ART操作对雄性小鼠睾丸组织基因表达和脂类代谢影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分ART小鼠睾丸组织基因表达改变及跨代传递研究
     已有的研究报告表明通过卵胞浆内单精子注射(intracytoplasmic sperm injection, ICSI)等辅助生殖技术(assisted reproductive techniques,ART)出生的男性后代,存在生殖道畸形发生率增加、精液质量下降和生殖功能相关基因表达异常等改变。然而由于遗传背景和生活环境的差异、加上伦理法律的限制,利用人类临床资料很难明确各项ART操作对男性生殖健康的影响。故此我们利用近交系小鼠,分别建立控制性超促排卵(controlled ovarian hyperstimulation, COH)、体外受精(in vitro fertilization and embryo-transfer, IVF-ET)和ICSI动物模型,对新生ART小鼠睾丸组织的基因的表达做进一步分析。
     首先以自然出生小鼠为对照,应用表达芯片对通过ICSI受精出生的新生小鼠睾丸组织基因表达谱进行了分析。在芯片筛出的差异基因中,聚焦与男性生殖健康相关的8个非印记基因(Dmc1、Prok2、Rec8、Rhox5、Spol1、Adcyaplr1、 Amh和Pdgfra)及6个父源表达的印记基因(Igf2、Kcnqlot1、Mest、Peg3、Plagl1和Snrpn),应用RT-PCR检测这些基因在COH、IVF、ICSI出生成年小鼠(F1代),及其与自然出生小鼠交配出生的ART F2代小鼠睾丸组织中的表达;利用焦磷酸测序等检测F1代和-F2代小鼠睾丸中印记基因差异甲基化区域的甲基化修饰状态。
     结果显示:(1)对于ICSI新生小鼠中表达下调的男性生殖健康相关的8个非印记基因,其差异可持续到成年F1代小鼠,而在新生鼠中表达上调的基因在成年到恢复止常的表达水平。6个父源表达的印记基因中印记基因Kcnqlot1、Mest、 Peg3、Plagll和Snrpn在ICSI成年F1代小鼠睾丸组织中表现出低表达和高甲基化。IVF成年小鼠的基因表达和甲基修饰改变与ICSI类似。(2)自然妊娠、COH、IVF和ICSIFl代小鼠之间还进行两两比较,分析不同ART处理对子代睾丸基因表达的影响,结果显示超促排卵、体外胚胎和ICSI机械刺激在不同程度上都可以影响睾丸基因表达水平。其中体外培养和机械刺激是造成父源印记基因表达下调的主要原因。对于非印记基因的表达下调,三个因素具有累加效应。(3)ICSI和IVF F1代小鼠中存在的印记基因表达和修饰改变,多数在F2代小鼠的睾丸组织中仍然可见。ART F1代存在的非印记基因表达改变多数在ICSI F2代仍可见,然而在IVF F2中已恢复正常。
     结论:ICSI操作引起的小鼠睾丸基因表达改变,部分可延续到成年小鼠,其中成年小鼠睾丸间质和支持细胞的基因表达改变可能更为明显。超促排卵、体外培养和ICSI机械刺激等ART操作可在不同程度上影响出生小鼠睾丸基因表达。ART操作引起的小鼠睾丸基因表达改变机理涉及基因甲基化表观遗传修饰,并且睾丸基因表达和甲基化修饰改变可跨代传递,尤以ICSI为著。
     第二部分ART雄性小鼠脂肪酸代谢的变化及机理研究
     作为三大代谢之一,脂类代谢在宫内胎儿生长发育中作用重要。大量临床研究指出行辅助生殖技术(assisted reproductive techniques,ART)出生子代存在出生体重异常的现象,同时对ART受孕分娩胎盘的观察表明,此类妊娠易发胎盘形状和重量异常,可能影响胎盘脂类代谢,限制母婴间甾类激素的传递,改变胎儿正常的脂类代谢过程。本课题组前期研究发现ART新生雄性小鼠存在出生高体重,因此在第二部分继续探讨ART男性子代的健康状况,并将重点放在ART雄性后代脂肪酸代谢上。此外,在这部分中还将就ART小鼠脂肪酸代谢改变的机理做初步探索。
     首先利用已建立的控制性超促排卵(controlled ovarian hyperstimulation,COH)、体外受精(in vitro fertilization and embryo-transfer, IVF-ET)和卵胞浆内单精子注射(intracytoplasmic sperm injection, ICSI)小鼠模型,对出生成年和老年雄性小鼠肝脏和脂肪组织中的脂肪酸组成、脂肪酸合成和分解代谢酶类相关基因进行了检测,并通过脂肪酸组成相关性分析探讨脂肪酸代谢相关酶的活性对脂肪酸组成的影响。其次,用两个剂量的促性腺激素对小鼠进行超排处理,检测胚胎的得率、脂类的分布和含量、脂肪酸组成以及甘油三脂代谢相关酶类的表达。同时检测促排组血清孕酮及卵巢胆固醇含量,分析其对胚胎脂代谢变化的影响。
     结果发现:(1)与对照组-自然妊娠出生小鼠相比,三类ART小鼠的脂肪组织和肝脏组织的脂肪酸组成差异明显。各ART成年小鼠脂肪组织SFAs和MUFAs含量增加,PUFAs含量减少,而三类ART成年小鼠肝脏组织脂肪酸组成变化不尽相同。并且上述差异随小鼠年龄增加而改变。(2)脂肪酸代谢相关酶的活性和表达不仅在各组之间发生变化,而且随年龄的增长也有所改变。通过相关性分析发现脂肪酸代谢相关酶可能是通过调节肝脏中C16:0和脂肪组织中C18:0的含量影响脂肪酸的组成。在脂肪组织中无论是成年还是老年三个ART组中脂肪酸合成相关基因的表达水平变化都是一致的,而且脂肪酸合成相关基因的表达在自然妊娠组随年龄增长而增加,在三个ART组随年龄增长而降低。(3)胚胎中出现促性腺激素依赖性的脂类聚集、脂肪酸合成下降以及激素剂量依赖性的脂肪酸组成的改变。
     结论:ART过程可改变成年雄性小鼠脂肪和肝脏组织的多种脂肪酸含量,影响相关调节酶类的表达。脂肪酸组成的变化可能与ART诱导脂代谢相关酶的活性和基因表达有关的改变相关。COH、IVF和ICSI小鼠脂肪组织中SFAs、MUFAs和PUFAs的含量以及有关调节基因的表达改变总趋势相同,提示促性腺激素对卵巢的刺激,可能是ART小鼠脂肪酸代谢改变的重要因素。ART过程对子代脂肪酸代谢的影响可能发生于卵母细胞成熟和胚胎发育早期。
Part I The persistency and intergenerational transmission of differentially expressed genes in the testes of ART mice
     Worse reproductive health in the men born through intracytoplasmic sperm injection (ICSI) or other assisted reproductive techniques (ART) has been reported in some studies, such as hypospadias, reduced serum testosterone level, and lower semen quality. However, because of the interference of genetic and many environmental factors, it is difficult to identify whether ICSI methods affect male reproductive health based on clinical human data. Therefore, we established mouse ART models using inbred mice, including controlled ovarian hyperstimulation (COH), in vitro fertilization (IVF) and ICSI mice. Semen quality, serum testosterone and histological analysis of testes were done but no significant changes were shown in our previous studies. In this study, the gene expressions in testes were analyzed in ART mice.
     The gene expression profiles were analysed in the testis of both ICSI and naturally conceived (NC) newborn F1mice using micro-array analysis. Among the differentially expressed genes, we focused on the expression of8male (Dmcl, Prok2, Rec8, Rhox5, Spol1, Adcyaplr1, Amh and Pdgfra) reproduction-related non-imprinted genes and6paternally expressed imprinted genes (Igf2, Kcnqlot1, Plagl1, Snrpn, Peg3and Mest). Quantitative real time RT-PCR (qRT-PCR) was used to analyse the expression of these genes in mouse testes of adult F1and F2generations. Pyrosequencing was used to analyse the methylation level of paternally expressed imprinted genes.
     Our results showed that (1) For the8male reproduction-related non-imprinted genes, only down-regulated genes in newborn mice retained their differential expression pattern in adult F1generation, these genes were also down-regulated in IVF F1generation. Kcnqlot1, Plagl1, Snrpn, Peg3and Mest showed lower expression and higher methylation level in ICSI group than naturally conceived (NC) group, and the same changes were also shown in IVF mice. Compared with NC group, the changes on gene expression and DNA methylation level in IVF group was similar to that in ICSI group (2) Comparison between NC, COH, IVF and ICSI mice was done to analyze the effect of superovulation, in vitro culture and mechanical stimulation on the gene expression of testes. The down regulation of paternal expressed imprinted genes was mainly resulted from in vitro culture and mechanical stimulation. These three factors had an accumulative effect on the down regulation of male reproduction-related non-imprinted genes.(2) The differences of imprinted genes in ART F1mice were mostly observed in F2generation. The expression alteration of non-imprinted genes in ART Fl generation was mostly found in ICSI F2generations, but not in IVF F2generations.
     Conclusion:ICSI treatment can induce the alteration of differential gene expression in testes of offspring. The differential expression of genes in ICSI newborn mice can be persistent to adulthood, especially the changes in somatic cell of testis. Superovulation, in vitro culture and mechanical stimulation by ICSI were to some extent in charge of the differences of gene expression in testes. The alteration of DNA methylation modification was associated with the gene expressed difference in the testis of ART mice. ART treatments could induce the intergenerational transmission of differential gens expression, especially in ICSI group.
     Part II Alteration of fatty acid metabolism in ART male mice and the mechanism involved
     Lipid metabolism plays an important role in the whole process of pregnancy. Pathological abnormalities of assisted reproductive technology (ART) placentas have also been described, including abnormal placental shape, abnormal umbilical cord insertion and increased placental weights. Meanwhile, ART-induced impairment of placental steroid metabolism and restricted delivery of steroid hormones from mother to fetus have been reported. Our previous studies found a higher birth weight in ART mice. Therefore, we continued the topic of the health of ART male offspring and focused on the fatty acid metabolism in the second part. Moreover, the association between hormone and lipid metabolism or body weight is generally accepted, and the effect of superovulation on early embryos were also analyzed in this part to find the probable causes of gonadotropin induced abnormal lipid metabolism in offspring.
     Firstly we measured the fatty acid composition and the gene expression of lipogenesis and lipolysis-related enzymes in the liver and adipose tissue male mice produced by controlled ovarian hyperstimulation (COH), in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). The effect of the activities of fatty acid metabolism-related enzymes on fatty acid composition was estimated using the correlation analysis. Secondly, the mice were superovulated with two doses of gonadotropin, and the fertilization rate, lipid content and distribution, fatty acid composition and the expression of the triglyceride metabolism-related genes in embryos was analyzed. Moreover, the content of ovarian cholesterol and serum progesterone were also detected to analyze their effect on lipid metabolism of embryos.
     Our results showed that (1) The significant alteration in the liver and adipose tissue compared to naturally conceived (NC) mice. Compared with the NC mice, ART mice have significantly lower level of Polyunsaturated fatty acids (PUFAs) and higher level of Saturated fatty acids (SFAs) and Monounsaturated fatty acids (MUFAs), while the alteration of fatty acid profile in the liver of ART mice was much more complex. The difference of fatty acid composition between the four groups of mice varied with age.(2)Using correlation analysis, we found lipid metabolism-related enzymes may influence fatty acid composition by regulating the content of C16:0and C18:0in liver and adipose tissue respectively. Compared with NC group, the expressions of lipogenic and lipolytic genes altered in ART groups, and the expressed changes of these genes with age were different between ART and NC group. The expression of fatty acid synthesis genes in ART groups showed the same changing trend compared with NC group in adipose tissue of both adult and old mice.(3) Gonadotropin increased lipid accumulation and decreased fatty acid synthesis in a dose-dependent manner, and the changes of fatty acid composition were also shown in gonadotropin-induced embryos.
     These results indicated that ART treatments might have effect on the fatty acid composition and the expression of fatty acid metabolism-related genes in adipose tissue and liver of male offspring. The alteration of fatty acid composition was associated with ART induced alterations of activities and expressions of fatty acid metabolism-related enzymes. The changing trend of SFAs, MUFAs, PUFAs and the expression of fatty acid synthesis genes was consistent in adipose tissue of COH, IVF and ICSI mice, which suggested the effect of gonadotropin might be an key factor in the abnormal fatty acid metabolism of ART offspring. The effect of gonadotropin on lipid metabolism in offspring might be originated from the early embryo development.
引文
1.Mau C, Juul A, Main KM, Loft A. Children conceived after intracytoplasmic sperm injection (ICSI):is there a role for the paediatrician? Acta Paediatr.2004;93(9): 1238-44.
    2.Mau Kai C, Main KM, Andersen AN, Loft A, Skakkebaek NE, Juul A. Reduced serum testosterone levels in infant boys conceived by intracytoplasmic sperm injection. J Clin Endocrinol Metab.2007;92(7):2598-603.
    3.Ramlau-Hansen CH, Thulstrup AM, Olsen J, Bonde JP. Parental subfecundity and risk of decreased semen quality in the male offspring:a follow-up study. Am J Epidemiol.2008;167(12):1458-64.
    4.Asklund C, Jorgensen N, Skakkebaek NE, Jensen TK. Increased frequency of reproductive health problems among fathers of boys with hypospadias. Hum Reprod. 2007;22(10):2639-46.
    5.Storgaard L, Bonde JP, Ernst E, Andersen CY, Spano M, Christensen K, Petersen HC, Olsen J. Genetic and environmental correlates of semen quality:a twin study. Epidemiology.2006; 17(6):674-81.
    6.Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev.2006;82(8):485-91.
    7.van Abeelen AF, Elias SG, Bossuyt PM, Grobbee DE, van der Schouw YT, Roseboom TJ, Uiterwaal CS. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes.2012;61(9):2255-60.
    8.Prader A, Tanner JM, von HG. Catch-up growth following illness or starvation. An example of developmental canalization in man. J Pediatr.1963;62646-59.
    9.Barker DJ. The fetal and infant origins of adult disease. BMJ.1990;301(6761):1111.
    lO.Motrenko T. Embryo-fetal origin of diseases-new approach on epigenetic reprogramming. Archives of Perinatal Medicine.2010;16(1):11-5.
    11.Rinaudo P, Schultz RM. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction.2004;128(3):301-11.
    12.Lonergan P, Fair T, Corcoran D, Evans AC. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology.2006;65(1):137-52.
    13.Wang N, Wang L, Le F, Zhan Q, Zheng Y, Ding G, Chen X, Sheng J, Dong M, Huang H, Jin F. Altered expression of Armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal. Reproduction. 2011; 142(3):401-8.
    14.Tsai-Morris CH, Sato H, Gutti R, Dufau ML. Role of gonadotropin regulated testicular RNA helicase (GRTH/Ddx25) on polysomal associated mRNAs in mouse testis. PLoS One.2012;7(3):e32470.
    15.Fatemi N, Sanati MH, Zavarehei MJ, Ayat H, Esmaeili V, Golkar-Narenji A, Zarabi M, Gourabi H. Effect of tertiary-butyl hydroperoxide (TBHP)-induced oxidative stress on mice sperm quality and testis histopathology. Andrologia.2012.
    16.Yu Y, Zhao C, Lv Z, Chen W, Tong M, Guo X, Wang L, Liu J, Zhou Z, Zhu H, Zhou Q, Sha J. Microinjection manipulation resulted in the increased apoptosis of spermatocytes in testes from intracytoplasmic sperm injection (ICSI) derived mice. PLoS One.2011;6(7):e22172.
    17.Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. Birth Defects Res A Clin Mol Teratol.2011;91(8):682-92.
    18.Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet.2007;8(4):253-62.
    19.Maher ER. Imprinting and assisted reproductive technology. Hum Mol Genet. 2005;14 Spec No 1R133-8.
    20.Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A.2007;104(49):19351-6.
    21.Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod.2000;62(6):1526-35.
    22.DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet.2003;72(1):156-60.
    23.Orstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O, Buiting K. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet.2003;72(1): 218-9.
    24.Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet.2002;71(1):162-4.
    25.Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol.2004;180(1):1-16.
    26.Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol.2005;288(1):R34-8.
    27.Calle A, Miranda A, Fernandez-Gonzalez R, Pericuesta E, Laguna R, Gutierrez-Adan A. Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring. Biol Reprod. 2012;87(2):34.
    28.Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM. Methylation dynamics of imprinted genes in mouse germ cells. Genomics.2002;79(4):530-8.
    29.Marcelin G, Diatloff-Zito C, Nicole A, Robert JJ. Developmental methylation program and concerted expression of Stx11 in mouse tissues. Mamm Genome. 2009;20(3):131-9.
    30.Yatsuki H, Joh K, Higashimoto K, Soejima H, Arai Y, Wang Y, Hatada I, Obata Y, Morisaki H, Zhang Z, Nakagawachi T, Satoh Y, Mukai T. Domain regulation of imprinting cluster in Kip2/Litl subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Litl is a putative imprinting control region. Genome Res.2002;12(12):1860-70.
    31.Hu Z, MacLean JA, Bhardwaj A, Wilkinson MF. Regulation and function of the Rhox5 homeobox gene. Ann N Y Acad Sci.2007; 112072-83.
    32.Goulis DG, Iliadou PK, Tsametis C, Gerou S, Tarlatzis BC, Bontis IN, Papadimas I. Serum anti-Mullerian hormone levels differentiate control from subfertile men but not men with different causes of subfertility. Gynecol Endocrinol.2008;24(3): 158-60.
    33.Koh PO, Won CK. Decrease of pituitary adenylate cyclase activating polypeptide and its type I receptor mRNAs in rat testes by ethanol exposure. J Vet Med Sci. 2006;68(6):537-41.
    34.Basciani S, Mariani S, Spera G, Gnessi L. Role of platelet-derived growth factors in the testis. Endocr Rev.2010;31(6):916-39.
    35.Lee J, Yokota T, Yamashita M. Analyses of mRNA expression patterns of cohesin subunits Rad21 and Rec8 in mice:germ cell-specific expression of rec8 mRNA in both male and female mice. Zoolog Sci.2002;19(5):539-44.
    36.Abreu AP, Kaiser UB, Latronico AC. The role of prokineticins in the pathogenesis of hypogonadotropic hypogonadism. Neuroendocrinology.2010;91(4):283-90.
    37.Bellani MA, Boateng KA, McLeod D, Camerini-Otero RD. The expression profile of the major mouse SPO11 isoforms indicates that SPO11beta introduces double strand breaks and suggests that SPO11 alpha has an additional role in prophase in both spermatocytes and oocytes. Mol Cell Biol.2010;30(18):4391-403.
    38.Puverel S, Barrick C, Dolci S, Coppola V, Tessarollo L. RanBPM is essential for mouse spermatogenesis and oogenesis. Development.2011;138(12):2511-21.
    39.Schmahl J, Rizzolo K, Soriano P. The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev.2008;22(23):3255-67.
    40.Rey R, Lordereau-Richard I, Carel JC, Barbet P, Cate RL, Roger M, Chaussain JL, Josso N. Anti-mullerian hormone and testosterone serum levels are inversely during normal and precocious pubertal development. J Clin Endocrinol Metab.1993;77(5): 1220-6.
    41.Boukari K, Meduri G, Brailly-Tabard S, Guibourdenche J, Ciampi ML, Massin N, Martinerie L, Picard JY, Rey R, Lombes M, Young J. Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development. J Clin Endocrinol Metab. 2009;94(5):1818-25.
    42.Domanskyi A, Zhang FP, Nurmio M, Palvimo JJ, Toppari J, Janne OA. Expression and localization of androgen receptor-interacting protein-4 in the testis. Am J Physiol Endocrinol Metab.2007;292(2):E513-22.
    43.Fenichel P, Rey R, Poggioli S, Donzeau M, Chevallier D, Pointis G Anti-Mullerian hormone as a seminal marker for spermatogenesis in non-obstructive azoospermia. Hum Reprod.1999; 14(8):2020-4.
    44.Jamen F, Rodriguez-Henche N, Pralong F, Jegou B, Gaillard R, Bockaert J, Brabet P. PAC1 null females display decreased fertility. Ann N Y Acad Sci.2000;921400-4.
    45.Basciani S, Mariani S, Arizzi M, Ulisse S, Rucci N, Jannini EA, Della Rocca C, Manicone A, Carani C, Spera G, Gnessi L. Expression of platelet-derived growth factor-A (PDGF-A), PDGF-B, and PDGF receptor-alpha and-beta during human testicular development and disease. J Clin Endocrinol Metab.2002;87(5):2310-9.
    46.Denolet E, De Gendt K, Allemeersch J, Engelen K, Marchal K, Van Hummelen P, Tan KA, Sharpe RM, Saunders PT, Swinnen JV, Verhoeven G The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol.2006;20(2):321-34.
    47.Nurmio M, Kallio J, Toppari J, Jahnukainen K. Adult reproductive functions after early postnatal inhibition by imatinib of the two receptor tyrosine kinases, c-kit and PDGFR, in the rat testis. Reprod Toxicol.2008;25(4):442-6.
    48.Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA. Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol. 1998;207(8):551-61.
    49.Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17(11):1653-65.
    50.Fernandez-Gonzalez R, Moreira P, Bilbao A, Jimenez A, Perez-Crespo M, Ramirez MA, Rodriguez De Fonseca F, Pintado B, Gutierrez-Adan A. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A.2004;101(16): 5880-5.
    51.Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR, Otis JP, Chow A, Diaz R, Ferguson-Smith A, Patti ME. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes.2009;58(2):460-8.
    52.HoiIe SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC. Dietary protein restriction during FO pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring. PLoS One.2011;6(7):e21668.
    53.Young LE. Imprinting of genes and the Barker hypothesis. Twin Res.2001;4(5): 307-17.
    54.Radford EJ, Isganaitis E, Jimenez-Chillaron J, Schroeder J, Molla M, Andrews S, Didier N, Charalambous M, McEwen K, Marazzi G, Sassoon D, Patti ME, Ferguson-Smith AC. An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet.2012;8(4): e1002605.
    1.Kurinczuk JJ. Safety issues in assisted reproduction technology. From theory to reality--just what are the data telling us about ICSI offspring health and future fertility and should we be concerned? Hum Reprod.2003; 18(5):925-31.
    2.Reefhuis J, Honein MA, Schieve LA, Correa A, Hobbs CA, Rasmussen SA. Assisted reproductive technology and major structural birth defects in the United States. Hum Reprod.2009;24(2):360-6.
    3.Reddy UM, Wapner RJ, Rebar RW, Tasca RJ. Infertility, assisted reproductive technology, and adverse pregnancy outcomes:executive summary of a National Institute of Child Health and Human Development workshop. Obstet Gynecol. 2007; 109(4):967-77.
    4.Shevell T, Malone FD, Vidaver J, Porter TF, Luthy DA, Comstock CH, Hankins GD, Eddleman K, Dolan S, Dugoff L, Craigo S, Timor IE, Carr SR, Wolfe HM, Bianchi DW, D'Alton ME. Assisted reproductive technology and pregnancy outcome. Obstet Gynecol.2005;106(5 Pt 1):1039-45.
    5.Gavriil P, Jauniaux E, Leroy F. Pathologic examination of placentas from singleton and twin pregnancies obtained after in vitro fertilization and embryo transfer. Pediatr Pathol.1993;13(4):453-62.
    6.Van Thuan N, Wakayama S, Kishigami S, Ohta H, Hikichi T, Mizutani E, Bui HT, Wakayama T. Injection of somatic cell cytoplasm into oocytes before intracytoplasmic sperm injection impairs full-term development and increases placental weight in mice. Biol Reprod.2006;74(5):865-73.
    7.Collier AC, Miyagi SJ, Yamauchi Y, Ward MA. Assisted reproduction technologies impair placental steroid metabolism. J Steroid Biochem Mol Biol.2009; 116(1-2): 21-8.
    8.Sumida C. Fatty acids:ancestral ligands and modern co-regulators of the steroid hormone receptor cell signalling pathway. Prostaglandins Leukot Essent Fatty Acids.1995;52(2-3):137-44.
    9.Watanabe S, Tani T, Seno M. Effects of free fatty acids on the binding of steroid hormones to bovine serum albumin. Lipids.1990;25(10):633-8.
    10.Ailhaud G, Guesnet P. Fatty acid composition of fats is an early determinant of childhood obesity:a short review and an opinion. Obes Rev.2004;5(1):21-6.
    11.Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med.2006;354(15):1601-13.
    12.Phinney SD. Fatty acids, inflammation, and the metabolic syndrome. Am J Clin Nutr. 2005;82(6):1151-2.
    13.Fernandez-Real JM, Broch M, Vendrell J, Ricart W. Insulin resistance, inflammation, and serum fatty acid composition. Diabetes Care.2003;26(5):1362-8.
    14.Kennedy A, Martinez K, Chuang CC, LaPoint K, McIntosh M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue:mechanisms of action and implications. J Nutr.2009;139(1):1-4.
    15.Kingsbury KJ, Brett C, Stovold R, Chapman A, Anderson J, Morgan DM. Abnormal fatty acid composition and human atherosclerosis. Postgrad Med J.1974;50(585): 425-40.
    16.Ohrvall M, Tengblad S, Gref CG, Salminen I, Aro A, Vessby B. Serum alpha tocopherol concentrations and cholesterol ester fatty acid composition in 70-year-old men reflect those 20 years earlier. Eur J Clin Nutr.1996;50(6):381-5.
    17.Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed).1984;288(6428):1401-4.
    18.Warensjo E, Riserus U, Vessby B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia.2005;48(10): 1999-2005.
    19.Lavrentyev EN, Matta SG, Cook GA. Expression of three carnitine palmitoyltransferase-I isoforms in 10 regions of the rat brain during feeding, fasting, and diabetes. Biochem Biophys Res Commun.2004;315(1):174-8.
    20.Capanni M, Calella F, Biagini MR, Genise S, Raimondi L, Bedogni G, Svegliati-Baroni G, Sofi F, Milani S, Abbate R, Surrenti C, Casini A. Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease:a pilot study. Aliment Pharmacol Ther.2006;23(8):1143-51.
    21.Scaglia N, Igal RA. Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol.2008;33(4): 839-50.
    22.Matsuzaka T, Shimano H. Elovl6:a new player in fatty acid metabolism and insulin sensitivity. J Mol Med (Berl).2009;87(4):379-84.
    23.Waterman RA. Changes in lipid contents and fatty acid compositions in ovine corpora lutea during the estrous cycle and early pregnancy. Biol Reprod. 1988;38(3):605-15.
    24.Matthews KA, Meilahn E, Kuller LH, Kelsey SF, Caggiula AW, Wing RR. Menopause and risk factors for coronary heart disease. N Engl J Med. 1989;321(10):641-6.
    25.Lawson JS, Field AS, Tran DD, Houssami N. Hormone replacement therapy use dramatically increases breast oestrogen receptor expression in obese postmenopausal women. Breast Cancer Res.2001;3(5):342-5.
    26.Kortelainen ML, Huttunen P. Expression of estrogen receptors in the coronary arteries of young and premenopausal women in relation to central obesity. Int J Obes Relat Metab Disord.2004;28(4):623-7.
    27. Wu TC, Wang L, Wan YJ. Expression of estrogen receptor gene in mouse oocyte and during embryogenesis. Mol Reprod Dev.1992;33(4):407-12.
    28.Huynh K, Jones G, Thouas G, Britt KL, Simpson ER, Jones ME. Estrogen is not directly required for oocyte developmental competence. Biol Reprod.2004;70(5): 1263-9.
    29.Andric N, Thomas M, Ascoli M. Transactivation of the epidermal growth factor receptor is involved in the lutropin receptor-mediated down-regulation of ovarian aromatase expression in vivo. Mol Endocrinol.2010;24(3):552-60.
    30.Farhat A, Philibert P, Sultan C, Poulat F, Boizet-Bonhoure B. Hematopoietic-Prostaglandin D2 synthase through PGD2 production is involved in the adult ovarian physiology. J Ovarian Res.2011;43.
    31.Liu J, Aronow BJ, Witte DP, Pope WF, La Barbera AR. Cyclic and maturation-dependent regulation of follicle-stimulating hormone receptor and luteinizing hormone receptor messenger ribonucleic acid expression in the porcine ovary. Biol Reprod.1998;58(3):648-58.
    32.Yamashita S, Nakamura K, Omori Y, Tsunekawa K, Murakami M, Minegishi T. Association of human follitropin (FSH) receptor with splicing variant of human lutropin/choriogonadotropin receptor negatively controls the expression of human FSH receptor. Mol Endocrinol.2005;19(8):2099-111.
    33.LaPolt PS, Oikawa M, Jia XC, Dargan C, Hsueh AJ. Gonadotropin-induced up-and down-regulation of rat ovarian LH receptor message levels during follicular growth, ovulation and luteinization. Endocrinology.1990; 126(6):3277-9.
    34.Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009;44 Suppl 350-8.
    35.Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod.2010;83(6):909-18.
    36.Liu Z, Rudd MD, Hernandez-Gonzalez I, Gonzalez-Robayna I, Fan HY, Zeleznik AJ, Richards JS. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol Endocrinol.2009;23(5):649-61.
    37.Wang D-H, Chen Z-J, Jiang Y-Y, Zhou H, Yang W-X. Fatty acid composition and analysis of freshwater caridean shrimp Macrobrachium nipponense (De Haan) during spermiogenesis. Aquaculture Research.2010;41(8):1140-9.
    38.Peter A, Cegan A, Wagner S, Lehmann R, Stefan N, Konigsrainer A, Konigsrainer I, Haring HU, Schleicher E. Hepatic lipid composition and stearoyl-coenzyme A desaturase 1 mRNA expression can be estimated from plasma VLDL fatty acid ratios. Clin Chem.2009;55(12):2113-20.
    39.Kotronen A, Seppanen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepaa AL, Yki-Jarvinen H, Oresic M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity (Silver Spring).2010;18(5):937-44.
    40.Field CJ,Clandinin MT.Modulation of adipose tissue fat composition by diet:A review. Nutrition Research.1984;4(4):743-55.
    41.Leveille GA. In vivo fatty acid synthesis in adipose tissue and liver of meal-fed rats. Proc Soc Exp Biol Med.1967;125(1):85-8.
    42.Awad AB. Effect of dietary lipids on composition and glucose utilization by rat adipose tissue. J Nutr.1981;111(1):34-9.
    43.Weber N, Schonwiese S, Klein E, Mukherjee KD. Adipose tissue triacylglycerols of rats are modulated differently by dietary isomeric octadecenoic acids from coriander oil and high oleic sunflower oil. J Nutr.1999; 129(12):2206-11.
    44.Perona JS, Portillo MP, Teresa Macarulla M, Tueros AI, Ruiz-Gutierrez V. Influence of different dietary fats on triacylglycerol deposition in rat adipose tissue. Br J Nutr.2000;84(5):765-74.
    45.Korchak HM. Regulation of hepatic lipogenesis. Tufts folia medica.1962;8134-43.
    46.Hellerstein MK. De novo lipogenesis in humans:metabolic and regulatory aspects. Eur J Clin Nutr.1999;53 Suppl 1S53-65.
    47.Antonini FM, Bucalossi A, Petruzzi E, Simoni R, Morini PL, D'Alessandro A. Fatty acid composition of adipose tissue in normal, atherosclerotic and diabetic subjects. Atherosclerosis.1970; 11(2):279-89.
    48.Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism. Cell.2008;134(6):933-44.
    49.Smith SB, Go GW, Johnson BJ, Chung KY, Choi SH, Sawyer JE, Silvey DT, Gilmore LA, Ghahramany G, Kim KH. Adipogenic gene expression and fatty acid composition in subcutaneous adipose tissue depots of Angus steers between 9 and 16 months of age. J Anim Sci.2012;90(8):2505-14.
    50.Malau-Aduli AEO, Edriss MA, Siebert BD, Bottema CDK, Pitchford WS. Breed differences and genetic parameters for melting point, marbling score and fatty acid composition of lot-fed cattle. Journal of Animal Physiology and Animal Nutrition. 2000;83(2):95-105.
    51.Gao F, Taha AY, Ma K, Chang L, Kiesewetter D, Rapoport SI. Aging decreases rate of docosahexaenoic acid synthesis-secretion from circulating unesterified alpha-linolenic acid by rat liver. Age (Dordr).2012.
    52.Miles EA, Allen E, Calder PC. In vitro effects of eicosanoids derived from different 20-carbon Fatty acids on production of monocyte-derived cytokines in human whole blood cultures. Cytokine.2002;20(5):215-23.
    53.Krone W, Klass A, Nagele H, Behnke B, Greten H. Effects of prostaglandins on LDL receptor activity and cholesterol synthesis in freshly isolated human mononuclear leukocytes. J Lipid Res.1988;29(12):1663-9.
    54.Lopez D, McLean MP. Sterol regulatory element-binding protein-la binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinology.1999;140(12):5669-81.
    55.Goulding NJ FR. Glucocorticoids (Milestones in Drug Therapy). Birkhauser, Basel 2001. p.153-4.
    56.Horrobin DF. A new concept of lifestyle-related cardiovascular disease:the importance of interactions between cholesterol, essential fatty acids, prostaglandin E1 and thromboxane A2. Med Hypotheses.1980;6(8):785-800.
    57.Watanabe T, Thayil A, Jesacher A, Grieve K, Debarre D, Wilson T, Booth M, Srinivas S. Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy. BMC Cell Biol. 2010;1138.
    58.Berfield AK, Andress DL, Abrass CK. IGF-1-induced lipid accumulation impairs mesangial cell migration and contractile function. Kidney Int.2002;62(4): 1229-37.
    59.Kuroda H, Mandai M, Konishi I, Tsuruta Y, Kusakari T, Kariya M, Fujii S. Human ovarian surface epithelial (OSE) cells express LH/hCG receptors, and hCG inhibits apoptosis of OSE cells via up-regulation of insulin-like growth factor-1. Int J Cancer.2001;91(3):309-15.
    60.Sriraman V, Rao VS, Sairam MR, Rao AJ. Effect of deprival of LH on Leydig cell proliferation:involvement of PCNA, cyclin D3 and IGF-1. Mol Cell Endocrinol. 2000;162(1-2):113-20.
    61.Hervey E, Hervey GR. The effects of progesterone on body weight and composition in the rat. J Endocrinol.1967;37(4):361-81.
    62.Gambacciani M, Ciaponi M, Cappagli B, Piaggesi L, De Simone L, Orlandi R, Genazzani AR. Body weight, body fat distribution, and hormonal replacement therapy in early postmenopausal women. J Clin Endocrinol Metab.1997; 82(2): 414-7.
    63.Drouineaud V, Sagot P, Garrido C, Logette E, Deckert V, Gambert P, Jimenez C, Staels B, Lagrost L, Masson D. Inhibition of progesterone production in human luteinized granulosa cells treated with LXR agonists. Mol Hum Reprod. 2007;13(6):373-9.
    64.Lindsay RS, Westgate JA, Beattie J, Pattison NS, Gamble G, Mildenhall LF, Breier BH, Johnstone FD. Inverse changes in fetal insulin-like growth factor (IGF)-1 and IGF binding protein-1 in association with higher birth weight in maternal diabetes. Clin Endocrinol (Oxf).2007;66(3):322-8.
    1.Kramer MS. Determinants of low birth weight:methodological assessment and meta-analysis. Bull World Health Organ.1987;65(5):663-737.
    2.Pietilainen KH, Kaprio J, Rasanen M, Winter T, Rissanen A, Rose RJ. Tracking of body size from birth to late adolescence:contributions of birth length, birth weight, duration of gestation, parents'body size, and twinship. Am J Epidemiol. 2001;154(1):21-9.
    3.Strauss RS. Effects of the intrauterine environment on childhood growth. Br Med Bull. 1997;53(1):81-95.
    4.Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes:a meta-analysis. Am J Epidemiol. 2007; 165(8):849-57.
    5.Wei JN, Sung FC, Li CY, Chang CH, Lin RS, Lin CC, Chiang CC, Chuang LM. Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in taiwan. Diabetes Care.2003;26(2):343-8.
    6.Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation.1996;94(12):3246-50.
    7.Suzuki T, Minami J, Ohrui M, Ishimitsu T, Matsuoka H. Relationship between birth weight and cardiovascular risk factors in Japanese young adults. Am J Hypertens. 2000;13(8):907-13.
    8.Tian JY, Cheng Q, Song XM, Li G, Jiang GX, Gu YY, Luo M. Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. Eur J Endocrinol.2006;155(4):601-7.
    9.Fall CH, Osmond C, Barker DJ, Clark PM, Hales CN, Stirling Y, Meade TW. Fetal and infant growth and cardiovascular risk factors in women. BMJ.1995;310(6977): 428-32.
    10.Leon DA, Koupilova I, Lithell HO, Berglund L, Mohsen R, Vagero D, Lithell UB, McKeigue PM. Failure to realise growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men. BMJ.1996;312(7028): 401-6.
    11.Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, Speizer FE, Manson JE. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med.1999; 130(4 Pt 1):278-84.
    12.Lindsay RS, Dabelea D, Roumain J, Hanson RL, Bennett PH, Knowler WC. Type 2 diabetes and low birth weight:the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes.2000;49(3):445-9.
    13.Hypponen E, Smith GD, Power C. Parental diabetes and birth weight of offspring: intergenerational cohort study. BMJ.2003;326(7379):19-20.
    14.Fall CH, Stein CE, Kumaran K, Cox V, Osmond C, Barker DJ, Hales CN. Size at birth, maternal weight, and type 2 diabetes in South India. Diabet Med.1998; 15(3): 220-7.
    15.Myklestad K, Vatten LJ, Magnussen EB, Salvesen KA, Smith GD, Romundstad PR. Offspring birth weight and cardiovascular risk in parents:a population-based HUNT 2 study. Am J Epidemiol.2012;175(6):546-55.
    16.Churchill D, Perry IJ, Beevers DG. Ambulatory blood pressure in pregnancy and fetal growth. Lancet.1997;349(9044):7-10.
    17.Stein AD, Zybert PA, van de Bor M, Lumey LH. Intrauterine famine exposure and body proportions at birth:the Dutch Hunger Winter. Int J Epidemiol.2004;33 (4): 831-6.
    18.Ceesay SM, Prentice AM, Cole TJ, Foord F, Weaver LT, Poskitt EM, Whitehead RG. Effects on birth weight and perinatal mortality of maternal dietary supplements in rural Gambia:5 year randomised controlled trial. BMJ.1997;315(7111):786-90.
    19.Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life:an overview.Mol Cell Endoccrinol.2001;185(1-2):93-8.
    20.Taylor PD, Poston L. Developmental programming of obesity in mammals. Experimental Physiology.2007;92(2):287-98.
    21.Shiell AW, Campbell DM, Hall MH, Barker DJ. Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. BJOG. 2000; 107(7): 890-5.
    22.Lieberman E, Gremy I, Lang JM, Cohen AP. Low birthweight at term and the timing of fetal exposure to maternal smoking. Am J Public Health.1994;84(7):1127-31.
    23.Lunde A, Melve KK, Gjessing HK, Skjaerven R, Irgens LM. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am J Epidemiol. 2007;165(7):734-41.
    24.Morgan AR, Thompson JM, Murphy R, Black PN, Lam WJ, Ferguson LR, Mitchell EA. Obesity and diabetes genes are associated with being born small for gestational age:results from the Auckland Birthweight Collaborative study. BMC Med Genet. 2010;11125.
    25.Cardiovascular Disease and Diabetes. American Heart Association. February 7,2012. http://www.heart.org/HEARTORG/Conditions/Diabetes/WhyDiabetesMatters/Cardi ovascular-Disease-Diabetes_UCM_313865_Article.jsp.
    26.Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest.2000; 106(4): 473-81.
    27.Pihlajamaki J, Gylling H, Miettinen TA, Laakso M. Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J Lipid Res.2004;45(3):507-12.
    28.Day C, Bailey CJ. Obesity in the pathogenesis of type 2 diabetes. The British Journal of Diabetes & Vascular Disease.2011;11(2):55-61.
    29.DeLano FA, Schmid-Schonbein GW. Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension.2008;52(2):415-23.
    30.Escobar E. Hypertension and coronary heart disease. J Hum Hypertens.2002; 16 Suppl 1S61-3.
    31.Kotsis V, Stabouli S, Papakatsika S, Rizos Z, Parati G. Mechanisms of obesity-induced hypertension. Hypertens Res.2010;33(5):386-93.
    32.Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet. 1998; 19(3):268-70.
    33.Weedon MN, Clark VJ, Qian Y, Ben-Shlomo Y, Timpson N, Ebrahim S, Lawlor DA, Pembrey ME, Ring S, Wilkin TJ, Voss LD, Jeffery AN, Metcalf B, Ferrucci L, Corsi AM, Murray A, Melzer D, Knight B, Shields B, Smith GD, Hattersley AT, Di Rienzo A, Frayling TM. A common haplotype of the glucokinase gene alters fasting glucose and birth weight:association in six studies and population-genetics analyses. Am J Hum Genet.2006;79(6):991-1001.
    34.Matyka KA, Beards F, Appleton M, Ellard S, Hattersley A, Dunger DB. Genetic testing for maturity onset diabetes of the young in childhood hyperglycaemia. Arch Dis Child.1998;78(6):552-4.
    35.Letha S, Mammen D, Valamparampil JJ. Permanent neonatal diabetes due to KCNJ11 gene mutation. Indian J Pediatr.2007;74(10):947-9.
    36.Bonfanti R, Colombo C, Nocerino V, Massa O, Lampasona V, Iafusco D, Viscardi M, Chiumello G, Meschi F, Barbetti F. Insulin gene mutations as cause of diabetes in children negative for five type 1 diabetes autoantibodies. Diabetes Care.2009;32(l): 123-5.
    37.Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med.2006;355(5):456-66.
    38.Slingerland AS, Hattersley AT. Activating mutations in the gene encoding Kir6.2 alter fetal and postnatal growth and also cause neonatal diabetes. J Clin Endocrinol Metab.2006;91(7):2782-8.
    39.Colombo C, Porzio O, Liu M, Massa O, Vasta M, Salardi S, Beccaria L, Monciotti C, Toni S, Pedersen O, Hansen T, Federici L, Pesavento R, Cadario F, Federici G, Ghirri P, Arvan P, Iafusco D, Barbetti F. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest. 2008; 118(6):2148-56.
    40.Nishigori H, Tomura H, Tonooka N, Kanamori M, Yamada S, Sho K, Inoue I, Kikuchi N, Onigata K, Kojima I, Kohama T, Yamagata K, Yang Q, Matsuzawa Y, Miki T, Seino S, Kim MY, Choi HS, Lee YK, Moore DD, Takeda J. Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc Natl Acad Sci U S A.2001;98(2):575-80.
    41.Wilson RC, Dave-Sharma S, Wei JQ, Obeyesekere VR, Li K, Ferrari P, Krozowski ZS, Shackleton CH, Bradlow L, Wiens T, New MI. A genetic defect resulting in mild low-renin hypertension. Proc Natl Acad Sci U S A.1998;95(17):10200-5.
    42.Mook-Kanamori DO, Marsh JA, Warrington NM, Taal HR, Newnham JP, Beilin LJ, Lye SJ, Palmer LJ, Hofman A, Steegers EA, Pennell CE, Jaddoe VW. Variants near CCNL1/LEKR1 and in ADCY5 and fetal growth characteristics in different trimesters. J Clin Endocrinol Metab.2011;96(5):E810-5.
    43.Freathy RM, Mook-Kanamori DO, Sovio U, Prokopenko I, Timpson NJ, Berry DJ, Warrington NM, Widen E, Hottenga JJ, Kaakinen M, Lange LA, Bradfield JP, Kerkhof M, Marsh JA, Magi R, Chen CM, Lyon HN, Kirin M, Adair LS, Aulchenko YS, Bennett AJ, Borja JB, Bouatia-Naji N, Charoen P, Coin LJ, Cousminer DL, de Geus EJ, Deloukas P, Elliott P, Evans DM, Froguel P, Glaser B, Groves CJ, Hartikainen AL, Hassanali N, Hirschhorn JN, Hofman A, Holly JM, Hypponen E, Kanoni S, Knight BA, Laitinen J, Lindgren CM, McArdle WL, O'Reilly PF, Pennell CE, Postma DS, Pouta A, Ramasamy A, Rayner NW, Ring SM, Rivadeneira F, Shields BM, Strachan DP, Surakka I, Taanila A, Tiesler C, Uitterlinden AG, van Duijn CM, Wijga AH, Willemsen G, Zhang H, Zhao J, Wilson JF, Steegers EA, Hattersley AT, Eriksson JG, Peltonen L, Mohlke KL, Grant SF, Hakonarson H, Koppelman GH, Dedoussis GV, Heinrich J, Gillman MW, Palmer LJ, Frayling TM, Boomsma DI, Davey Smith G, Power C, Jaddoe VW, Jarvelin MR, McCarthy MI. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet.2010;42(5):430-5.
    44.Freathy RM, Weedon MN, Bennett A, Hypponen E, Relton CL, Knight B, Shields B, Parnell KS, Groves CJ, Ring SM, Pembrey ME, Ben-Shlomo Y, Strachan DP, Power C, Jarvelin MR, McCarthy MI, Davey Smith G, Hattersley AT, Frayling TM. Type 2 diabetes TCF7L2 risk genotypes alter birth weight:a study of 24,053 individuals. Am J Hum Genet.2007;80(6):1150-61.
    45.Adkins RM, Somes G, Morrison JC, Hill JB, Watson EM, Magann EF, Krushkal J. Association of birth weight with polymorphisms in the IGF2, H19, and IGF2R genes. Pediatr Res.2010;68(5):429-34.
    46.Wadsworth M, Butterworth S, Marmot M, Ecob R, Hardy R. Early growth and type 2 diabetes:evidence from the 1946 British birth cohort. Diabetologia.2005;48(12): 2505-10.
    47.Kilpelainen TO, den Hoed M, Ong KK, Grontved A, Brage S, Jameson K, Cooper C, Khaw KT, Ekelund U, Wareham NJ, Loos RJ. Obesity-susceptibility loci have a limited influence on birth weight:a meta-analysis of up to 28,219 individuals. Am J Clin Nutr.2011;93(4):851-60.
    48.Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, Niu T, Wise PH, Bauchner H, Xu X. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA.2002;287(2):195-202.
    49.Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A.2007;104(49):19351-6.
    50.Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A.2008;105(44):17046-9.
    51.Shao WJ, Tao LY, Gao C, Xie JY, Zhao RQ. Alterations in methylation and expression levels of imprinted genes H19 and Igf2 in the fetuses of diabetic mice. Comp Med.2008;58(4):341-6.
    52.Filiberto AC, Maccani MA, Koestler D, Wilhelm-Benartzi C, Avissar-Whiting M, Banister CE, Gagne LA, Marsit CJ. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics. 2011;6(5):566-72.
    53.Charmandari E, Kino T, Souvatzoglou E, Vottero A, Bhattacharyya N, Chrousos GP. Natural glucocorticoid receptor mutants causing generalized glucocorticoid resistance:molecular genotype, genetic transmission, and clinical phenotype. J Clin Endocrinol Metab.2004;89(4):1939-49.
    54.Jablonka E, Lachmann M, Lamb MJ. Evidence, mechanisms and models for the inheritance of acquired characters. Journal of Theoretical Biology.1992; 158(2): 245-68.
    55.Jablonka E, Lamb MJ. Epigenetic inheritance in evolution. Journal of Evolutionary Biology.1998;11(2):159-83.
    56.Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr.2007;97(3):435-9.
    57.Harrison M, Langley-Evans SC. Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr.2009;101(7):1020-30.
    58.Benyshek DC, Johnston CS, Martin JF. Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia.2006;49(5):1117-9.
    59.Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol.2004;180(1):1-16.
    60.Gluckman PD, Hanson MA, Beedle AS. Non-genomic transgenerational inheritance of disease risk. Bioessays.2007;29(2):145-54.
    61.Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol.2005;288(1):R34-8.
    62.Pettitt DJ, Bennett PH, Saad MF, Charles MA, Nelson RG, Knowler WC. Abnormal glucose tolerance during pregnancy in Pima Indian women. Long-term effects on offspring. Diabetes.1991;40 Suppl 2126-30.
    63.Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med.2002;346(10):731-7.
    64.Wang YA, Sullivan EA, Black D, Dean J, Bryant J, Chapman M. Preterm birth and low birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil Steril.2005;83(6):1650-8.
    65.Lee S-H, Lee M-Y, Chiang T-L, Lee M-S, Lee M-C. Child growth from birth to 18 months old born after assisted reproductive technology-Results of a national birth cohort study. International Journal of Nursing Studies.2010;47(9):1159-66.
    66.Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology:a call for investigation. Am J Hum Genet.2004;74(4):599-609.
    67.Horsthemke B, Ludwig M. Assisted reproduction:the epigenetic perspective. Hum Reprod Update.2005;11(5):473-82.
    68.Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions:implications for subsequent development. Theriogenology.2000;53(1):21-34.
    69.Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17(11):1653-65
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.