聚乳酸/纳米羟基磷灰石可吸收椎间融合器的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分聚乳酸/纳米羟基磷灰石可吸收椎间融合器的制备及其生物力学测试
     目的:制备出聚乳酸/纳米羟基磷灰石可吸收椎间融合器,并对其进行生物力学性能的测试。
     方法:采用热致相分离法制备出不同纳米羟基磷灰石质量百分比(0、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%)的聚乳酸/纳米羟基磷灰石可吸收材料,通过电镜扫描进行表征,测量可吸收材料的压缩强度、抗弯强度、弯曲模量,通过比较得出聚乳酸与纳米羟基磷灰石的最佳质量配比,并由此制备出聚乳酸/纳米羟基磷灰石可吸收椎间融合器。以6具青年男性新鲜腰椎(L1~L5)尸体标本进行试验,分为三组:正常组、自体髂骨组、聚乳酸/纳米羟基磷灰石可吸收椎间融合器组即材料组,分别进行脊柱三维运动测试、最大拔出力实验、压缩毁损实验。
     结果:当纳米羟基磷灰石的质量比20%时,其力学性能达到峰值,通过电镜扫描,所制备聚乳酸/纳米羟基磷灰石可吸收材料微观结构为纳米级,具有良好的孔隙率,因此,以聚乳酸与纳米羟基磷灰石质量比为80:20的配比,制备出聚乳酸/纳米羟基磷灰石可吸收椎间融合器。在前屈、左右旋转、左右侧弯的加载中,材料组中L3/4节段之间运动范围,均较髂骨组减少;在前屈、左右侧弯加载中,材料组均较正常组减少;在最大拔出力测试中,材料组的最大拔出阻力较大;在压缩毁损实验中,材料组对椎体有很好的保护作用,而且它承载能力明显好于自体髂骨组。
     结论:所制备聚乳酸/纳米羟基磷灰石可吸收椎间融合器,其微观结构为纳米级,与天然纤维支架相似,预计具有良好的生物相容性,力学性能较好,植入椎间后,具有较好稳定性和抗压性能,为临床应用提供了力学基础。
     第二部分聚乳酸/纳米羟基磷灰石/骨髓间充质干细胞复合椎间融合器的动物实验研究
     目的:检测聚乳酸/纳米羟基磷灰石可吸收材料的细胞相容性,制备聚乳酸/纳米羟基磷灰石/骨髓间充质干细胞复合椎间融合器,观察其椎间融合效果以及材料的可吸收性。
     方法:采集山羊骨髓间充质干细胞进行细胞培养,将上一步所制备聚乳酸/纳米羟基磷灰石可吸收材料与骨髓间充质干细胞混合培养,采用MTT法检测干细胞在可吸收材料孔隙中黏附和增殖情况,并进行电镜扫描。将聚乳酸/纳米羟基磷灰石可吸收椎间融合器与骨髓间充质干细胞混合培养制备出聚乳酸/纳米羟基磷灰石/骨髓间充质干细胞复合椎间融合器,将其与聚乳酸/纳米羟基磷灰石可吸收椎间融合器以及自体髂骨植入同一山羊椎体间,术后分期收集标本,进行CT扫描,生物力学测试、大体观察、光镜观察和电镜扫描。
     结果:骨髓间充质干细胞与聚乳酸/纳米羟基磷灰石可吸收材料混合培养6小时后,骨髓间充质干细胞在聚乳酸/纳米羟基磷灰石复合支架材料上的黏附率为72.1%。材料组细胞增殖情况明显高于对照组,电镜扫描也显示干细胞在可吸收材料支架中具有较好的黏附和增殖情况,通过椎间融合器植入山羊体内术后融合效果的观察,术后短期内,自体髂骨具有较好的融合效果,随着时间延长,可吸收材料均能达到与自体髂骨相同的融合效果,而且,聚乳酸/纳米羟基磷灰石/骨髓间充质干细胞复合椎间融合器能较快的达到良好的椎间融合。
     结论:本研究制备出的聚乳酸/纳米羟基磷灰石可吸收椎间融器具有良好的生物相容性,并且通过进一步复合,制备出具有生物活性的可吸收椎间融合器,证明能够满足椎间骨组织替代的要求,具有广阔的应用前景。
     第三部分聚乳酸/纳米羟基磷灰石可吸收椎间融合器的生物安全性研究
     目的:观察聚乳酸/纳米羟基磷灰石可吸收材料的生物安全性。
     方法:将聚乳酸/纳米羟基磷灰石可吸收材料浸提液对SD大鼠进行腹腔内注射,观察大鼠的急性毒性反应;在SD大鼠脊柱两侧种植聚乳酸/纳米羟基磷灰石可吸收材料和单纯聚乳酸试样,于术后15、30、60、90天取材,观察试样周围组织的炎症反应和纤维囊壁情况以及心、肝、肾等脏器情况。
     结果:所有实验动物在观察期间无一例死亡,各动物活动、进食、生长情况良好,未出现腹泻,震颤,呼吸困难,运动机能减退等情况;术后15天,聚乳酸/纳米羟基磷灰石可吸收材料组和聚乳酸组周围均可见中性粒细胞,炎症反应Ⅱ级,囊壁反应均Ⅳ级。术后30天,炎症反应Ⅰ级,囊壁反应Ⅲ级,术后60天,炎症反应Ⅰ级、囊壁反应均Ⅱ级,术后90天,炎症反应和囊壁反应均为Ⅰ级或以下;术后各时间点观察,心、肝、肾等脏器均正常。
     结论:该自制聚乳酸/纳米羟基磷灰石可吸收材料植入局部反应良好,有较好的生物安全性。
Part 1 Preparation and Biomechanical Study of PLA/nano-hydroxyapatite Absorbable Interbody Fusion Cage
     Object:To produce the PLA/nano-hydroxyapatite absorbable interbody fusion cage and analyze the biomechanical capability of the interbody fusion cage.
     Methods:PLA/nano-hydroxyapatite compound material of different n-HA mass fraction(0、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%) was produced by the thermal induced phase separation method.The absorbable material was characterized by the scanning electron microscope observation.Its mechanics performance(pressure strength、bending strength、curving module) were tested.PLA/nano-hydroxyapatite absorbable interbody fusion cage was produced according to the best n-HA mass fraction.6 fresh lumber spine specimens(L1-L5) from young male cadavers were used,The specimens were classified into 3 groups:the normal group,auto iliac bone group and PLA/n-HA interbody fusion cage group.The specimens were measured by the three dimensional motional stability test,the pullout test,and compression destoryed test. capability of PLA/nano-hydroxyapatite compound material reached the peak value.The absorbable material had the three dimensional porous micro-structure.The PLA/nano-hydroxyapatite absorbable interbody fusion cage was produced according to the 20%mass fraction of HA.The absorbable interbody fusion cage exhibited a significant increase in stability between L3 and L4 in flexion,left/right lateral bending and left/right axial rotation than iliac crest bone.The absorbable interbody fusion cage exhibited a significant increase in stability between L3 and L4 in flexion,left/right lateral bending than the normal group.The material group had the more pullout resistance than iliac crest bone group. The absorbable interbody fusion cage group can protect vertebrae,and it has very good load capacity better than iliac bone group.
     Conclusion:The produced PLA/nano-hydroxyapatite absorbable interbody fusion cage has the three dimensional porous micro-structure. Its micro-structure is similar to extracellular matrix.It is producted that the material has the better biocompatibility.It has the better capability of mechanics,stability and anti-compression.
     Object:To detect the cell compatibility of PLA/nano-hydroxyapatite absorbable material.Produce PLA/nano-hydroxyapatite/ Bone marrow derived mesenchymal stem cells(MSCs) Compound Interbody Fusion Cage.Observe the its effect of interbody fusion and absorbability.
     Methods:Bone marrow derived mesenchymal stem cells were extracted from the bone marrow in goats and cultured.Bone marrow derived mesenchymal stem cells were cultured with PLA/nano-hydroxyapatite absorbable material.Tested the cell multiplication and adhesion under the influence of the material by MTT methods.PLA/nano-hydroxyapatite absorbable interbody fusion cage and Bone marrow derived mesenchymal stem cells were cocultured to produce PLA/nano-hydroxyapatite/ Bone marrow derived mesenchymal stem cells(MSCs) Compound Interbody Fusion Cage.It was imbedded the interbody of goat lumbar to evaluate the effect of interbody fusion.
     Results:When Bone marrow derived mesenchymal stem cells were seeded into scaffolds,the cell attachment rate in PLA/nano-hydroxyapatite was 72.1%.The cell proliferation assay showed that the cell number in PLA/nano-hydroxyapatite was higher than that in control group.In a short term after operation,the fusion effect of iliac crest bone group was best.But the last all the group can reach the same fusion effect.
     Conclusion:The PLA/nano-hydroxyapatite absorbable material has the better biocompatibility.It can be used to repair the bone defects in interbody fusion.
     Objective:Conserve the Biosafety of PLA/nano-hydroxyapatite material by animal experiments,prepare for clinical application.
     Methods:The leaching liquor of the material was injected into mice to test the acute toxicity.To explore the biocompatibility of PLA/nano-hydroxyapatite absorbable material,implant test were performed in SD rat.
     Results:All animals were alive in the labor period.No significant difference in general situation,the food utilization rate and the body weight relative growth rate.There was only mild inflammatory reaction and thin fibrosis membrane in the early days after PLA/ PLA/nano-hydroxyapatite absorbable material plate implantation,the fibrosis membrane was nearly disappeared and most of the imflammatory reaction recovered 3 months later.The heart,liver and kidney were all normal.
     Conclusion:The self-made PLA/nano-hydroxyapatite absorbable material has a good Biosafety,it has a great clinical application prospects.
引文
[1]陈益清,孙多先,刘静怡,等.微囊化海藻酸离子移变凝胶的制备、结构与性能[J].高等学校学报,2003,24(1):117-120.
    [2]Gregor T,Edwin R.Biological interactions between polysaccharides and divalent cations:the egg-box model[J].Febs Lett.,1973,32(1):195-198..
    [3]颜秋平,李富荣,汤顺清,等.阿霉素磁性海藻酸钠纳米微球的制备与性能[J].材料科学与工程学报,2007,25(2):746-749.
    [4]王康,何志敏.海藻酸钠微胶囊的制备及在药物控制释放中的研究进展[J].化学工程,2002,30(1):48-56.
    [5]Cho N H,Seng S Y,Chun K H,et al.Novel mucosal immunization with polysaccharide-proteinconjugates entrapped in alginate microspheres[J].J.Control.Release,1998,53(1-3):215-224.
    [6]国家药典委员会.中华人民共和国药典[M].北京:化学工业出版社,2005.
    [7]Wang L Y,Ma G H,Su Z G.Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug[J].J.Control.Release,2005,106(1-2):62-75.
    [8]李伟,黄梅,刘信安.5-氟尿嘧啶毫微囊的制备[J].化学世界,2004,(1):35-38.
    [9]王丹.多肽及蛋白类药物微球的载体材料、制备以及突释现象[J].中国组织工程研究与临床康复,2008,12(10):1931-1934.
    [10]柴岗,张艳,袁捷,等.组织工程骨修复颅颌面骨缺损预塑形技术的研究[J].中国美容医学.2005;14(5):587-589.
    [11]程晓兵.β-磷酸三钙用作组织工程骨支架材料修复犬下颌骨节段性缺损的实验研究.第四军医大学博士学位论文.2005:53-61
    [12]陈富林,毛天球,羊书勇,等.骨髓基质干细胞接种于珊瑚修复兔颅骨缺损的实验研究[J].实用口腔医学杂志.2001;17(1):60-62
    [13]Pittenger MF,Mackay AM,Beek SC,Jaiswal RK,Douglas R,Mosea D,Moorman MA,Simonetti DW,Craig S,Marshak DR.Multilineage Potential of adult human mesenchymal stem cells.Science.1999:284(5411):143-147
    [14]Friedenstein AJ,ChailakhjanRK,Lalykina KS.The development of fibroblast colonies in rnonolayer cultures of guinea-pig bone marrow and spleen cells.Cell Tissue Kinet.1970;3(4):393-403
    [15]Intemational Organization for Standardization.Biological evaluation of medical device-Part12:sample Preparation and reference materials(150:10993212:1996)[M].Geneva:150,1996.
    [16]Intemational Organization for Standardization.Biological evaluation of medical devices-parts5:tests for in vitro cytotoxicity(150:1099325:1999)[M].Geneva:150,1999.
    [17]中华人民共和国国家标准:医疗器械生物学评价第5部分:细胞毒性试验:体外法[M].国家技术监督局.1997
    [18]生物材料和医疗器材生物学评价技术要求[M].卫生部药政管理局1997,1-44
    [1]Maurer TB,Ochsner PE,Schwarzer G,et al.Increased loosening of cemented straight stem prostheses made from titanium alloys.An analysis and comparison with proostheses made of cobalt-chromiumnickel alloy[J].Int Orthop,2001,25(2):77.
    [2]Otani T,Whiteside LA,White SE,et al.Effects of femoral component material properties oncementless fixation in total hiparthroplasty.A comparison study between carbon composite,titanium,alloy and stainless steel[J].J Arthroplasty,1993,8(1):67.
    [3]Sefton MV,Woodhouse KA.Tissue engineering.J Cutan Med Surg.1998,Suppl1:18-23.
    [4]Hutmacher DW.Scaffolds in tissue engineering bone and cartilage.Biomaterials,2000,21(24):2529-43.
    [5]高爱国,孙俊英骨组织工程的基质材料江苏医药2004,30(2):137-138.
    [6]LinFH,LiaoCJ,ChenKS,etal.Petal—like apatite formed on the surface of tricaleium PhosPhate ceramic after soaking in distilled water.J.Biomaterials.2001,22:2981-2992.
    [7]戴红莲,李世普,闰玉华等.β-磷酸三钙多孔生物陶瓷植入体内后的组成变化.硅酸盐学报,2004,32:800-807
    [8]Yamashima.Reconstruction of surgical skull defects with hydroxylapatite ceramic buttons and granules[J].Acta Neurochir(Wien),1988,90:157.
    [9]Dumbach J,Rodemer H,Spitzer WJ,et al.Limits of osseous reconstruction of the mandible with autologous spongiosa hydroxyapatite granules and titanium mesh especially after radiotherapy[J].Forstschr-Kiefer-Gesichtschir,1994,39:93.
    [10]黄洪章,PaulMercier.羟基磷灰石增高下颌牙槽嵴及其延展术[J].中华口腔医学杂志,1996,31:34.
    [11]Ichiro O,Hironori G,Fumio K,et al.Treatment of ex-tensive cranial bone defects usingcomputer-designed hydroxyapatite ceramics and periosteal flaps[J].Plast Reconstr Surg,1993,92:819.
    [12] HarveyM,Porous,Block.Hydroxyapatite as an interpositional bone graft substitute in orthognathic surgery.PlasticandReconstructiveSurgery,1989,83:985.
    
    [13] Dorner-Reisel A,Klemm V,Irmer G,Muller E.Nano-and microstructure of short fibre reinforced and unreinforced hydroxyapatite.Biomed Tech,2002,47(1):397-400.
    
    [14] WANG X,LI Y,WEI J,de Groot K.Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adiparride) composites[J]. Biomaterialsk,2002,23(24):4787-4791.
    
    [15] Morisue,Hikaru,Matsumoto,et al.A Novel Hydroxyapatite Fiber Mesh as a Carrier for Recombinant Human Bone Morphogenetic Protein-2 Enhances Bone Union in Rat Posterolateral Fusion Model.Spine,2006,31(11):1194-1200.
    
    [16] Wang RZ.Synthesis of nanophase hydroxyapatite/collagen composite[J].J Mater Sci Lett.1995,(14):490.
    
    [17]MaPX andR.Y.Zhang.Microtubular achitecture of biodegradable Polymer seaffolds.J.BIOmed.Mater.Res.56:469-477, 2001
    
    [18] Li, W.J., C.T.Laurencin, E.J.Caterson, R.s.Tuan, andF.K.Ko.Eleetrospun nanofibrous structure:a novel scaffold for tissue engineering. J. Biomed. Mater. Res.2002, 60:613-621.
    
    [19] Fialkov, J.A., C.E.Holy, M.5.Shoiehet, andJ.E.Davies.In vivo bone engineering in arabbit femur.J.Craniofac.Surg.14:324-332, 2003.
    
    [20] Karp, J.M., K.RzeszuteK,M.S.Shoichet, andJ.E.Davies.Fabrieation of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications.J.Craniofac.Surg.2003,14:317-323
    
    [21] Bostman O. Absorbable implants for the fixation of fracture. J Bone, Joint,Surg, 1991, 73A:148.
    
    [22] Gogolowski S, Resorbable Polymers for internal fixation, Clinical Material 1992, 10-13.
    [23]Satavirta5.Inunune response to Polyglycolic acid implant.JBJS,1990,11:10-13
    [24]Christell.Biodegradable.Composites for internal fixation[J].biomaterial,1982,7:271-80
    [25]Gogolowski S,Resorbable Polymers for internal fixation,Clinical Material,1992,8:10-13
    [26]Tormala P,PohjonenT.RokkanenP.Bioresorbable Polymers:materials technology and surgical application.Proc Inst Mesh Eng H,1998,212(2):101-2.
    [27]Holliger J O,Battistone G C.Biodegadable bone repairmaterials:synthetic polymers and ceramics.Clinorthop,1986;207:290.
    [28]MajolaA,VainionapaaS,VihtonenK,et al.Absorption,bio-compatibility,and fixation properties of polylactic acid in bone tissue:an experimental study in rats.ClinOrthop,1991;268:260.
    [29]Bergsmaju E,Bruijn W,Rozema FR,et al.Late degradation tissue response to poly(L-lactide)bone plate and screws.Bio-materials,1995;16(1):25.
    [30]阮狄克,沈根标,邹宏思,等.可吸收聚乳酸植入材料的实验观察.中华骨科杂志,1994;14(6):370.
    [31]阮狄克,沈根标,邹宏恩,等.可吸收性聚乳酸材料生物相容性与生物降解的研究.中华外科杂志,1993;31(9):568.
    [32]王立,金大地,林献章,等.生物降解聚丙交酯棒的体内实验研究.中华骨科杂志,1996:16(10):656.
    [33]Gogolewski S.Resorbable polymers for internal fixation.ClinMater,1992;10:13.
    [34]YarnamuroT,MatsusueY,UchidaA,et al.Bioabsorbable osteosynthetic implants of ultrahighstrength poly-L-lactide:a clinic study.Int Orthop,1994;18(6):332.
    [35]Manninen MJ,PohjonenT.Intramedullary nailing of the corti-cal bone osteotomies in rabbits with self-reinforced poly-L-lactide rods manufactured by the fibrillation method.Biomateri-als,1993;14:305.
    [36]林献章,金大地,王立,等.生物降解聚丙交酯(PLA)栓内固定治疗犬股骨髁部骨折的实验研究.中华骨科杂志,1996;16:659.
    [37]阮狄克,沈根标,何风春,等.可吸收聚乳酸接骨板的动物实验初步报道.生物医学工程学杂志,1995;12(1):5.
    [38]Trmlp,Pohjonen T.Ultra-high strength biodegradable polymeric composites for surgical applications.In:Rokkanen P,TrmlP(eds).Self-Reinforced Bioabsorbable Polymeric Composites in Surgery.Tampere,Finland:Tampereen Pikapaino Oy,1995:1-23.
    [39]Ashammakhi,Nureddin,et al.Developments in Craniomaxillofacial Surgery:Use of Self-Reinforced Bioabsorbable Osteofixation Devices.Plast Reconstr Surg 2001;108:167-180.
    [40]Hollier,Larry,Soini Y,et al.Self-reinforced polylactide/polyglycolide 80/20screws takemore than 1.5 years to resorb in rabbit cranial bone.Journal of Craniofacial Surgery.2005,16(2):339.
    [41]Raghoebar,Gerry M,Liem,et al.Resorbable screws for fixation of autologous bone grafts.Clinical Oral Implants Research.2006,17(3):288-293.
    [42]Wakitani S,Kimura T,HirookaA,Ochi T,Yoneda M,Yasui N,Owaki H,Ono K.Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel.J Bone Joint Surg Br.1989;71(1):74-89
    [43]卢华定,蔡道章,秦骥,等.1型胶原负载骨髓基质细胞修复兔膝关节软骨缺损.中国骨与关节损伤杂志.2006;21(6):452-454
    [44]Burna P,Pieper JS,vanTienenT,Vansusante JL,vanderKraanPM,Veerkkamp JH,van den Berg WB,Veth RP,van Kuppevelt TH.Cross- linked type Ⅰand type Ⅱ collagenous matrices for the repair of full-thiekness articular cartilage defects-a study in rabbits.Biomaterials.2003;24(19):3255-3263
    [45]Didueh DR,Joulan LC,Mieriseh CM,Balian G.Marrow Stromal cells embedded in alginate for repair of osteochondral defects.Arthroscopy 2000:16(6):571-577
    [46]Solchaga LA,Tmenoff JS,Gao J,Mikos AG,Caplan AI,Goldberg VM.Repair of osteochondral defects with hyaluronan- and Polyester-based scaflblds.Osteoarthritis Cartilage.2005;13(4):297-309
    [47]GrigoloB,RosctiL,FioriiM,FiniM,Giavaresi G,Aldini NN,Giardino R,Facehini A.Yransplantation of chondroeytes seeded on a hyaluronan derivative (hyaff- Ⅱ)into cartilage defects in rabbits.Biomaterials.2001;22(17):2417-2424.
    [48]颜小慧.骨组织工程应用可降解聚合物的可能性探讨[J].国外医学生物医学工程(分册).2000;23(1):11-17
    [49]赵家胜张秀珍降钙素对成骨细胞作用机制的体外实验研究shanghai FebJ,2004,27(2):112-115.
    [50]van-Dijk M,Smit T-H,Arnoe M-F,et al.The use of poly-L-lactic acid in lumbar interbody Cages:design and biomechanical evaluation in vitro[J].Eur-Spine-J,2003,12:34-40.
    [51]Yoshihiro Hojo,Yoshihisa Kotani,Manabu Ito,et al.A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion Cage[J].Biomaterials,2005,26:2643-2651.
    [52]Jeffrey Coe.Instrumented transforaminal lumbar interbody fusion with bioresorbable polymer Cages and iliac crest autograft[J]The Spine Journal,2004,4:3S-19S.
    [53]Van Dijk M,Smit T,Sugihara S,et al.The effect of Cage stiffness on the rate of lumbar interbody fusion.An in vivo model using poly(1-lactic acid)and titanium Cages[J].Spine,2002,27:682-688.
    [54]Krijnen M-R,Smit T-H,Strijkers G-J,et al.The use of high-resolution magnetic resonance imaging for monitoring interbody fusion and bioabsorbable Cages:an ex vivo pilot study[J].Neurosurg-Focus,2004,16(3):E3.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.