三相电力电子负载特性与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大量电源设备在人们生产、生活中各个领域里的大量应用,对电源性能的测试设备的要求也越来越高。传统的电源测试设备是采用无源器件连接而成,如电阻丝、电感、电容等,存在着能耗高、体积大、特性模拟不灵活等缺点。
     本文主要针对三相被试电源设备,如UPS、逆变器等,应用电力电子技术,采用双PWM变换器构成背靠背系统的主电路拓扑,设计了一套三相电力电子负载装置(PEL)。该装置由模拟负载变换器和并网变换器组成,其中模拟负载变换器的主要功能是灵活、准确的模拟各种实际负载特性,如三相平衡阻性负载、阻感性负载、阻容性负载、三相不平衡负载、非线性负载、动态负载等;而并网变换器的主要功能一方面是将模拟负载变换器吸收的有功高效、快速地回馈电网以维持直流母线电压的恒定,另一方面还需要补偿被试电源设备对电网的谐波污染,即保证整个试验系统是绿色的、节能的。
     由于系统的核心是三相电压源型PWM整流器(VSR),因此本文推导了VSR的基本数学模型,在此基础上,对其在αβ坐标系下的工作原理、控制方法等进行了详细地分析,尤其对其直流母线电压的谐波特性及其对系统的影响进行了研究。
     模拟负载变换器电流环的稳态精度以及动态性能是决定PEL性能的主要性能指标。在主电路参数设计好之后,其电流控制方法的选择与设计就显得尤为重要。本文比较了各种控制方法,如PID控制、滞环控制、单周控制等,最后从综合性能考虑,选择了能够对正弦交流指令进行无静差跟踪以及对正弦干扰具有较好抑制能力的谐振控制器作为模拟负载变换器电流环的基本控制器。应用根轨迹对系统的零、极点进行分析时发现,将传统的谐振控制器应用于PEL,系统是不稳定的。因此,本文采用零极点对消法以及超前校正控制器对传统的谐振控制器进行改进,保证了系统在连续域里的稳定性及较好的动态性能。实际的控制系统采用的是基于DSP的数字控制系统,常常采用滞后一拍控制来避免采样及计算延时带来的占空比丢失问题。由于滞后一拍对中频段相角特性的影响降低了系统的相角裕度,原本连续域中稳定的系统在离散域中变得不稳定。本文应用状态观测器对电流进行提前一拍预测,并且采用重复补偿器对周期性的观测误差进行补偿,由于控制对象阶数较低,状态观测器设计相对简单,实际应用也较为容易。
     传统的并网变换器只回馈有功能量,而实际上被试电源可能对电网产生大量谐波污染,因此本文研究了对被试电源的谐波污染进行补偿的方法。对被试电源输入电流谐波的快速、准确检测是谐波补偿的前提,本文采用变步长自适应滤波算法作为谐波检测算法,对其基本原理及设计方法进行了分析与研究。传统的变步长自适应滤波算法仅仅将基波有功及无功电流幅值作为权值,导致稳态误差中含有占比重较大的低次谐波成分,所以其步长收敛值以及权值稳态值中均含有较大的谐波含量,严重影响了检测的精度。本文将25次以下各低次谐波幅值均作为权值进行自适应滤波,稳态误差中的谐波含量大大减少,保证了谐波检测的准确性。电流环控制器的性能是并网变换器能否实现其功能的保证。本文采用一种PI控制器+重复控制器串联的复合控制结构作为电流环控制器,其中PI控制器的主要功能是抵消控制对象的低频极点对系统性能的影响,增大电流环的带宽;PI控制器对交流正弦信号无法做到无静差跟踪,重复控制器的主要功能是消除PI控制器的稳态误差,同时抑制周期性的外部扰动,保证系统的鲁棒性。由于PI控制器已经对系统进行了较好的校正,重复控制器设计相对简单,其中的校正环节仅仅用一个截止频率较高的低通滤波器+相位补偿即可。
     本文中的理论分析及控制方法均应用MATLAB软件进行了相关仿真验证。同时,搭建了一台功能较齐全的10kVA电力电子负载样机以及一台三相逆变器作为被试电源,在样机上对PEL模拟各种负载特性进行了测试及试验。装置运行稳定、可靠,为工业应用奠定了基础。
In recent years, with numbers of power supply equipment widely applying in various fields of industry application and people's living, the requirements on the performance of power supply test equipments are also increasing. Traditional test equipments are mainly built-up with passive components, such as resistance, inductance, capacitance, etc. There are many disadvantages exist in it, mainly is large energy consumption, bulky, inflexible on characteristics simulating. This paper presents a three-phase Power Electronics Load (PEL), which adopts back-to-back PWM converter as the main circle, and it could be applied in the three-phase power supply test experiment to replace the traditional loads. This PEL consists with Simulating Converter (SC) and Grid Connected Converter (GCC). SC must accurately and flexible simulate several of load characteristics, such as balance resistance, emotional resistance, capacitive resistance, unbalance, nonlinear, dynamic and so on. GCC must firstly quickly and efficiently feedback the energy absorbed by SC, meanwhile it would be much better if GCC could compensate the harmonics current caused by the Devices Be Tested (DBT).
     The basic mathematical model of three-phase voltage source rectifier has been present. Based on it, the principle and control method on static coordinate flame was analyzed in detail, especially of the harmonic characteristics of DC link voltage and its affect on the system.
     The accuracy and dynamic response of SC's current loop are the main characteristics of PEL. When the parameters of main circle have been designed, the choice and design of the current loop control method are particularly important. This paper compared all kinds of control method, including PID controller, hysteresis control, one cycle control, etc. Then the resonant controller was chosen as the basic controller method of SC's current loop, because it could achieve zero steady error when tracking the periodic sinusoid command, meanwhile it performs strong anti-interference on the periodic sinusoid disturbance. Using root locus to analyze the system, it is obviously unstable when traditional resonant controller was adopted. Then the pole-zero cancellation method and a lead compensator were applied to improve the traditional resonant, which lead to a good performance in continue domain. Implementing this improved resonant controller in the discrete system, it is also unstable when the one-step-delay caused by DSP system was taken into consideration. Therefore, a state observer was adopted to counteract the effect of one-step-delay control, and a repetitive compensator was used to reduce the periodic errors of this observer.
     In the actual experiment system, DBT produces abundant harmonics, and the harmonics enter into the grid directly if GCC doesn't compensate them. In order to develop a green PEL, this paper has researched the method to reduce the harmonics caused by DBT. Rapid and accurate detecting technique is the primary task of harmonic compensation. Therefore, a variable step-size adaptive algorithm was adopted to detect the harmonics of DBT input current. The traditional variable step-size adaptive algorithm only takes the amplitude of active and reactive current as its weight, which leads to a large proportion harmonics in the steady state error of the algorithm, and the detecting accuracy was seriously reduced. Adding each amplitudes of active and reactive harmonics current lower than 25th could solve this problem, and this method was implement by this paper, which guarantees the accuracy of the algorithm. After the harmonics of DBT input current had been detected, the reference of GCC's current loop became non-linear current, and it was difficult to tracking this non-linear reference current. Based onαβcoordinate system, a current control strategy with repetitive controller and PI controller in series connection was proposed PI controller was designed follow the traditional way to enhance the system's bandwidth, and the repetitive controller was designed to reduce the periodic errors and anti-interference the disturbance.
     All the theoretical analysis and the effect of control methods were verified by simulation based on MATLAB A 10kVA prototype of three-phase PEL and an inverter as DBT were successfully developed, the results of tests and experiments testify the effective and performance of this prototype.
引文
[1]陈坚.电力电子学——电力电子变换和控制技术.北京:高等教育出版社,2002.
    [2]邹云屏,林桦.信号与系统分析.北京:科学出版社.2002.
    [3]胡寿松.自动控制原理.北京:科学出版社,2001.
    [4]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2000.
    [5]林渭勋.现代电力电子电路.浙江:浙江大学出版社,2002.
    [6]刘涛,魏巍,张世杰.通信用UPS及逆变器.北京:人民邮电出版社,2008.
    [7]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [8]杨荫福,段善旭,朝泽云.电力电子装置及系统.北京:清华大学出版社,2006.
    [9]王其英,刘秀荣.新型不停电电源(UPS)的管理使用与维护.北京:人民邮电出版社,2005.
    [10]周志敏,周纪海.UPS实用技术-应用与维护.北京:人民邮电出版社,2003.
    [11]邱关源.电路.高等教育出版社.北京:高等教育出版社,1999.
    [12]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [13]Gupta S, Ruth R. Load bank elimination for UPS testing. IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA,1990.
    [14]Chen J F, Chu C L, Huang C L. A Study on the test of UPS by energy feedback method. IEEE International Sympoisum on Circuits and Systems,1991, pp: 3015-3018.
    [15]Chu C L, Chen J F. Self-load bank for UPS testing by circulating current method. IEE Proceedings-Electric Power Applications,1994,141(4):191-196.
    [16]O SULLIVAN, GEORGE. A Power Supply Testing with the Power Recycler. IEEE Trans. on Power Conversion,1992, pp:228-235.
    [17]Ayres C A, Barbi I. A family of converters for UPS production burn-in energy recovery. IEEE Transactions on Power Electronics,1997,12(4):615-622.
    [18]Edson Adriano Vendrusculo, Jose Antenor Pomilio. High-Efficiency Regenerative
    Electronic Load Using Capacitive Idling Converter for Power Sources Testing. Proceeding of IEEE 27th Annual Meeting of Power Electronics Specialists Conference (PESC),1996,2:23-27.
    [19]Huang S J, Pai F S. Design and operation of burn-in test system for three-phase uninterruptible power supplies. IEEE Transactions on Industrial Electronics,2002, 49(1):256-263.
    [20]Ming-Tsung Tsai, Charles Tsai. Energy Recycling for Electrical AC Power Source Burn-In Test. IEEE Transactions on Industrial Electronics,2000,47(4):974-976.
    [21]潘诗锋.大功率交流电子负载研究.[硕士学位论文].南京:东南大学图书馆,2005.
    [22]赵剑锋,潘诗锋,王浔.大功率能量回馈型交流电子负载及其在电力系统动模实验中的应用.电工技术学报,2006,21(12):35-39.
    [23]齐乐.电力系统动态模拟中可控负载的研究.[硕士学位论文].天津:天津大学图书馆,2006.
    [24]姚剑锋.基于PWM技术的电动机模拟器.[硕士学位论文].天津:天津大学图书馆,2006.
    [25]柳鹏.数字式能量回馈系统的研究.[硕士学位论文].杭州:浙江大学图书馆,2004.
    [26]劳群芳.电能反馈式电子模拟功率负载的研制.[硕士学位论文].北京:华北电力大学图书馆,2007.
    [27]王青峰.基于软开关技术馈能性电子负载的研究.[硕士学位论文].重庆:重庆大学图书馆,2007.
    [28]张瑞平.单相能量馈网系统的研制.[硕士学位论文].北京:北京工业大学图书馆,2007.
    [29]付俊华.电气负载模拟装置的研究.[硕士学位论文].济南:山东大学图书馆,2006.
    [30]王志伟.基于虚拟仪器技术的直流电源实验系统的研究与开发.[硕士学位论文].长沙:中南大学图书馆,2007.
    [31]汪浩.一种燃料电池测试系统的电子负载设计.[硕士学位论文].成都:电子科技大学图书馆,2007.
    [32]李宝昌.能馈式电子模拟功率负载的研制.[硕士学位论文].北京:北方交通大学图书馆,2002.
    [33]王成智.单相电力电子负载研究与设计.[博士学位论文].武汉:华中科技大学图书馆,2008.
    [34]李芬,邹旭东,张杰等.基于复合控制的交流电子负载研究.电气传动,2008,384(10):47-50.
    [35]贾凯.基于大功率负载模拟装置的单相电压型PWM整流器研究.[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [36]张玉成.单相电压型PWM整流器研究.[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [37]王成智,邹旭东,张允等.采用改进重复控制的大功率电力电子负载.中国电机工程学报,2009,29(12):l-9.
    [38]李芬,邹旭东,王成智.基于双PWM变换器的交流电子负载研究.高电压技术,2008,34(5):930-934.
    [39]李芬,邹旭东,邹云屏等.并网LCL滤波的PWM整流器输入阻抗分析.电工技术学报,2010,25(1):97-103.
    [40]李芬,邹旭东,吴振兴等.采用LCL滤波器并网的交流电子负载.高电压技术,2009,35(10):2522-2527.
    [41]Zhang Zheyu, Zou Yunping, Wu Zhenxing. Design and research of three-phase power electronic load. IPEMC2009, WuHan,2009, pp:1798-1802.
    [42]Lin C E, Tsai M T, Tsai W I, et, al. A study on the burn-in test of charger with load bank elimination. IEEE IAS,1995, pp:72-77.
    [43]Lin C E, Tsai M T, Tsai W I, et, al. Consumption power feedback unit for power electronics burn-in test. IEEE Transactions on Industrial Electronics,1997,44(2): 157-166.
    [44]Guan-Chyun Hsieh, Jung Chien Li. Design and Implementation of an AC Active
    load Simulator Circuit. IEEE Transactions on Aerospace and Electronic Systems, 1993,29(3):157-165.
    [45]Ju-Won Baek, Myung-Hyo Ryoo, Jong Hyun Kim, et, al.50kVA Regenerative Active load for power test system. European Conference on Power Electronics and Applications,2007, pp:1-8.
    [46]Gomes D F B,Vincenzi R S, Bissochi C, et, al. A lossless commutated boost converter as an active load for burn-in application. APEC,2001, pp:953-958.
    [47]熊健.三相电压型高频PWM整流器研究.[博士学位论文].武汉:华中科技大学图书馆,1999.
    [48]魏学良.三相三线并联型APF电流环数字化控制研究.[博士学位论文].武汉:华中科技大学图书馆,2007.
    [49]Malesani L, Mattavelli P, Tomasin P. Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction. IEEE Transactions on Industry Applications.1997,33(5):1194-1202.
    [50]O.Stihi, B K Ooi. A single-phase controlled-current PWM rectifier. IEEE Transations on Power Electronics,1988,3(4), pp:453-459.
    [51]B Singh, B N Singh, A Chandra, et(c). A Review of Single-Phase Improved Power Quality AC-DC Converters. IEEE Transactions on Industrial Electronics,2003, 50(5):962-981.
    [52]Buso S, Fasolo S, Malesani L. A dead-beat adaptive hysteresis current control. IEEE Transactions on Industry Applications.2000,36(4):1174-1180.
    [53]Peng Xiao, Corizine K A, Venayagamoorthy G K. Multiple Reference Frame-Based Control of Three-Phase PEM Boost Rectifiers under Unbalance and Distorted Input Conditions. IEEE Transactions on Industry Electronics.2008,23(4):2006-2017.
    [54]刘飞.三相并网光伏发电系统的运行控制策略.[博士学位论文].武汉:华中科技大学图书馆,2008.
    [55]Ooi B T, Salmon J C, Dixon J W, et al. A Three-Phase Controlled-Current PWM Converter with Leading Power Factor. IEEE Transactions on Industry Application, 1987,23(1):78-84.
    [56]Dixon J W, Kullcarmi A B, Nishimato M, et al. Characteristics of a controlled-current PWM rectifier-inverter link. IEEE Transactions on Industry Application,1987,23(6):1022-1028.
    [57]Wu R, Dewan S B, Slemon G R. A PWM AC-to-DC converter with fixed switching frequency. IEEE Transactions on Industry Application,1990,26(5):880-885.
    [58]Habetler T G. A space vector-based rectifier regulator for AC/DC/AC converters. IEEE Transaction on Power Electronics,1993,8(1):30-36.
    [59]Yasuyuki Nishida, Osamu Miyashita, Toshimasa Haneyoshi, et al. A Predictive Instantaneous-Current PWM Controlled Rectifier with AC-Side Harmonic Current Reduction. IEEE Transactions on Industry Electronics,1997,44(3):337-343.
    [60]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究.[博士学位论文].武汉:华中科技大学图书馆,2000.
    [61]李辉,李亦斌,邹云屏等.一种新的变步长自适应谐波检测算法研究.电力系统自动化,2005,29(2):69-73.
    [62]Verdelho P, Marques G D. An active power filter and unbalanced current compensator. IEEE Transactions on Industry Electronics 1997,44(3):321-328.
    [63]Bhavaraju V B, Enjeti P N. Analysis and design of an active power filter for balanceing unblanced loads. IEEE Transactions on Power Electron,1993,8(4): 640-647.
    [64]O.Kuker. Discrete-Time Current Control of Voltage-Fed Three-Phase PWM Inverters. IEEE Trans. Power Electronics,1996,11(2):260-269.
    [65]L Malesani, P Tenti. A Novel hysteresis control method for current controlled VSI PWM inverters with constant modulation frequency. IEEE Transactions on Industry Application,1990,126(1):88-92.
    [66]H Komurcugil, O Kukrer. Lyapunov-Based Control for Three-Phase PWM AC/DC Voltage-Source Converter. IEEE Transactions on Power Electronics,1998,13(5): 801-813.
    [67]Frank Flinders, Wardina Oghann. The characteristics of a new model based controller for single phase PWM rectifiers. IECON 97,1997, (2):895-900.
    [68]Marian P.Kazmiekowski, Luigi Malesami. Current Control Techniques for Three-Phase Voltage-Source PWM converters:a survey. IEEE Transactions on Industrial Electronics,1998,45(5):691-703.
    [69]吴振兴,邹云屏,张允等.单相PWM整流器输入电流波形的改善技术.高电压技术,2008,34(3):603-608.
    [70]C M Liaw, T H Chen, T C Wang, et.al. Design and implementation of a single phase current-forced switching mode biliateral convertor. IEE Proceedings of Electric Power Applications,138(3):129-136.
    [71]J T Boys, A W Green. Current-forced single-phase reversible rectifier. IEE Proceedings,1989,136(5):205-211.
    [72]M G Kim, W C Lee, D S Hyun. Instaneous Control of a single-phase PWM Converter Considering the Variation of Observer Parameter. IECON'97,1997, pp: 839-844.
    [73]Wu R, Dewan S B, Slemon G R. Analysis of an ac to dc voltage source converter using PWM with phase and amplitude control. IEEE Transactions on Industry Application,1991,27(2):55-364.
    [74]Wernekinck E, Kawamura A, Hoft R. A High frequency AC/DC converter with unity power factor and minimum harmonic distortion. IEEE Transactions on Power Electronics,1991,6(3):364-370.
    [75]Colling I E, Barbi I. Reversible unity power factor step-up/step-down AC-DC converter controlled by sliding mode. IEEE Transactions on Power Electronics, 2001,16(1):223-230.
    [76]Habetler T G, Harley R G. Power electronic converter and system control. Proceedings of the IEEE,2001,89(6):913-925.
    [77]Saetieo S, Devaraj R, Torrey D. The design and implementation of a three-phase active power filter based on sliding mode control. IEEE Transactions on Industry Applications,1995,31(5):993-1000.
    [78]Smedley K M, Cuk S. One-cycle control of switching converters. IEEE Transactions on Power Electronics,1995,10(6):625-633.
    [79]Zhang Kai, Kang Yong, Xiong Jian, et al. Direct repetitive control of SPWM inverter for UPS purpose. IEEE Transactions on Power Electronics,2003,18(3): 784-792.
    [80]Keliang Zhou, Danwei Wang. Digital Repetitive Controlled Three-Phase PWM Rectifier. IEEE Transactions on Power electronics,2003,18(1), pp:309-316.
    [81]何英杰.二极管钳位型三电平APF控制与谐波检测方法研究.[博士学位论文].武汉:华中科技大学图书馆,2007.
    [82]Gary W C, Shin-Kuan Chen. An Analytical Approach for Characterizing Harmonic and Interharmonic Currents Generated by VSI-Fed Adjustable Speed Drives. IEEE Transactions on Power Delivery,2005,20(5):2585-2593.
    [83]Young-Wook Park, Dong-Choon Lee, Jul-Ki Seok. Spectral Analysis of DC link ripple currents in three-phase AC/DC/AC PWM converters Feeding AC machines. IEEE IECON'01,2001, pp:1055-1060.
    [84]H. Zhang, N. Wheeler, D Grant. Switching Harmonics in the DC Link Current in a PWM AC-DC-AC Converter. IAS'95,1995, pp:2649-2655.
    [85]Luigi Malesani, Leopoldo Rossetto, Paolo Tenti, et al. AC/DC/AC PWM Converter with Reduced Energy Storage in the DC Link. IEEE Transactions on Industry Application,1995,31(2):287-292.
    [86]Min Chen, Zhaoming Qian, Xiaoming Yuan. Frequency-domain Analysis of Uncontrolled Rectifiers. APEC'04,2004, pp:804-809.
    [87]J S Kim. New control scheme for ac-dc-ac converter without dc link electrolytic capacitor. IEEE PESC'93,1993, pp:300-306.
    [88]Bon-gwan Gu. A dc link capacitor minimization method through direct capacitor current control. IEEE IAS'2002,2002, pp:811-817.
    [89]A Mansoor, W M Grady, R S Thallam, et al. Effect of Supply Voltage Harmonics on the Input Current of Single-phase Diode Bridge Rectifier Loads. IEEE Transactions on Power Delivery,1995,10(3):1416-1422.
    [90]Namho Hur. A fast dynamic dc-link power-balancing scheme for a PWM converter-inverter system. IEEE Transactions on Industry Electronics,2001,48(4): 794-803.
    [91]S Herraiz, L Sainz, J Pedr(a)Line Side Behavior of Single-phase Uncontrolled Rectifiers. Proceedings of Harmonics and Quality of Power,2000, pp:577-582.
    [92]Ohnishi T, Hojo M. DC voltage sensorless single-phase PFC converter. IEEE
    Transactions on Power Electronics,2004,19(2):404-410.
    [93]Somkun S, Sehakul P, Chunkag V. Novel control technique of single-phase PWM rectifier by compensating output ripple voltage. IEEE ICIT'2005,2005, pp: 969-974.
    [94]Salomonsson D, Sannino A. Comparative Design and Analysis of Dc-Link-Voltage Controllers for Grid-Connected Voltage-Source Converter. IAS'2007,2007, pp: 1593-1600.
    [95]P Antoniewicz, M Jasinski M P. Kazmierkowski. AC/DC/AC Converter with Reduced DC Side Capacitor Value. IEEE EUROCON'2005,2005, pp:1481-1484.
    [96]Kwong Edwardm, W Jornston. A variable step-size LMS algrorithm. IEEE Transactions on Signal Processing,1992,40(7):1633-1642.
    [97]Joe F, Chicharo Haihong Wang. Power system harmonic signal estimation and retrieval for active power filter application. IEEE Transactions on Power Electronics, 1994,9(6):580-586.
    [98]Luo S G. An adaptive detecting method for harmonic and reactive current. IEEE Transactions on Industry Electronics,1995,42(1):85-89.
    [99]吴振兴,邹云屏,张哲宇等.单相PWM整流器的输入电流自适应预测控制器研究.电工技术学报,2010,25(2):73-79.
    [100]张允,邹云屏,吴振兴等.励磁电流补偿方法的电流控制型单相动态电压恢复器的仿真研究.中国电机工程学报,2008,28(22):152-158.
    [101]Hyosung Kim, Seung-Ki Sul. Compensation voltage control in dynamic voltage restorers by use of feed forward and state feedback scheme. IEEE Transactions on Power Electronics,2005,20(5):1169-1177.
    [102]Wu Zhenxing, Zou Yunping, Wang Chenzhi. A performance improvement technique for single-phase PWM rectifier. IPEMC2009, WuHan,2009, pp:1638-1642.
    [103]Qiang Zhang, Lewei Qian, Chongwei Zhang, et al. Study On Grid Connected Inverter Used in High Power Wind Generation System. IEEE IAS'2006,2006, pp: 1053-1058.
    [104]Hamish D L, Simon D R, Richard M. A Frequency-Domain Analytical Model of an Uncontrolled Single-Phase Voltage-Source Rectifier. IEEE Transactions on
    Industrial Electronics,2000,47(3):525-532.
    [105]H.Akagi. New trends in active filters for power conditioning. IEEE Transactions on Industry Applications,1996,32(6):1312-1322.
    [106]H. Akagi. Trends in active power line conditioners. IEEE Transactions on Power Electronics,1994,9(3):263-268.
    [107]Strycula E. C., Gyugyi L. Active ac power filters. Proc. of IEEE/IAS Annual Meeting,1976,529-535.
    [108]Leon M. Tolbert, Fang Zheng Peng, Thomas G. Habetler. A multilevel converter-based universal power conditioner. IEEE Transactions on Industry Applications,2000,36(2):596-603.
    [109]F Z Peng. Application issues of active power filters. IEEE Industry application magazine,1998,4(5):21-30.
    [110]Bhim Singh, Kamal Al-Haddad. A Review of Active Filters for Power Quality Improvement. IEEE Transactions on Industrial Electronics,1999,46(5):960-971.
    [111]Lee T S. Nonlinear state feedback control design for three-phase PWM boost rectifiers using extended liniearisation. IEE proceedings on Electric Power Applications,,2003,150(5):546-554.
    [112]Lee D C. Advanced nonlinear control of three-phase PWM rectifiers. IEE Proceedings on Electric Power Applications,2000,147(5):361-366.
    [113]Ohnuki T, Miyashita O, Lataire P. Control of a Three-phase PWM Rectifier Using Estimated AC-Side and DC-Side Voltage. IEEE Transactions on Power Electronics. 1999,14(2):222-226.
    [114]Komurcugil H, Kukrer O. Lyapunov-based control for three phase PWM AC/DC voltage-source converters. IEEE Transactions on Power Electronics,1998,13 (5): 801-813.
    [115]Green A W, Boys J T, Gates G F.3-phase voltage source reversible rectifier. IEE Proceedings on Electric Power Applications,1988,135(6):362-370.
    [116]Draou A, Sato Y, Kataoka T. A new state feedback based transient control of PWM AC to DC type converters. IEEE Transactions on Power Electronics,1995, 10(6):716-724.
    [117]Stankovic A V, Lipo T A. A novel control method for input output harmonic elimination of the PWM boost type rectifier under unbalanced operating conditions. IEEE Transactions on Power Electronics,2001,16(5):604-611.
    [118]Verdelho P, Marques G D. DC voltage control and stability analysis of PWM voltage-type reversible rectifiers. IEEE Transactions on Industry Electronics,1998, 45 (2):263-273.
    [119]Sato Y, Ishizuka T, Nezu K. A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current. IEEE Transactions on Industry Applications.1998,34(3):480-486.
    [120]Chien-Ming Wang. A novel zero-voltage-swicthing PWM boost rectifier with high power factor and low conduction losses. The 25th International Telecommunications Energy Conference,2003, pp:224-229.
    [121]A R Prasad, P D Ziogas, S Manias. An active power correction technique for three-phase diode rectifiers. IEEE Transactions on Power Eletronics,1991, vol.6, pp:83-92.
    [122]Wu X H, Panda S K, Xu J X. Analysis of the instantaneous power flow for three-phase PWM boost rectifier under unbalance supply voltage conditions. IEEE Transactions on Power Eletronics,2008,23(4):1679-1691.
    [123]Bo Yin, Oruganti R, Panda S K. An output power control strategy for a three-phase PWM rectifier under unbalance supply conditions. IEEE Transactions on Industry Eletronics.2008,55(5):2140-2151.
    [124]Rodriguez J R, Dixon J W, Espinoza J R. PWM regenerative rectifiers:state of the art. IEEE Transactions on Industry Eletronics.2005,52(1):5-22.
    [125]Jia Wu, Lee F C, Boroyevich D. A 100kW high-performance PWM rectifier with a ZCT soft-switching technique. IEEE Transactions on Power Eletronics,2003,18(6): 1302-1308.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.