南黄海中部海底沉积物烃类地球化学特征及其指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对南黄海中部海底沉积物烃类地球化学指标的实验测试,系统研究了海底沉积物正构烷烃、类异戊二烯烃、萜烷、甾烷和多环芳烃的分子组成特征及指示意义,探讨了南黄海中部表层沉积物烃类有机质的来源及河口-陆架碳循环等相关问题,提出南黄海中部海底沉积物烃类有机质第一物源为古黄河输入,第二物源为现代长江输入的新认识;低分子正构烷烃沉积环境的研究表明,低等藻类植物来源于海洋缺氧强还原环境;煤或高等植物不完全燃烧颗粒通过大气沉降进入南黄海中部泥质区,造成研究区内藿烷、甾烷相对较高,并形成了降藿烷与升藿烷之间不同的热演化特征,同时也构成了研究区内多环芳烃的主要来源;部分站位沉积物烃类组成特征显示南黄海中部沉积物中有石油类输入的存在,并且在个别样品中表现明显,但由于海底表层的次生变化使得其来源特征变得难以识别。
Hydrocarbons, one of the important components in marine sediment, can provide an insight into the origin and depositional environment of fossil organic matter as its stablity in situ through the geologic time. In this paper, based on the program of petroleum resources survey in South Yellow Sea (GZH00800503 - 090), the saturated hydrocarbons and aromatics in surface sediment samples have been analysied by gas chromatography (GC-FID) and chromatography - mass spectrometry (GC-MS). All samples were colected in the central area of Yellow Sea during July to October 2009. To identify their sources and the carbon cycle of estuary– shelf, and also the impact of human activities on the marine environment, we studed geochemical characteristics of the n-alkanes, isoprenoid hydrocarbons, steranes, terpane and PAHs from seabed samples in the Central Yellow Sea.
     According to the characteristics of n-alkane molecules and gas chromatographic (GC-FID) profiles, the alkane in the Central South Yellow Sea sediment were classified into three types: typeⅠ, the number of peaks in the low carbon, and the UCM is not obvious; for typeⅡ, the number of peaks sited in the high carbon, and the UCM is obvious; for typeⅢ, the number of peaks sited in the high carbon, and the UCM is not obvious. The n-alkane distribution showed that the organic matter in the Central South Yellow Sea sediments are mainly from terrigenous higher plant orangic matter. The first source is from the ancient Yellow River, which had transported massive amount of terrigenous sediments from Chinese mainland. The second source for the terrigenous material is from the Yangtze River. The marine biological contribution is last. In this study, It indicates a strong input of continental higher plants that the CPI and OEP are greater than 1, and the rotio (nC_(21) + nC_(22))/(nC_(28) + nC_(29)),ΣnC_(21)-/ΣnC22- is less than 1. The CPI of organic matter from the Yangtze River significantly higher than that of the organic matter from the Yellow River, it shows the difference between the two valleys ecological environment. The Pr/Ph values in middle-low carbon number n-alkanes showed strong anoxic environment, it permits the contribution of marine Marine algae is existed. In addition, the higher levels squalane showed in GC-FID profiles indicated methane bacteria contributed to sedimentary organic matter.
     High abundance of hopane and sterane in sediment indicates that fossil fuels or petroleum pollution exist in the sediments from South Yellow Sea. In this study area, hopanes has a obvious characteristic: the mean of Tm/Ts is 0.61 that is characterized by immature - low maturity, but the hopane isomer reflects the higher maturity, and the mean of 22S / (22S +22R) (dihomohopane) is 0.66; The patterns of steranes (C29> C27> C28) and high maturity, compared with coal thermal simulation results, we could included that steranes terpane area comes mainly from incomplete combustion of coal and other products of higher plants, and atmospheric long-range transport and bacterial action to "improve" the hopane and sterane methane maturity.
     The concentration of total PAHs in surface sediments ranged from 246.90 ng/g- 10818.12 ng/g, and the average concentration is 2544.64 ng/g. The analysis of PAH distribution suggested combustion as the main input for these compounds, such as the low rotio of LMW/HMW, Flu/Pyr and MP/P.
     Perylene, a geochemicaly derived PAH, was found highly aboundant in the areas. The content of perylene is 6.40% - 88.85%. Principal component analysis (PCA) showed that the amount of perylene is influrence by river input. It represents diagenesis and rapid accumulation of terrigenous material.
     The distribution parterns of peroleum biomarkers (terpanes, steranes, MPI1, MPI2) and high abundance UCM (
引文
[1] Abrams, M.A., Significance of hydrocarbon seepage relative to subsurface petroleum generation and entrapment[G]//American Association of Petroleum Geologist Convention Abstracts, Annual AAPG Convention, Houston, TX, 2002. March 10 - 13.
    [2] Aquino Neto F R, Thendel J M, Restle A, et al,. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums[G]//Advance in Oragnic Geochemistry 1981. Wiley and Sons, New York. 1983: 659-676.
    [3] Aquino Neto F R, Triguis J, Azevedo D A, et al. 1989. Organic geochemistry of geographically unrelated Tasmanites[G]//14th International Meeting on Organic Geochemistry, Pairs, Abstract No. 1989:189 - 200.
    [4] Basheer C, Obbard J P, Keelee H. Persistent organic pollutants in singapore’s coastal marine environment[J]. Water, Air and Soid Pollution, 2003,149(1/2/3/4): 315-323
    [5] Baumard P, BudzinskiH, Garrigues P et al. Polycyclic Aromatic Hydrocarbons in Recent Sediment andMussels (Mytilus edulis) from the Western Baltic Sea: Occurrence, Bioavailability and Seasonal Variations[J].Marine Environmental Research,1999,47:17-47
    [6] Baumard P., Budzinski H., Michon Q., Garrigues P., Burgeot T., Origin and bioavailability of PAHs in the Meterranean Sea from mussel and sediment record. Estuarine, Coastal and Shelf Sci., 1998(47) :77-90.
    [7] Bjorn Buggle, Guido L.B. Wiesenberg, Bruno Glaser. Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects? [J]. Applied Geochemistry. 2010, 25 947-957.
    [8] Boehm P D, PageD S, GilfillanE S,et al. Study of the fates and effects of the Exxon Valdez Oil Spill on Benthic sediments in two bays in Prince W illiam Sound, Alaska. 1. Study Design, chemistry, and source fingerprinting [J]. Environ Sci Techno,1998, 32(5): 567-576.
    [9] Brassell, S., Eglinton, G., Howell, V., Poleoenvironmental assessment of marine organic-rich sediments using molecular organic geochemistr[A].Brooks, J., Fleet, A. (Eds.), Marine Petroleum Source Rocks. Geological Society Special Publicatin, 1987, 26: 79-88.
    [10] BudzinskiH, Jones I, Bellocq J,etal. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde Estuary [J]. Marine Chemistry, 1997, 58(1-2): 85-97.
    [11] Eglinton, G., Murphy, M.T.J. Organic Geochemistry: Method and Results[M]. Berlin: Springer, 1969.
    [12] Farrimond P, Taylor A and Talnaes N. 1998. Biomarker maturity parameters-The role of generation and thermal degradation[J]. Org Geochem, 29: 1181-1197
    [13] Femandes M.B., Sicre M.A., Boireau A. Troncznski J., Polyaromatic Hydrocarbon (PAH) distribution in the Seine River and its estuary[J]. Marine Pollut. Bulletin, 1997, 34: 857-867.
    [14] Gagosian R B. Peltzer E T. The importance of atmospheric input of terrestrial organic material to deep sea sediment[J]. Org Geochem, 1985, 10:661-699
    [15] Gaines, S., Eglinton, G., Rullk?tter, J., Echoes of Life– What Fossil Molecules Reveal About Earth History[M]. New York: Oxford University Press, 2008.
    [16] Go?i, M.A., Monacci, N., Gisewhite, R., Andrea Ogston, A., Crockett, J., Nittrouer, C., Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea)[J]. Estuarine, Coastal and Shelf Science 2006, 69:225–245.
    [17] Havan H L, Leeuw J W. Anomalies in steroid and hopanoid maturity indices[J]. Geochim Cosmachim ACTA. 1986, 50:853-855.
    [18] Huang WY and Meinschein WG. Sterols as ecological indicators. Geochim. Cosmochim. Acta, 1979, 43(5): 739-745
    [19] Immaculada Tolosa, Josep M. Bayona, Joan Albaiges, Aliphatic and Polycyclic Aromatic Hydrocarbons and Sulfur/Oxygen derivatives in Northwestern Mediterranean Sediments: Spatial and Temporal Variability, Fluxes, and Budgets[J]. Environ. Sci. Technol, 1996, 30: 2495-2503
    [20] Keil, R.G., Montlucon, D., Prahl, F., Hedges, J.I., Sorptive preservation of labile organicmatter in marine sediments[J]. Nature, 1994, 370:549 -552.
    [21] Knies, J., Nowaczyk, N., Muller, C., Vogt, C., Stein, R., A multiproxy approach to reconstruct environmental change along the Eurasian continental margin over the last 150,000 years[J]. Mar. Geol. 2000,163:317–344.
    [22] Mackenzie A S. Molecular organic geochemistry- a tool for the geoscientist[J]. Terra Congnita. 1982,2(2):202-232.
    [23] Moldowan, J. M., Dahl, J., Huizinga, B. J., Fago, F. J., Hickey, L. J., Peakman, T. M., Taylor, D. W., The molecular fossil record of oleanane and its relationship to angiosperms[J]. Science, 1994, 265, 768–771.
    [24] Ourisson G, Albrecht P, Rohmer K. Predictive microbial biochemistry, from molecular fossils to prokaryotic membranes[J]. Trendsin Biochemistry Scineces 1982, 7: 236-239.
    [25] Ourisson G, Albrecht P, Rohmer K. Prokaryotic Hopandoids and other Polyterpenoid Sterol Surrogates[J]. Annual Review of Microbiology 1987, 41: 301-333.
    [26] Peters, K. E., Walters, C. C., Moldowan, J. M., The Biomarker Guide, 2nd edition[M]. New York: Cambridge University Press, 2005.
    [27] Peters, K.E. and Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments, Pretice-Hall Inc., Englewood-Cliffs, NJ, 1993: 336.
    [28] Rogge WF, Mazurek MA, Hildemann LM, Cass GR, Simoneit BRT. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation[J]. Atmos Environ 1993;27A:1309–30.
    [29] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks [J]. Environmental Science& Technology, 1999, 33(10): 1578-1587
    [30] Seifert WK, Moldowan J M.Alications of steranes and monoaromatics to the maturation, migration and source of crude oils[J]. Geochimica et Cosmochimica Acta, 2009, 42(1):77-95
    [31] Seifert, W.K., Moldowan, J. M., Jones, R. W., The application of biological markers to petroleum exploration[J]. Proceedings of the Tenth World Petroleum Congress, 1980, 2: 425-440.
    [32] SicreM A, Marty J C, Saliot A, et al. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin [J]. Atmospheric Environment, 1987, 21 (10): 22-47.
    [33] Simoneit BRT. Application of molecular marker analysis to vehicular exhaust for source reconciliations[J]. Int J Environ Anal Chem 1985;22(3): 203–32.
    [34] Tissier, M.J., Saliot, A. Pyrolytic and naturally occurring polycyclic aromatic hydrocarbons in the marine environment. [G]// Advances in Organic Geochemistry., New York: John Wiley & Sons Limited, 1981: 268–278.
    [35] Volkman J K. Biological markers compounds as indicators of the depositional environments of petroleum source rocks[G]//In Lacustrine Petroleum Source Rocks. Geological Society Special Publication No. 1988, 40: 103-122.
    [36] Wakeham, S.G., Schafener, C., Giger, W. Polycyclic aromatic hydrocarbons in recent lake sediments– II. Compounds derived from biogenic precursors during early diagenesis[J]. Geochimica et Cosmochimica Acta, 1980,44, 415–429.
    [37] Wang Z D, Fingas M, Shu Y Y,etal. Quantitative characterization of PAHs in burn residue and soot samples and differentiation ofpyrogenic PAHs from petrogenic PAHs-The 1994 mobile burn study [J]. Environmental Science& Technology, 1999, 33 (18): 3100-3109
    [38] Ying Wu, Jing Zhang, Tie-zhu Mi et al. Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea[J], Marine Chemistry 2001, 76:1-15
    [39] YunkerM B, Macdonald RW, Vingarzan R,etal. PAHs in the FraserRiverbasin: A criticalappraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515
    [40] Zhang J. Huang W W, Liu S M. Transport of pathculate heavy metals towards the China Sea: A preliminary study and comparison[J]. Mar Chem,1992.40: 161-178
    [41]包建平,马安来,黄光辉,等.三塘湖盆地原油地球化学特征及其成因类型.石油勘探与开发, 1999, 26(4): 25-29
    [42]彼得斯K E,莫尔多万JM,著.姜乃煌,张水昌,林永汉,等,译.生物标记化合物指南-古代沉积物和石油中分子化石的解释[M].北京:石油工业出版社,1995.
    [43]蔡德陵,石学法等,周卫健等,南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据[J].科学通报,2001,46(增刊):16-23.
    [44]陈义才,沈忠民,罗小平等..石油与天然气地球化学.北京:科学出版社,2007。
    [45]段毅,宋之光,罗斌杰,南沙海洋柱状沉积物的有机地球化学研究[J].海洋通报,1996,15(4):42-48.
    [46]冯志强,陈春峰,姚永坚等.南黄海北部前陆盆地的构造深化与油气突破[J].地学前缘,2008,15(6):229-231.
    [47]郭志刚,杨作升,陈致林等,东海陆架泥质区沉积有机的物源分析[J].地球化学,2001,35(5):416-424.
    [48]胡文瑄,金之钧,姚素平等.太平洋中部锰结核及洋底软泥中发现低成熟烃类[J].科学通报,2002, 47(1): 68-73.
    [49]黄第藩,李晋超,张大江等.陆相有机质的演化和成烃成理[M].北京:石油工作出版社. 1984.
    [50]黄继文.塔里木盆地塔河油区原油生物标志化合物在运移方面的应用探讨[J].石油实验地质, 2003,25(增刊): 573-577
    [51]蒋德才,刘百桥,韩树宗等,工程环境海洋学[M]. 2005: 2-3,
    [52]康跃惠,盛国英,傅家谟.珠江澳门河口沉积物柱样品正构烷烃研究[J].地球化学,2000,29(3):302-310.
    [53]蓝淑芳,顾传宬,博秉照,南黄海暖流水的温、盐度分布特征,海洋科学集刊,1986,27 3(27),44-50
    [54]蓝淑芳,黄海暖流的调查研究,1993
    [55]李广雪,杨子赓,刘勇.中国东部海域海底沉积环境成因研究[M].北京:科学出版社.
    [56]林卫东,周永章,沈平等,,南海深水海域近代沉积物中饱和烃的地球化学特征及其来源[J],中山大学学报(自然科学版),200544(6):123-127.
    [57]刘敏,侯立军,邹惠仙,杨毅,陆隽鹤,王晓蓉.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学,2001,21(4):343-346.
    [58]刘全有,刘文汇,孟仟祥,热模拟实验中煤岩及壳质组饱和烃萜类系列化合物地球化学特征[J].沉积学报,2006,24(6):917-922.
    [59]卢冰,潘建明,王自磐,等.北极沉积物中正构烷烃的组合特征及古沉积环境的研究[J].海洋学报,2002,24(6):34-48.
    [60]卢双舫,张敏.油气地球化学[M].北京:石油工业出版社,174-199。
    [61]秦蕴珊,赵一阳,陈丽蓉等,黄海地质[M].北京:海洋出版社, 1989.
    [62]任佣军,林玉祥.油气地球化学[M].山东东营:石油大学出版社,2001.
    [63]石学法,申顺喜,Yi Hi-il等,南黄海现代沉积环境及动力沉积体系[J].海洋通报,2001,46(增刊):1-6.
    [64]唐晓晖,王凡,长江口邻近海域夏、冬季水文特征分析[G]//海洋科学集刊,2004,46:42-63
    [65]唐运千,徐鲁强,郑士龙,等.东海沉积物种类脂化合物[J].东海海洋, 1985, 3(1): 64-72.
    [66]唐运千,郑士龙,龚敏等.南海和冲绳海槽沉积物的生物标记化合物[J].热带海洋,1993(1):57-63.
    [67]王铁冠,钟宁宁,侯读杰.低熟油形成机理与分布[M].北京:石油工业出版社.
    [68]王铁冠,钟宁宁,侯读杰等.低熟油气形成机理与分布[M].北京:石油工业出版社, 1995:1-94
    [69]王颖,中国海洋地理[M].北京,科学出版社,1996:166-168
    [70]王玉华,侯启军,孙德君等.柴达木盆地北缘地区中新生代地层油气生成与资源评价[M].北京:科学出版社,2004:257-274
    [71]吴能友,邬黛黛,叶瑛等,南海东北部东沙海域沉积物烃类有机地球化学研究及其意义[J].南海地质研究,2007,1:1-15.
    [72]徐冠军,张大江,王培云. 2003.用沥青质中生物标志化合物判识生物降解油的油源[J].科学通报, 48(4): 400– 404
    [73]许东禹,刘锡清,张训华等,中国近海地质[M].北京:地质出版社,1997: 8-19.
    [74]许怀先,陈丽华,万玉金等.石油地质实验测试技术与应用[M].北京:石油工业出版社, 2001:49-125,
    [75]许玩宏,张忠英,沈平等.贵州三都早奥陶世同高组下燕高页岩段的生物标志化合物[J].沉积学报,1997, 15(3):72-77
    [76]薛荔栋,郎印海,刘爱霞,等.黄海近岸表层沉积物中多环芳烃来源解析[J].生态环境, 2008, 17(4): 1369-1375
    [77]杨佰娟,郑立,陈军辉,等.南黄海中部表层沉积物中多环芳烃含量分布及来源分析[J].环境科学学报, 2009, 29(3): 662-667
    [78]杨丹,姚龙奎,王方国,等.南海现代沉积物中正构烷烃碳分子组合特征及其指示意义[J].海洋学研究,2006,24(4):29-39.
    [79]姚永坚,冯志强,郝天珧等.对南黄海盆地构造层特征及含油气性的新认识[J].地学前缘,2008,15(6):232-240.
    [80]张翔宇,张枝焕,陶澍等,天津地区表层土壤中菲系列化合物的分布特征和污染源分析[J].农业环境科学学报2005,24(1):74-78.
    [81]赵铁虎,张训华,王修田,等.南黄海盆地北部坳陷海底油气渗漏的声学探测[J],石油勘探与开发,2009,36(2):195-199.
    [82]赵一阳,李凤业,秦朝阳,试论南黄海中部泥的物源及成因[J].地球化学,1991,2:112-117.
    [83]郑求根,蔡立国,丁文龙等,黄海海域盆地的形成与演化[J].石油与天然气地质,2005,26(5):647-654。
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.