBS Lett.,2006,580(17):4218—4223.
    [13]Bhtt M R. Ca2+ signalling and control of guard-cell volume in stomatal movements[J]. Curt. Opin. Plant Biol.,2000,3:196—204.
    [14]Murata N, Los DA. Histidine kinase Hik33 is an important participant in cold-signal tmnsduction in cyanohacteria[J]. PhysiOl. Planta.,2006,126(1):17—27.
    [15]Urao T, Yakubov B, Satoh R, et aL. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor [J]. Plant Cell,1999,11 (9):1743—1754.
    [16]Hong S W, Jon J H, Kwak J M, et al.. Identification Of a receptor-like protein kinase gene rapidly induced by abacisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana[J]. Plant Physio 1.,1997,113(4):1203—1212.
    [17]Ruelland E, Cantrel C, Gawer M, et al.. Activation of phospholipases C and D is an early response to a cold exposure in arabidopsis suspension cells [J]. Plant Physio 1., 2002,130(2):999—1007.
    [18]Dhonukshe P, Laxah A M, Geedhart J, et.. Pbespholipaae D activation correlates with microtubule reorganization in living plant cells[J]. Plant Cell,2003,15(11): 2666—2679.
    [19]Gardiner John C, Harper JD I, Weerakoon N D, et al.. A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane[J]. Plant Cell,2001, 13(9):2143 —2158.
    [20]Knight H, Trewavas AJ, KnigⅡt M R.Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation[J]. Plant Cell,1996,8(3):489—503.
    [21]Monroy A F, Castongnay Y, Laberge S, et al.. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature [J]. Plant Physiol., 1993,102(3):873—879.
    [22]Htiharju T S, Sangwan V, Monroy AF, et al.. The induction of kin genes in cold-acclimating. Arabidopsis thaliana. Evidence of a rolefor calcium[J]. Planta, 1997,203(4):442—447.
    [23]Evans N H, Mcainsh M R, Hetherington A M. Calcium oscillations in higIler plants[J]. Curt. Opin. Plant Biol,2001,4(5):415—420.
    [24]Plieth C. Calcium:just another regulator in the machinery of life[J] Ann. Bot., 2005,96(1):1—8.
    [25]Lecourieux D, Ranjeva R, Pngin A. Calcium in plant defence-signalling pathways[J]. New Phytologist,2006,171(2):249—269.
    [26]Klimecha M, Muszyflska G. Structure and functions of plant calcium-dependent protein kinases[J]. Acta Biachim. Poloni-ca.。2007。54(2):219—233.
    [27]Reddy V S, Reddy A S. Proteomics of calcium—signaling com-penents in plants[J]. Phytoehemistry,2004,65(12):1745—1776.
    [28]Sathyanarayanan P V, Poovaiah B W. Decoding Ca2+ signals in plants[J]. Cri. Rev. Plant SCi.,2004,23:1—11
    [29]Yang T, Pcovaiah B W. Calcium/calmedulin-mediated signal network in plants[J]. Tren. Plant SOi.,2003,8(10):505—512.
    [30]Kim K, Chcong Y H, Grant J J, et al.. CIPK3, a calcium 8engor-associated protein kinase that regulates abscisie acid and cold signal transduction in Arabidopsis[J]. Plant Cell,2003,15(2):411—423.
    [31]Zhu J, Dong c, Zhu J. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation [J]. Curt. Opin. Plant Biol.,2007,10(3):290—295.
    [32]Yamaguchi·Shinozaki K, Shinozaki K. Transcriptional regnlatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Ann. Rev. Plant Biol.,2006,57(1):781.
    [33]Gilmour S J, Stockinger E J, Solazar M P, et al.. Low temperature regulation of the Arabidopsis CBF family of AP2 tranacriptional activators an early step in cold— induced COR gene expression[J]. Plant J.,1998,16(4):433—442.
    [34]Jaglo—Ottoeen K R, Gilmour S J, Zarka D G, et 01.. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance [J]. Science, 1998,280(5360):104—106.
    [35]Gilmour S J, Sebolt A M, Salazar M P, et al.. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multipie biochemical changes associated with cold acclimation[J]. Plant Physiol.,2000,124(4):1854—1865.
    [36]Lee B。 Henderson D A, Zhu J. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. Plant Cell。 2005,17(11):3155—3175.
    [37]Maruyama K, Sakuma Y, Kasuga M, et al.. Identification of cold-inducible downstream genes of the Arabidopsis DREBIA/CBF3 transcriptional factor using two microarray systems[J]. Plant J.,2004,38(6):982—993.
    [38]Fowler S, Thomnshow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways arc activated during cold acclimation in addition to the CBF cold response pathway [J]. Plant Cell,2002,14(8):1675—1690.
    [39]Chinnusamy V, Zhu J。 Zhu J K. Gene regulation during cold acclimation in plants[J]. PhysiOl. Planta.,2006,126(1):52—61.
    [40]Zho J, Verslues P E, Zheng X, et al.. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acelimation in plants [J]. Proc. Nail. Acad. Sci. USA,2005,102(28):9966—9971.
    [41]Hu H, You J, Fang Y, et al.. Characterization of transcription factor gene characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Mol. Biol.,2008,67(1):169—181.
    [42]Liao Y, Zou H, Wei W, et al.. Soybean C,mbZIP44, GrabZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis [J]. Planta,2008,228(2):225—240.
    [43]Xin Z, Mandankar A, Chen J, et al.. Arabidopsis ESK1 encodes a novel regulawr of freezing tolerance [J]. Plant J.,2007,49(5):786—799.
    [44]Zhu J, Jeong J c, Zhu Y, et al.. Involvemem of Arabidopsis HOS15 in histone deacetylation and cold tolerance[J]. Proc. Natl. Acad. Sci. USA,2008,105(12): 4945-4950.
    [45]Thomashow M F. So what's new in the field of plant cold acclimarionLots[J]. Plant Physiol.,2001,125(1):89—93.
    [46]李春英,刘才,陈焱.现代生态学研究的热点问题之一:生态系统健康[J].东北林业大学学报,2003,31(4):54-55.
    [47]蒙荣,金花。加强草地生态系统研究实现草地可持续发展[J].内蒙古草业,2001,13(4):46-50
    [48]王涛,赵哈林,肖洪浪冲国沙漠化研宄的进展[J].冲国沙漠,1999,19(3):221-226
    [49]李锦树,王洪春.干旱对玉米叶片细胞透性及质膜的影响[J],植物生理学报,1983,9(3):223-228
    [50]周瑞莲,张承烈.水分胁迫下紫花苜蓿叶片含水量、质膜透性、SOD、CAT活性变化与抗旱性关系的研究[J].中国草地,1991,58(2):20-24
    [51]汤章城,王育启,吴亚华,等.钾在高粱苗水分亏缺时脯氨酸累积中的作用[J].植物生理学报,1984,10(3):209-215
    [52]陈善福,舒庆尧植物耐干旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-560
    [53]薛吉全,任建宏.玉米不同生育期水分胁迫条件下脯氨酸变化与抗旱性的关系[J].西南联合大学学报,2000,3(2):21-25
    [54]张美云,钱吉,郑师章.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化[J],复旦学报,2001,40(5):558-561
    [55]黄荣韶.甘蔗叶片的几个生理特性与抗旱能力的关系[J].广西农业生物科学,1994,02:151-154
    [56]Levitt J. Responses of Plants to Environmental stress [M]. Second Edition. New York, London,Academic Press.1980,5-6
    [57]洪剑明,丘泽生.植物抗性生理(一)[J].生物学通报,1997,32(5):13-15
    [58]刘宁,高玉葆,贾彩霞,等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜特透性的变化[J].植物生理学通讯.2000,36(1):11-14
    [59]沈秀英,许世昌,戴俊美.干旱对玉米SOD、CAT及醣}生磷酸脂酶治}生的影响[J].植物生理通讯,1995,31(3):183-184
    [60]李向东,王晓云,张高英,等.生长调节物质时花生叶片衰老调控的初步探究[J].中国油料作物学报,1998,20(4):52-55
    [61]王邦锡,郭绍川,张学明.渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系[J].中国科学(B辑),1992,21(4):364-368
    [62]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇的可溶性蛋白质含量、SOD、POD、CAT活性的影响[J].西北植物学报,2002,22(3):561-565
    [63]王宝山,生物自由基与生物膜伤害[J].植物生理学通讯,1988(2):12-16
    [64]芮仁廉,聂毓琦,童红玉.超氧化物歧化酶作为甘薯种质资源抗逆性参数的探讨[J].江苏农业科学,1990,6(4):52-56
    [65]Knight H, and Knight M.2001. Abiotic stress signaling pathways:specificity and cross-talk. Trends Plant Sci.6:262-267.
    [66]Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, and Shinozaki K.1994. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana. Mol. Gen. Genet.244:331-340.
    [67]Hamilton D W, Hills A, Kohler B, and Blatt M R.2000. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Nat. Acad. Sci. USA.97:4967-4972.
    [68]Poovaish B W, and Reddy ASN.1993. Calcium and signal transduction in plants. Crit. Rev. Plant Sci.12:185-211.
    [69]Sanders D, Brownlee C, and Harper J F.1999. Communicating with calcium. Plant Cell.11.289-298.
    [70]Finkelstein R R, Gampala SSL, and Rock C D.2002. Abscisic acid signaling in seeds and seedlings. Plant Cell. S15-S45.
    [71]Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P C, Bouvier-Durad M, and Vartanian N.1994. Current advances in a bscisic acid action and signaling. Plant Mol. Biol.26:1557-1577.
    [72]Merlot S, and Giraudat J.1997. Genetic analysis of abscisic acid signal transduction. Plant Physiol.114:751-757.
    [73]Smirnoff N, and Bryant J A.1999. DREB takes the stress out of growing up. Nat. Biotechnol.17:229-230.
    [74]Shinozaki K, and Yamaguchi-Shinozaki.2003. Regulatory network of gene expression in the drought and cold stress responses. Curr.Opin.Plant Biol.6: 410-417.
    [75]Shinozaki K, and Yamaguchi-Shinozaki.2000. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr. Opin.Plant Biol.3:217-223.
    [76]Schroeder J L, Alen G J, Hugouvieux V, Kwak J M, and Waner D.2001. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol.52:627-658.
    [77]Wang X.2001. Plant phospholipases. Annu. Rev. Plant Physiol. Plant Mol. Biol.52:211-21.
    [78]Zhang W, Qin C, Zhao J, and Wang X.2004. Phospholipase Dal-derivated phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Nat. Acad. Sci. USA.101:9508-9513.
    [79]Zhang X, Zhang L, Dong F, Gao J, Galbraith D W, and Song C P.2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol.126:1438-1448.
    [80]MacRobbie E A.2000. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+, Rb+ release. Proc. Nat. Acad. Sci. USA 97: 12361-12368.
    [81]Ingram J, Bartels D.1996. The molecular basis of dehydration tolerance in plant. Plant Mol Biol.47:377-403.
    [82]Ka Zuo Sh Inoza Ki, Ka Zu Ko Yama Guch I-Sh Inoza Ki, Q I, and Liu, et al. Plant responses to environmental stress [M].1999. Edited by Smallwood. CalcertM F, Bow lesD. Oxford:BIOS Scientific Publishers.133-138.
    [83]Sunkar R, Chinnusamy V, Zhu J, Zhu J K.2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci.12: 301-309.
    [84]Kazuo Nakashima, Yusuke Ito, and Kazuko Yamaguchi-Shinozaki.2009. Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiology.149:88-95.
    [85]Mizoguchi T, Ichimura K, and Shinozaki K.1997. Environmental stress response in plants:the role of mitogen-activated protein kinases. Trends Biotechnol.15:15-19.
    [86]Ichimura K, Mizoguchi T, Yoshida R, Yuase T, and Shinozaki K.2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J.24:655-665.
    [87]Detlef Weigel, and Jane Glazebrook.2004. Arabidopsis:a laboratory manual. Chemical industry press [M].化学工业出版社.
    [88]Gilmour S J, FowlerS G, Thomashow M F.2004. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol,54(5):767-781.
    [89]Clarke JM, and Mccaig TN.1982. Evaluation of techniques for screening for drought resistance in wheat. Crop Science.22:503-506.
    [90]Aral B,Schlenzig JS,LiuG, KamounP(1996) Database cloning human delta 1-pyrroline-5-carboxylate synthetase(P5CS) cDNA:a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis.C R Acad Sci 111319:171-178
    [91]Edit,Abraham,GaborRigo,GyongyiSzekely,RekaNagy,CsabaKonczl.2003.Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. PlantMolecularBiology 51: 363-372
    [92]Chen Zhizhong, Hong Xuhui, Zhang Hairong, Wang Youqun, Li Xia, Zhu Jiankang and Gong Zhizhong.2005. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. The Plant Journal,43:273-283.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.