人体上呼吸道内气流运动特性与气溶胶沉积规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气污染物气溶胶对人类健康产生严重的威胁,人体通过呼吸道吸入有毒气溶胶会引发哮喘、肺气肿和支气管炎等呼吸道疾病,SARS和禽流感等疾病的爆发同样是病毒以生物气溶胶的形式通过呼吸道传播而引发感染;针对各种呼吸道疾病,气溶胶吸入治疗在呼吸道疾病的防治中表现出了明显的优势。人体上呼吸道内气流流场、气溶胶性质、呼吸模式及其几何特性决定了有毒气溶胶或吸入药物气溶胶的沉积位置和局部浓度,进而决定有毒气溶胶的危害程度或药物气溶胶的治疗效果。因此,研究人体呼吸道内的气流运动特性,探讨有毒气溶胶或药物气溶胶在人体呼吸道内的沉积规律,对于认识有毒气溶胶对人体的危害、进行剂量健康效应的评价以及继续深入探索有毒气溶胶的致病机理具有重要的实际意义,对于提高药物气溶胶的治疗效果具有重要的指导意义。
     本文在总结国内外研究工作的基础上,借鉴ARLA(Aerosol Research Laboratory of Alberta)的理想口-喉模型和Weible模型的气管-支气管模型,建立了具有口腔-咽-喉-气管-前三级支气管的完整的人体上呼吸道模型。运用CFD数值仿真和试验研究相结合的方法对人体上呼吸道内的气流运动特性和气溶胶运动沉积规律进行了全面、系统的研究。研究结果表明:
     稳态呼吸模式下,气流在咽部外壁、气管外壁发生分离现象,气流在气管内壁形成局部高速区域,容易造成较多的气溶胶沉积;在气管内的三个截面内分别形成两个对称的二次涡流运动,二次涡流运动使得气管内壁所受到的流动剪应力增大,而外壁面剪应力减小;同时轴向速度在气管内壁引起高剪应力分布,而外壁的剪应力较小,二次涡流容易造成气溶胶在气管内壁沉积较多;进入到支气管内的气流在分叉处发生分离,并且在下游支气管的内壁区域形成新的边界层,靠近支气管内壁速度较高,并且在支气管边界层的外缘速度达到最大值,靠近支气管外壁速度较低。
     循环吸气模式下,吸气加速阶段咽部、喉部和声门下游气管内壁形成局部高速区,容易造成气溶胶因惯性碰撞而沉积;在咽部外壁、声门下游气管上部外壁气流逐渐发生分离,形成分离区,使得气溶胶在这些部位随气流环流循环运动,滞留时间增加,容易造成一部分气溶胶在咽部外壁和气管外壁的沉积;支气管平面内形成抛物线型的速度分布,气流主流逐渐偏离支气管外壁,流向内壁,容易造成气溶胶在支气管内壁沉积较多;支气管内各个截面上形成的二次涡流运动的强度逐渐增强,二次涡流运动会造成气溶胶在内壁的沉积几率增加。吸气减速阶段,咽部外壁的分离区逐渐向内壁方向扩大,同时在咽部的内壁也发生气流分离现象,气管外壁的分离区向气管内壁方向扩大,同时向气管下游延伸;在第一级支气管外壁区产生气流分离现象,形成较小的分离区,在第二级和第三级支气管内没有发生类似现象。
     循环呼气模式下,呼气加速阶段与吸气加速阶段不同,气管平面内气流流速分布比较均匀;气管内逐渐形成四个二次涡流运动,气流在支气管内经过多级分支的效果是使速度分布均匀化,特别是在同级两个支气管轴线共处的平面内的速度分布在经过几级汇合后,轴线处的峰值分布现象会消失而变得均匀;在支气管内呈现典型的抛物线速度分布形式,支气管内的二次气流运动经历了从两个涡流到四个涡流的运动变化过程。呼气减速阶段,呼气终了时刻,在第一级和第二级支气管的内壁均出现了气流分离现象,在内壁形成分离区。
     循环呼吸模式下,咽部、喉部、气管以及支气管内高轴向速度区和二次涡流运动均是在呼吸过程中逐渐出现的,只是间歇性地产生,所以由此而引起的气道壁面的气流剪应力集中,形成的高剪应力区也是间歇性的,只在整个周期的部分时间出现。壁面受到的剪应力周期性地改变方向,引起壁面劳损和组织损伤的可能性增大,同时在这些部位容易造成气溶胶的沉积,还可能会引起各种呼吸道疾病。呼气阶段支气管内的气流运动、气流剪应力的分布和气溶胶的运动形式比吸气阶段更为复杂。
     采用激光快速成型技术(Stereo-Lithography,SL)制作了人体上呼吸道的试验模型,应用粒子图像速度仪(Particle Image Velocimetry,PIV)对人体上呼吸道内的稳态气流运动特性进行了试验研究,分析了在低强度呼吸条件下人体上呼吸道内的气流运动特性。研究结果表明,数值仿真结果与试验测量结果基本一致,证明了数值仿真方法的准确性和合理性。
     利用拉格朗日方法对气溶胶在上呼吸道内的运动进行仿真计算,分析了不同呼吸模式下气溶胶的沉积特点。惯性碰撞对于微尺度气溶胶沉积而言是主要的沉积机制,惯性参数是衡量碰撞作用造成颗粒沉积的一个重要的参数,人体上呼吸道内不同部位气溶胶沉积率随惯性参数的增加而增加;而湍流扩散、二次气流运动和环流气流运动对气溶胶在人体上呼吸道内的沉积同样具有重要的影响,人体的呼吸流量和气溶胶性质对气溶胶在上呼吸道内的沉积模式影响较小;惯性碰撞和湍流扩散的影响致使在喉部气溶胶沉积最多,气管中气溶胶的沉积效率要高于支气管中的气溶胶沉积效率。人体循环吸气模式下,气溶胶在人体上呼吸道内的沉积率要高于稳态吸气情况下的气溶胶的沉积率;循环吸气模式下的气溶胶沉积率远大于循环呼气模式下的气溶胶沉积率。
     建立了气溶胶在人体上呼吸道内沉积的试验台,对气溶胶在上呼吸道内的沉积进行了试验研究。数值仿真结果与试验结果基本一致,平均误差为11%,沉积变化趋势吻合较好。人体上呼吸道内气溶胶沉积的数值仿真方法,能够较好地预测气溶胶在上呼吸道内的沉积模式以及不同部位的沉积率,是我们获得上呼吸道内有毒气溶胶或药物气溶胶在不同部位沉积信息的一种有效的方法。
Human health is threatened by air pollution aerosols and inhaled toxic aerosols through upper respiratory tract can result in respiratory diseases such as asthma, emphysema and bronchitis. The diseases, for example SARS and bird influenza, broke out because virus transmitted in the form of biological aerosols by human upper respiratory tract caused infection. In allusion to all kinds of respiratory diseases, inhaled pharmaceutical aerosols exhibit obvious advantage of preventing and treating the respiratory diseases. The deposition location and local concentration of toxic aerosols or drug aerosols, as well as the harmful degree of the toxic aerosols and the therapeutic efficiencies of drug aerosols are greatly determined by airflow field, aerosol properties, breathing patterns and geometric airway characteristics. Therefore, airflow movement characteristics in the upper respiratory tract were investigated and the deposition rule of toxic aerosols or drug aerosols in the human upper respiratory tract were discussed, which not only have significance of understanding the harm resulting from toxic aerosols, evaluating dosimetry-and-health-effect and exploring the mechanism for the diseases generation being attributed to toxic aerosols, but also play a very important role in improving therapeutic efficiencies of drug aerosols.
     Based on the present research, an entire human upper respiratory tract model with mouth, pharynx, larynx, trachea and triple bifurcation, combining the idealized mouth-throat model of ARLA(Aerosol Research Laboratory of Alberta) and the trachea-triple bifurcation of Weible’s model, was presented. The methods of integrating numerical simulation of CFD with experimental research were used to study airflow movement characteristics and deposition rule of aerosols. The main conclusions of the present work are summarized as follows:
     The phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea in the steady respiratory patterns. The high velocity zone is created near the inner wall of the trachea, which may result in the aerosol deposition. Two symmetry rotating secondary vortices are generated in the cross sections of the trachea, which lead to the increase of the shearing strength acting on the inner wall of the trachea and the decrease of the shearing strength acting on the outer wall of the trachea, while the axial velocity cause the distribution of the high shearing strength on the inner wall of the trachea, on the contrary, the shearing strength acting on the outer wall of the trachea is low. Secondary vortices lead to the aerosol deposition on the inside wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream bifurcation with the high velocity near the inner wall of the trachea, the maximum velocity at the exterior of the boundary layer and low velocity near the outer wall of the trachea.
     The high velocity zone is created in pharynx, larynx and upper part of the trachea downstream of the glottis during the accelerating inhalation phase in the cyclic inhalation pattern, which may induce aerosol deposition due to inertial impaction. The airflow separates gradually near the outer wall of the pharynx and near the outer wall for the upper part of the trachea downstream of the glottis with the features of the separation zone appearing, which result in aerosol circulatory movement following the recirculation airflow in separation zones and the increase of detention time, ultimately lead to a few aerosol deposition on the outside wall of the pharynx and on the outside wall of the upper part of the trachea downstream of the glottis. During the accelerating inhalation phase, the parabolic shape velocity profiles appear in the middle plane of the bifurcation. The mainstream deflecting from the outer wall of the bifurcation flows into the inner wall of the bifurcation, which result in aerosol deposition easily on the inside wall of the bifurcation. The secondary vortices strength is enhanced gradually in the cross section of the bifurcation, which cause the increase of the probability of aerosol deposition on the inside wall of the bifurcation. The separation zone coming into being near the outer wall of the larynx extends to the inner wall of trachea and the phenomenon for airflow separation is presented near the inner wall of the pharynx at the same time during the accelerating inhalation phase. The separation zone near the outer wall of the trachea extends to the inner wall of the trachea and downstream of the trachea. The phenomenon for airflow separation comes into being near the inner wall of the first bifurcation and a small separation zone appears. No similar phenomenon is observed at the second and third bifurcation.
     Unlike the accelerating inhalation phase, the airflow velocity profiles in the middle plane of the trachea are uniform during the accelerating exhalation phase. Four secondary vortices are generated gradually in the trachea. The airflow flowing through the bifurcations make the velocity distribute uniformly, which especially make the maximum velocity around the axis disappear and the velocity profiles become uniform in the middle plane of the bifurcation. The typical parabolic velocity profiles appear in the middle plane of the bifurcation. The secondary flows in the bifurcation experience the change from two vortices to four vortices. During the decelerating inhalation phase, the airflow separation phenomenon is exhibited near the inner wall of the first and second bifurcation, finally the separation zone forms near the inner wall.
     The high axial velocity zone and secondary flow appear gradually in the pharynx, larynx, trachea and triple bifurcation, i.e., they are generated intermittently in the cyclic respiratory pattern. Therefore, the high shearing strength zone caused by the convergence of the airflow shearing strength acting on the airways wall form intermittently, only appear at the part time in the period. The direction of the shearing strength acting on the wall vary periodically, which not only result in the increase of the probability of the wall strain and tissue injury, but also lead to aerosol deposition easily in these areas at the same time, eventually may induce all kinds of respiratory diseases. The airflow movement, airflow shearing strength distribution and aerosol movement in the bifurcation during the exhalation phase are more complex than the inhalation phase.
     A replica of the human upper respiratory tract for experiment was constructed using stereolithography(SL). The experiment research was performed with the Particle Image Velocimetry(PIV) technique and inspiration flows were examined under steady flow conditions. The airflow movement characteristics in the human upper respiratory tract in the conditions of the low intensive respiratory patterns were discussed. The results show that the numerical simulation data are in reasonable agreement with experimental measurements, which verifies that the numerical simulation methods are accurate and reasonable.
     The Lagrangian method computed the trajectory of each aerosol in the human upper respiratory tract and the deposition characteristics of aerosols were investigated. Inertial impaction is the main mechanism of deposition for micro aerosols and inertial impaction parameter is an important parameter of evaluating particle deposition due to the inertial impaction. The DE(deposition efficiency) of aerosols in different zones of the upper respiratory tract increase with the increasing of inertial parameter, while turbulent dispersion, secondary flows and recirculation flows also influence aerosol deposition in the upper respiratory tract. The aerosol deposition patterns are little affected by the respiratory flow and aerosol properties. The high DE occurs in the larynx area due to the inertial impaction and turbulent dispersion. The DE is higher in trachea than in bifurcation, higher in cyclic inhalation pattern than in steady inhalation pattern and higher in cyclic inhalation pattern than in cyclic exhalation pattern.
     The test-bed for measuring aerosol deposition in upper respiratory tract was set up and the experiment for aerosol deposition was performed. The computed results agreed well with the experimental results. The average error is 11%. The numerical simulation method for aerosol deposition in the human upper respiratory tract can predict aerosol deposition patterns and the DE in different locations, and it is also an effective way of obtaining the deposition information for toxic aerosols or inhaled pharmaceutical aerosols.
引文
[1]乔伟,黄昌丽,于永军,等.城市空气污染控制与管理.黑龙江环境通报.2006,30(3):90-91.
    [2]熊志明,张国强,彭建国,等.大气可吸入颗粒物对IAQ的影响研究进展.建筑热能通风空调,2004,23(2):32-36.
    [3]王姝.空气污染对人体健康影响及经济损失估算.辽宁城乡环境技, 2005,25 (6) : 47-50.
    [4]朱科伦,朱郇悯.新发现的传染病的特点.广州中医药,2006,37(1):1-2.
    [5]车凤祥.空气生物学原理及应用.北京:科学出版社,2004:196-317.
    [6]军事医学科学院卫生勤务与医学情报研究所.提高警惕,严防禽流感卷土重来.军事医学动态,2006,17(12):1-4.
    [7]翟俊辉,车凤翔.气溶胶在药物中的应用.国外医学呼吸系统分册,1994,14(增刊):36-38.
    [8]Zhang Z, Kleinstreuer C, Donohue JF, et al. Comparison of micro- and nano-size particle depositions in a human upper airway model. Aerosol Science, 2005,36(2):211-233.
    [9]Zhang Z, Kleinstreuer C. Airflow structures and nano-particle deposition in a human upper airway model.Aerosol Science, 2004,198(1):178-210.
    [10]曾敏捷,胡桂林,樊建人.微颗粒在人体上呼吸道中运动沉积的数值模拟.浙江大学学报(工学版),2006,40(7):1164-1256.
    [11]Moskal Arkadiusz, Grado Leon.Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. Aerosol Science, 2002,33(11):1525-1539.
    [12]Zhang Z, Kleinstreuer C, Kim C.S. Effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways. Medical Engineering &Technology, 2000, 24(5):192-202.
    [13]Weibel E.R. Morphometry of the human lung. New York:Academic Press,1963.1-3.
    [14]Robinson RJ, Oldham MJ, Clinkenbeard RE. Experimental and numerical smoke carcinogen deposition in a multi-generation human replica tracheobronchial model. Annals of Biomedical Engineering, 2006,34(3):373-383.
    [15]Shi H, Kleinstreuer C, Zhang Z. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Physics of Fluids,2004,16(7):2199-2213.
    [16]Zhang Z, Kleinstreuer C, Kim CS. Gas-solid two-phase flow in a triple bifurcation lung airway model. Multiphase Flow,2002,28(6):1021-1046.
    [17]孙秀珍,于 驰,刘迎曦.人体上呼吸道三维有限元重建与流场数值模拟.航天医学与医学工程,2006,19(2):129-133.
    [18]张楚华,闻苏平,刘 阳.人体呼吸道的二级及三级支气管内吸气流动的数值研究.生物医学工程学杂志,2006,23 (4) :48-52.
    [19]Balásházy I, Hofmann W. Particle deposition in airway bifurcations-I. Inspiratory flow. Aerosol Science ,1993,24(6):745-772.
    [20]Balásházy I, Hofmann W. Deposition of aerosols in asymmetric airway bifurcations. Aerosol Science , 1995,26(2):273-292.
    [21]Asgharian B, Anjilvel S. A Monte Carlo calculation of the deposition efficiency of inhaled particles in lower airways. Aerosol Science , 1994,25(4):711-721.
    [22]Hofmann W, Golser R, Balásházy I. Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Science and Technology,2003,37(12):988-994.
    [23]Zhang Z., Kleinstreuer C, Kim CS. Micro-particle transport and deposition in a human oral airway model. Aerosol Science, 2002,33(12):1635-1652.
    [24]Zhou Yue, Cheng Yung-Sung. Paricle deposition in a cast of human tracheobronchial airways. Aerosol Science and Technology, 2005,39(6):492-500.
    [25]Zhang Z, Kleinstreuer C, Kim CS. Computational analysis of micro-particle deposition in a human triple bifurcation airway model. Computer Methods in Biochemical Engineering, 2002,5(2):135-147.
    [26]Stapleton KW, Guentsch E, Hoskinson MK, et al. On the suitability of k-ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Aerosol Science , 2000,31(6):739-749.
    [27]Longest P. Worth, Oldhamc Michael J. Numerical and experimental deposition of fine respiratory aerosols:Development of a two-phase drift flux model with near-wall velocity corrections. Aerosol Science,2008,39:48-70.
    [28]Kleinstreuer Clement, Zhang Zhe, Kim Chong S. Combined inertial and gravitational deposition of microparticles in small model airways of a human respiratory system. Aerosol Science,2007,38:1047-1061.
    [29]Farkas árpád, Balásházy Imre. Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. AerosolScience,2007,38:865-884.
    [30]Longest Worth, Xi Jinxiang. Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. Aerosol Science ,2007,38(1):111-130.
    [31]Kim CS, Fisher DM, Lutz DJ, et al. Particle deposition in bifurcating airway models with varying airway geometry. Aerosol Science , 1994,25(3):567-581.
    [32]Ferron GA. Deposition of polydisperse aerosols in two glass models representing the upper human airways. Aerosol Science,1977,8(6):409-427.
    [33]Chong S Kim, Donald M Fisher. Deposition characteristics of aerosol particles in sequentially bifurcating airway models. Aerosol Science and Technology, 1999,31(2/3):198-220.
    [34]Cheng Yung-Sung, Zhou Yue, Chen Bean T. Particle deposition in a cast of human oral airways. Aerosol Science and Technology,1999,31(4):286-300.
    [35]Oldham Machael J, Phalen Robert F, Heistracher Thomas. Computational fluid dynamic predictions and experimental results for particle deposition in an Airway Model. Aerosol Science and Technology, 2000,32(1):61-71.
    [36]Smith S, Cheng YS, Yeh HC. Deposition of ultrafine particles in human tracheobronchial airways of adults and children. Aerosol Science and Technology, 2001,35(3):697-709.
    [37]Fresconi Frank E, Prasad Ajay K. Secondary velocity fields in the conducting airways of the human lung. ASME Journal of Biomechanical Engineering,2007,129:722-732.
    [38]Tanaka G, Ogata T, Oka K, et al. Spatial and Temporal Variation of Secondary Flow During Oscillatory Flow in Model Human Central Airways. ASME Journal of Biomechanical Engineering,1999,121:565-573.
    [39]Kuncinschi Bogdan R., Scherer Ronald C., DeWitt Kenneth J. et al. Flow Visualization and Acoustic Consequences of the Air Moving Through a Static Model of the Human Larynx. ASME Journal of Biomechanical Engineering,2006,128:380-390.
    [40]Brücker,Ch., Schr?der W. Flow visualization in a model of the bronchial tree in the human lung airways via 3-D PIV. Proceedings of PSFVIP-4, June 3-5, 2003, Chamonix, France.
    [41]Ramuzat, A.,Riethmuller, M.L. PIV investigations of oscillating flows within a 3D lung Multiple Bifurcation model, 11th Int. Symp. On Appl. of Laser Techniques toFluid Flows, Lisbon, Portugal,June 13-16, paper 19-1, 2002.
    [42]Ramuzat,A., Riethmuller, M.L. Application of 2D Laser Doppler Velocimetry to biomedical flows experimental investigations of flows within lung bifurcations. 7th International Conference Laser Anemometry Advances and Applications, Karlsruhe, Germany, September 8-11,1997.
    [43]Ramuzat, A., Day, S.,Riethmuller, M.L. Steady and unsteady LDV and PIV investigations of flow within 2D lung bifurcations model. 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 13-16, 1998.
    [44]Ramuzat, A., Richard, H.,Riethmuller, M.L. PIV investigation of unsteady flows within lung bifurcations”, 7th International Conference Laser Anemometry Advances and Applications, Rome, Italy, Sept.6-9, 1999,:181-188.
    [45]Heenan, A. F., Matida, E., Pollard, A.,et al. Experimental measurements and computational modeling of the flow field in an idealized human oropharynx. Experiments in Fluids, 2003,35:70-84.
    [46]Landal HD. On the removal of airborne droplets by the human respiratory tract:Ⅰ.The Lung. Bull Math Biophys,1950,12:43-56.
    [47]Hatch T, Hemeon WCL. Influence of particle size in dust exposure. J Ind Hyg Toxicol, 1948,30:172-180.
    [48]Altshuler B, Palmes ED, Yarmus L, et al. Intrapulmonary mixing of gases studied with aerosols. J Appl Physiol,1959,14:321-327.
    [49]Hender J, Armbruster L, Gebhart J, et al. Total deposition of aerosol particles in human respiratory tract for nose and mouth breathing. Aerosol Science,1975,6:311-328.
    [50]Rudolf G., Gebhart J, Heyder J, et al. Modelling the deposition of aerosol particles in the human respiratory tract. Aerosol Science,1983,14:188-192.
    [51]Hender J, Gebhart J, Roth C, et al. Intercomparison of lung deposition data for aerosol particles. Aerosol Science,1980,14:188-192.
    [52]Taulbee DB, Yu CPX. A theory of aerosol deposition in the the human respiratory tract. J Appl Physiol,1983,38:77-85.
    [53]Egan MJ, Nixon W. A model of aerosol deposition in the lung for use in inhalation dose assessment. Radiat Prot Dosim,1985,11:5-17.
    [54]Yu CP, Diu CK. A comparative study of aerosol deposition in different lung models. Am Ind Hyg Assoc J, 1982,43:54-64.
    [55]Parka SS, Wexlera AS. Size-dependent deposition of particles in the human lung at steady-state breathing. Aerosol Science,2008,39:266-276.
    [56]姚泰.生理学.人民卫生出版社,2002:137.
    [57]Pedley TJ. Pulmonary fluid dynamics[J].Ann.Rev.Fluid Mech.1977,9:229-274.
    [58]Liu Y, So RMC, Zhang CH. Modeling the bifurcating flow in an asymmetric human lung airway. Journal of biomechanics, 2003,36(7):951-959.
    [59]Schwarz J. Air pollution and daily mortality: a review and meta-analysis.Environ.Res.1994,64(1):36-52.
    [60]Pope CA, Dockery DW, Schwarz J. Review of Epidemiological evidence of health effects of particulate air pollution.Inhal.Tox.1995,7(1):1-18.
    [61]Zheng L, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns.Aerosol science,2007,38(6):625-644.
    [62]Zhang Z, Kleinstreuer C. Species heat and mass transfer in a human upper airway model. International Journal of Heat and Mass Transfer ,2003,46:4755-4768.
    [63]Cheng KH, Cheng YS, Yeh HC, et al. Swift, Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. ASME Journal of Biomechanical Engineering,1997,119:476-482.
    [64]Calay RK, Kurujareon Jutarat, Hold? Arne Erik. Numerical simulation of respiratory flow patterns within human lung. Respiratory Physiology & Neurobiology, 2002,130:201-221.
    [65]Comer JK, Kleinstreuer C, Zhang Z. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flowfields. Journal of Fluid Mechanics ,2001a, 435:25-54.
    [66]Comer JK, Kleinstreuer C, Kim CS. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. Journal of Fluid Mechanics,2001b,435:55-80.
    [67]Schroter RC, Sudlow MF. Flow patterns in models of the human bronchial airways. Respiratory Physiology ,1969,7:341-355.
    [68]Slutsky A, Berdine G, Drasen J. Steady flow in a model of human central airways. Journal of Applied Physiology,1980,49:417-423.
    [69]Snyder B, Olson DE. Flow development in a model airway bronchus. Journal of Fluid Mechanics,1989,207:378-392.
    [70]Zhao Y, Lieber BB. Steady inspiratory flow in a model symmetric bifurcation.ASME Journal of Biomechanical Engineering,1994,116:488–496.
    [71]Zhao Y, Brunskill CT, Lieber BB. Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway. ASME Journal of Biomechanical Engineering , 1997,119:52-58.
    [72]Elad D, Liebenthal R, Wenig BL, et al. Analysis of air flow patterns in the human nose. Medical & Biological Engineering &Computing, 1993,34:585-592.
    [73]Subramaniam RP, Richardson RB, Morgan KT, et al. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhalation Toxicology, 1998,10:91-120.
    [74]Comer JK, Kleinstreuer C, Hyun S, et al. Aerosol transport and deposition in sequentially bifurcating airways. ASME Journal of Biomechanical Engineering ,2000,122:152-158.
    [75]Hofmann W, Koblinger L. Monte Carlo Modeling of Aerosol Deposition in Human Lungs. Part I: Simulation of Particle Transport in a Stochastic Lung Structure. Aerosol Science,1990a,21:661-674.
    [76]Hofmann W, Koblinger L. Monte Carlo Modeling of Aerosol Deposition in Human Lungs. Part II: Deposition Fractions and Their Sensitivity to Parameter Variations. Aerosol Science,1990b,21:675-688.
    [77]Hofmann W, Koblinger L. Monte Carlo Modeling of Aerosol Deposition in Human Lungs. Part III: Comparison with Experimental Data. Aerosol Science,1992,23:51-63.
    [78]Zhang Z, Kleinstreuer C, Kim CC. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models. Jounal of Biomechanics, 2001,4:59-669.
    [79]Zhang Z, Kleinstreuer C. Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model. J. Aerosol Med. ,2001,14:13-29.
    [80]Zhang Z, Kleinstreuer C, Chong SK. Aerosol deposition efficiencies and upstream release positions for different inhalation modes in an upper bronchial airway model. Aerosol Sci. Technol. ,2002,36:828-844.
    [81]Grgic B, Finlay WH, Heenan, AF. Regional aerosol deposition and flow measurements in an idealized mouth and throat. Aerosol Science, 2004,35:21-32.
    [82]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004.
    [83]Renotte Christine, Bou$oux Vincent, Wilquem FréHdéric. Numerical 3D analysisof oscillatory flow in the time-varying laryngeal channel. Journal of Biomechanics, 2000,33:1637-1644.
    [84]Zhang Z, Kleinstreuer C, Kim CS. Cylclic miron-size particle inhalation and deposition in triple bifurcation lung airway model. Aerosol Science, 2002,33:257-282.
    [85]Drazen JM, Kamm RD, Slutsky AS. High-Frequency ventilation. Physiol.Rev.,1984, 64(2):505-543.
    [86]Kohlhnaufl M, Brand P,Selzer T, Scheuch, et al. Diagnosis of Emphysema in Patients With Chronic Bronchitis: A New Approach, Eur. Respir. J., l998, 12:793-798.
    [87]Edwards DA, Dunbar C. Bioengineering of Therapeutic Aerosols. Annu. Rev. Biomed. Eng., 2002, 4:93-l07.
    [88]Robinson RJ, Yu CP. Deposition of Cigarette Smoke Particles in the Human Respiratory Tract. Aerosol Science and Technology., 200l, 34: 202-215.
    [89]Schwartz J, Dockery DW. Increased Mortality in Phi1adelphia Associated With Daily air Pol1ution Concentrations. Am. Rev. Respir. Dis.,1992, 145:600-604.
    [90]Edwards DA, Man JC, Brand P, et al. Inhaling to Mitigate Exhaled Bioaerosols. Proc. Natl. Acad. Sci. U.S.A., 2004,l01(50):17383-l7388.
    [91]Farag A, Hammersley J, Olson D, et al.Fluid mechanics of a symmetric bifurcation model of the human pulmonary system. Proc. FEDSM’98: 1998 ASME Fluids Engineering division Summer Meeting, June 21-25, 1998, Washington, DC, USA. FEDSM98-5260.
    [92]Chang HK, Masri El O.A. A model study of flow dynamics in human central airways. Part I. Axial velocity profiles. Resp. Phys., 1982,49:75-95.
    [93]Adrian RJ. Particle imaging techniques for experimental fluid mechanics. Annual Review of fluid mechanics,1991,23:261-304
    [94]张鸿雁,王丽,王元.二维温室绕流流场的PIV实验研究.西安建筑科技大学学报(自然科学版),2005,37(2):160-163.
    [95]范洁川.近代流动显示技术.北京:国防工业出版社,2002
    [96]DeHaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. Journal of Aerosol Science, 2004,35:309-331.
    [97]Kleinstreuer C, Zhang, Z. Laminar-to-turbulent fluid-particle flows in a human airway model. International Journal of Multiphase Flow,2003,29:271-289.
    [98]Matida EA, Finlay WH, Lange CF, et al. Improved numerical simulation ofaerosol deposition in an idealized mouth–throat. Journal of Aerosol Science, 2004,35:1-19.
    [99]Zhang Y, Finlay WH, Matida EA. Particle deposition measurements and numerical simulation in a highly idealized mouth-throat.Journal of Aerosol Science, 2004,35:789-803.
    [100]Cheng KH, Cheng YS,Yeh HC, et al. In vivo measurement of nasal airway dimensions and ultrafine aerosol deposition in the human nasal and oral airways. Journal of Aerosol Science, 1996,27(5):785-801.
    [101]Zhang Z, Kleinstreuer C, Kim CC. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models. Jounal of Biomechanics, 2001,4:59-669.
    [102]Martonen TB, Zhang Z, Yue G, et al. 3-D particle transport within the human upper respiratory tract. Journal of Aerosol Science, 2002,3:1095-1110.
    [103]Kleinstreuer C, Comer JK, Zhang Z, et al. Computer simulation of aerosol transport and deposition in multigeneration airway models. In: Fouke, J.M. and Nerem, R.M., eds,First Joint Meeting of BMES and EMBS Conference Proceedings,Atlanta, GA, October 13-16,1999.
    [104]Kim CS, Iglesias AJ. Deposition of inhaled particles in bifurcating airway models: I. Inspiratory deposition. Journal of Aerosol Medicine,1989,2:1-14.
    [105]Zhang Z, Kleinstreuer C, Kim CS. Flow structure and particle transport in a triple bifurcation airway model. ASME Journal of Fluids Engineering ,2001, 123(2), 895-905.
    [106]赵彬,张颖,李先庭.生物颗粒在相邻房间运动的数值研究.暖通空调,暖通空调与SARS特集,2003,(33):31-33.
    [107]Schwarz JS. Air Pollution and Daily Mortality:A Review and Meta-Analysis. Environ.Res.,1994,64:36-52.
    [108]Kelly JT, Asgharian B, Kimbell JS, et al. Particle deposition in human nasal airway replicas manufactured by different methods. Part I. Inertial regime particles. Aerosol Sci. Technol., 2004,38:1063-1071.
    [109]Chan TL, Lippmann M. Experimental measurements and empirical modeling of the regional deposition of inhaled particles in humans. Am.Ind. Hyg. Assoc. J. , 1980,41:399-409.
    [110]ICRP. Human respiratory tract model for radiological protection. 1994:44-48; 231-299. In Annals of the ICRP. ICRP Publication 66. Elsevier, New York.
    [111]Emmett PC, Aitken RJ, Hannan WJ. Measurements of the total and regional deposition of inhaled particles in the human respiratory tract. Aerosol Science,1982,13:549-560.
    [112]Foord N, Black A, Walsh M. Regional deposition of 2.5-7.5 μm diameter inhaled particles in healthy male nonsmokers. Aerosol Science,1978,9:343-357.
    [113]Finlay WH. The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Academic Press, London,2001.
    [114]Ferron GA. Deposition of polydisperse aerosols in two glass models representing the upper human airways. Aerosol Science, 1977, 8(6):409-427.
    [115]Scherer PW, Schendalman LH, Greene NM, et al. Measurement of axial diffusivities in a model of the bronchial airways. J. Appl. Physiol. ,1975,38:719-723.
    [116]Katz IM, Martonen TB. Flow patterns in three-dimensional laryngeal models. J. Aerosol Med. ,1996, 9:501-511.
    [117]Katz IM, Davis BM, Martonen TB. Anumerical study of particle motion within the human larynx and trachea. Aerosol Science,1999,30:173-183.
    [118]Horsfield K, Cumming G. Morphology of the bronchial tree in man. J. Appl. Physiol. ,1968,24:373-383.
    [119]Horsfield K, Dart G, Olson DE. Models of the human bronchial tree. J. Appl. Physiol.,1971,31:207-217.
    [120]Phillips CG, Kaye SR, Schroter RC. A diameter-based reconstruction of the branching pattern of the human bronchial tree. Part I. Description and application. Respir. Physiol. ,1994,98:193-217.
    [121]Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat. Rec. ,1988,220:401-414.
    [122]DeHaan WH, Finlay WH. In vitro monodisperse aerosol deposition in a mouth and throat with six different inhalation devices.J.Aerosol Med.,2001,14:361-367.
    [123]Grgic B,Finlay WH,Burnell PKP, et al. In vitro inter-subject and intra-subject deposition measurements in realistic mouth-throat geometries. Aerosol Science,2004,35:1025-1040.
    [124]Jin HH, Fan JR, Zeng MJ. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. Aerosol Science ,2007,38:257-268.
    [1]Calay RK, Kurujareon Jutarat, Hold? Arne Erik. Numerical simulation of respiratory flow patterns within human lung. Respiratory Physiology & Neurobiology, 2002,130:201–221.
    [2]Zheng L, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns.Aerosol science,2007,38(6):625-644.
    [3]Zhang Z, Kleinstreuer C, Donohue JF, et al. Comparison of micro- and nano-size particle depositions in a human upper airway model. Aerosol Science, 2005,36(2):211-233.
    [4]Moskal Arkadiusz, Grado Leon.Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. Aerosol Science, 2002,33(11):1525-1539.
    [5]Zhang Z, Kleinstreuer C. Airflow structures and nano-particle deposition in a human upper airway model.Aerosol Science, 2004,198(1):178-210.
    [6]Zhang Z, Kleinstreuer C, Kim C.S. Effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways. Medical Engineering &Technology, 2000, 24(5):192-202.
    [7]Weibel E.R. Morphometry of the human lung. New York:Academic Press,1963.1-3.
    [8]曾敏捷,胡桂林,樊建人.微颗粒在人体上呼吸道中运动沉积的数值模拟.浙江大学学报(工学版),2006,40(7):1164-1256.
    [9]Robinson RJ, Oldham MJ, Clinkenbeard RE. Experimental and numerical smoke carcinogen deposition in a multi-generation human replica tracheobronchial model. Annals of Biomedical Engineering, 2006,34(3):373-383.
    [10]Shi H, Kleinstreuer C, Zhang Z. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Physics of Fluids, 2004,16(7):2199-2213.
    [11]Zhang Z, Kleinstreuer C, Kim CS. Gas-solid two-phase flow in a triple bifurcation lung airway model. Multiphase Flow,2002,28(6):1021-1046.
    [12]孙秀珍,于 驰,刘迎曦.人体上呼吸道三维有限元重建与流场数值模拟.航天医学与医学工程,2006,19(2):129-133.
    [13]张楚华,闻苏平,刘 阳.人体呼吸道的二级及三级支气管内吸气流动的数值研究.生物医学工程学杂志,2006,23 (4) :48-52.
    [14]Balásházy I, Hofmann W. Particle deposition in airway bifurcations-I. Inspiratory flow. Aerosol Science ,1993,24(6):745-772.
    [15]Balásházy I, Hofmann W. Deposition of aerosols in asymmetric airway bifurcations. Aerosol Science , 1995,26(2):273-292.
    [16]Asgharian B, Anjilvel S. A Monte Carlo calculation of the deposition efficiency of inhaled particles in lower airways. Aerosol Science , 1994,25(4):711-721.
    [17]Hofmann W, Golser R, Balásházy I. Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Science and Technology,2003,37(12):988-994.
    [18]Zhang Z., Kleinstreuer C, Kim CS. Micro-particle transport and deposition in a human oral airway model. Aerosol Science, 2002,33(12):1635-1652.
    [19]Zhou Yue, Cheng Yung-Sung. Paricle deposition in a cast of human tracheobronchial airways. Aerosol Science and Technology, 2005,39(6):492-500.
    [20]Zhang Z, Kleinstreuer C, Kim CS. Computational analysis of micro-particle deposition in a human triple bifurcation airway model. Computer Methods in Biochemical Engineering, 2002,5(2):135-147.
    [21]Stapleton KW, Guentsch E, Hoskinson MK, et al. On the suitability of k-ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Aerosol Science , 2000,31(6):739-749.
    [22]Longest P. Worth, Oldhamc Michael J. Numerical and experimental deposition of fine respiratory aerosols:Development of a two-phase drift flux model with near-wallvelocity corrections. Aerosol Science,2008,39:48-70.
    [23]Kleinstreuer Clement, Zhang Zhe, Kim Chong S. Combined inertial and gravitational deposition of microparticles in small model airways of a human respiratory system. Aerosol Science,2007,38:1047-1061.
    [24]Farkas árpád, Balásházy Imre. Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. Aerosol Science,2007,38:865-884.
    [25]Longest Worth, Xi Jinxiang. Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. Aerosol Science ,2007,38(1):111-130.
    [26]Kim CS, Fisher DM, Lutz DJ, et al. Particle deposition in bifurcating airway models with varying airway geometry. Aerosol Science , 1994,25(3):567-581.
    [27]Ferron GA. Deposition of polydisperse aerosols in two glass models representing the upper human airways. Aerosol Science,1977,8(6):409-427.
    [28]Chong S Kim, Donald M Fisher. Deposition characteristics of aerosol particles in sequentially bifurcating airway models. Aerosol Science and Technology, 1999,31(2/3):198-220.
    [29]Cheng Yung-Sung, Zhou Yue, Chen Bean T. Particle deposition in a cast of human oral airways. Aerosol Science and Technology,1999,31(4):286-300.
    [30]Oldham Machael J, Phalen Robert F, Heistracher Thomas. Computational fluid dynamic predictions and experimental results for particle deposition in an Airway Model. Aerosol Science and Technology, 2000,32(1):61-71.
    [31]Smith S, Cheng YS, Yeh HC. Deposition of ultrafine particles in human tracheobronchial airways of adults and children. Aerosol Science and Technology, 2001,35(3):697-709.
    [32]Fresconi Frank E, Prasad Ajay K. Secondary velocity fields in the conducting airways of the human lung. ASME Journal of Biomechanical Engineering,2007,129:722-732.
    [33]Tanaka G, Ogata T, Oka K, et al. Spatial and Temporal Variation of Secondary Flow During Oscillatory Flow in Model Human Central Airways. ASME Journal of Biomechanical Engineering,1999,121:565-573.
    [34]Kuncinschi Bogdan R., Scherer Ronald C., DeWitt Kenneth J. et al. Flow Visualization and Acoustic Consequences of the Air Moving Through a Static Model of the Human Larynx. ASME Journal of BiomechanicalEngineering,2006,128:380-390.
    [35]Brücker,Ch., Schr?der W. Flow visualization in a model of the bronchial tree in the human lung airways via 3-D PIV. Proceedings of PSFVIP-4, June 3-5, 2003, Chamonix, France.
    [36]Ramuzat, A.,Riethmuller, M.L. PIV investigations of oscillating flows within a 3D lung Multiple Bifurcation model, 11th Int. Symp. On Appl. of Laser Techniques to Fluid Flows, Lisbon, Portugal,June 13-16, paper 19-1, 2002.
    [37]Ramuzat,A., Riethmuller, M.L. Application of 2D Laser Doppler Velocimetry to biomedical flows experimental investigations of flows within lung bifurcations. 7th International Conference Laser Anemometry Advances and Applications, Karlsruhe, Germany, September 8-11,1997.
    [38]Ramuzat, A., Day, S.,Riethmuller, M.L. Steady and unsteady LDV and PIV investigations of flow within 2D lung bifurcations model. 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 13-16, 1998.
    [39]Ramuzat, A., Richard, H.,Riethmuller, M.L. PIV investigation of unsteady flows within lung bifurcations”, 7th International Conference Laser Anemometry Advances and Applications, Rome, Italy, Sept.6-9, 1999,:181-188.
    [40]Heenan, A. F., Matida, E., Pollard, A.,et al. Experimental measurements and computational modeling of the flow field in an idealized human oropharynx. Experiments in Fluids, 2003,35:70–84.
    [41]车凤祥.空气生物学原理及应用.北京:科学出版社,2004:196-317.
    [42]Landal HD. On the removal of airborne droplets by the human respiratory tract:Ⅰ.The Lung. Bull Math Biophys,1950,12:43-56.
    [43]Hatch T, Hemeon WCL. Influence of particle size in dust exposure. J Ind Hyg Toxicol, 1948,30:172-180.
    [44]Altshuler B, Palmes ED, Yarmus L, et al. Intrapulmonary mixing of gases studied with aerosols. J Appl Physiol,1959,14:321-327.
    [45]Hender J, Armbruster L, Gebhart J, et al. Total deposition of aerosol particles in human respiratory tract for nose and mouth breathing. Aerosol Science,1975,6:311-328.
    [46]Rudolf G., Gebhart J, Heyder J, et al. Modelling the deposition of aerosol particles in the human respiratory tract. Aerosol Science,1983,14:188-192.
    [47]Hender J, Gebhart J, Roth C, et al. Intercomparison of lung deposition data foraerosol particles. Aerosol Science,1980,14:188-192.
    [48]Taulbee DB, Yu CPX. A theory of aerosol deposition in the the human respiratory tract. J Appl Physiol,1983,38:77-85.
    [49]Egan MJ, Nixon W. A model of aerosol deposition in the lung for use in inhalation dose assessment. Radiat Prot Dosim,1985,11:5-17.
    [50]Yu CP, Diu CK. A comparative study of aerosol deposition in different lung models. Am Ind Hyg Assoc J, 1982,43:54-64.
    [51]Parka SS, Wexlera AS. Size-dependent deposition of particles in the human lung at steady-state breathing. Aerosol Science,2008,39:266-276.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.