新型陶瓷刚玉磨料制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验利用溶胶-凝胶法制备了陶瓷刚玉磨料前驱体,并采用无压烧结技术最终制备出了新型陶瓷刚玉磨料。利用扫描电镜、金刚石单颗粒抗压强度测定仪和显微硬度测试仪等测试设备,系统的研究了不同种类添加剂、添加剂配比及加入量、造粒方式、烧结工艺对磨料的显微结构、单颗粒抗压强度和显微硬度的影响。
     实验结果表明,不同添加剂种类、添加剂配比及加入量、造粒方式、升温速率、烧结温度、保温时间对磨料的性能均有很大的影响。选取合适的添加剂成分能有效地控制晶粒的大小和晶型;适当的添加剂配比不但可以有效地促进氧化铝烧结,抑止晶粒的长大,同时可以提高磨料的单颗粒抗压强度;加入适量的添加剂能够细化晶粒,提高磨料的强度及显微硬度;使用干凝胶直接造粒的方法得到的坯体密度较高,能显著地提高烧结体的致密度及抗压强度;烧结过程中低温阶段较高的升温速率会导致磨料颗粒出现宏观裂纹,高温阶段升温过慢会促进晶粒生长,使磨料性能恶化;烧结温度对磨料的性能影响较为明显,烧结温度过高会直接导致晶粒的长大及强度的降低;在所研究的保温时间范围内保温时间对磨料的显微结构影响不明显,但适当的保温时间却有利于提高磨料的单颗粒抗压强度。
New ceramic corundum abrasives were prepared through pressureless sintering of the precursor made by sol-gel method. The effects of different additives, additives combination and amounts, granulation methods and sintering process on the microstructure, single particle compressive strength and microhardness of the abrasives were analyzed systematically by using SEM, diamond single particle compressive strength tester and microhardness tester.
     The results showed that the properties of the abrasives were influenced intensely by additives combination and amounts, granulation methods, heating rates, sintering temperature, holding time in the sintering temperature. The grain size and shape could be well controlled by choosing suitable additives. Proper additives combination would promote sintering of alumina, restrain the growth of grains, improve the single particle compressive strength. With appropriate additives amounts, the grain size was reduced, the strength and microhardness of the abrasives were improved. Direct granulation method from dry gel was good to increase the density of green bodies and the strength of sintered bodies. Higher heating rate in low temperature period would lead to macrocracks, while much lower heating rate in high temperature period would result in the overgrowth of abrasive grains, which would deteriorate the properties of abrasives. Sintering temperature had obvious effect on the properties of the abrasive, higher sintering temperature would induce the growth of the grain and decrease the strength of abrasives. Holding time in the researched range had little influence on the microstructure of abrasives, but proper holding time would improve the single particle strength of abrasives.
引文
[1] Joanchim Mayer, Robert Engelhorn, Rosemarie Bot, Thomas Weirich, CleoHerwartz, Fritz Klocke. Wear characteristics of second-phase-reinforced sol–gelcorundum abrasives. Acta materialia(2006):1~11
    [2] Klocke F,Engelhorn R,Mayer J,Weirich Th. Micro-Analysis of the Contact Zone of Tribologically Loaded Second-Phase Reinforced Sol-Gel-Abrasives.Ann CIRP 2002.51(1):245~250
    [3] Eranki J, Xiao G, Malkin S. Evaluating the performance. of “seeded gel” grinding wheels. J Mater Process Technol 1992(32):609~625
    [4] 吴元昌,刚玉磨料的新品种-SG 磨料,工具技术,1991(25):23~25
    [5] 叶伟昌,新型砂轮的发展与应用,精密制造与自动化,2003(3):26~32
    [6] 陈玮,微晶氧化铝磨料的特性及制造,轻金属,2002(12):9~11
    [7] Erickson DD, Wood WP. Historical Development of Abrasive Grain.Ceram Trans 1994.46:463~474
    [8] 李志宏,夏晓风,陶瓷刚玉磨料制造及应用进展,金刚石与磨料磨具工程,2000.3(117):37~38
    [9] 汪玉祥,叶伟昌,新型 SG 磨料砂轮及其正确使用,机械工程师,2002.9:17~18
    [10] 张惠民,普通磨料制造,北京:中国标准出版社,2001. 1~5
    [11] 华勇,李亚萍,磨料磨具导论,北京:中国标准出版社,2004. 1~3
    [12] 陆佩文,无机材料科学基础,武汉:武汉工业大学出版社,1996. 42~45
    [13] 尹衍升,张景德,氧化铝陶瓷及其复合材料,北京:化学工业出版社,2001. 97~102
    [14] 李世普,特种陶瓷工艺学,,武昌:武汉大学出版社,1991. 82~85
    [15] Peter Svancarek, Dusan Galusek, Clair Calvert, Fiona Loughran, Andy Brown, Rik Brydson, Frank Riley. A comparison of the microstructure and mechanical properties of two liquid phase sintered alumina containing different molar ratios of calcia-silica additives. Journal of European Ceramic Society,24(2004),3453~3463.
    [16] 岳隆明,新型陶瓷刚玉磨料 CJY9106 的研制,成都大学学报,1998.12,17(4):5~12
    [17] Erickson DD, Wood WP. Historical Development of Abrasive Grain.Ceram Trans 1994, 46:463~474
    [18] 李志宏,赵松泉,陶瓷刚玉磨具制造及其磨削应用,金刚石与磨料磨具工程,2000, 4(118 ):29~33
    [19] Rodeghiero E D, Wolkenberg B S, Wuthenow M, et a1. Sol-gel synthesis of ceramic matrix composites. Matenah Science & Engineering, 1998, 244(1):11~21 - 49 -
    [20] Chen Y C, Huang C Z, Wang B Y, et a1. Preparation of alpha-alumina coated carbide tools by the Sol-gel process. Materials Science & Engineering, 2000,288(1):19~25
    [21] Zeng Q B. Fabrication of A12 O3-coated carbon fiber-reinforced Al-matrix composites. Journal of Applied Polymer Science, 1998, 70(1): 177~183
    [22] 冀勇斌,李铁虎,林起浪等,溶胶-凝胶法在材料制备中的应用,化学中间体,2005.1:31~33
    [23] 胡光辉, 溶胶-凝胶技术研究及其应用, 重庆工业高等专科学校学报, 2005.2,20(1):26~29
    [24] 陈忠,杨松青,蒋汉瀛,溶胶-凝胶法制备超细高纯氧化铝,无机盐工业, 1997(10):10~12
    [25] L.C.Pathak, T.B.Singh, S.Das, A.K.Verma, P.Ramachandrarao. Effect of pH on the combustion synthesis of nano-crystalline alumina powder, Materials Letters 57 (2002): 380~385
    [26] Manoj M. Haridas, Goyal N, Bellare J R. Chemical synthesis of optical grade ceramic precursors: a spectrophotometric approach for analysis. Ceramics International, 1998, 24: 415~420
    [27] J. Sanchez-Valente a, X. Bokhimi, J.A.Toledo, Synthesis and Catalytic Properties of Nanostructured Aluminas Obtained by Sol–Gel Method. Applied Catalysis A: General 264 (2004) 175~181
    [28] A.Krell, H.Ma. Nanocorundun-Advanced Synthesis and Processing, Nanostructure Materials, 1999(11),8 1141~1153
    [29] 陈海阳,周西臣,徐鸣等,超细氧化铝的制备及表征,石油大学学报(自然科学版),2005, 29(1):116~122
    [30] 李述文,实用有机化学手册,上海:上海科学技术出版社,1981,12:539.
    [31] 付高峰,毕诗文,孙旭东等,超细氧化铝粉末制备技术,有色矿冶,2000.2,16(1):39~41
    [32] 孙家跃,肖昂,杜海燕等,溶胶-发泡法制备超细氧化铝,精细化工,2004.4,21(4):257~261
    [33] 刘智信,李东风,氧化铝溶胶的制备,硅酸盐通报,2004 (4):73~75
    [34] 赵麦群,陈宇航,刘剑,湿化学法制备纳米粉的热力学条件,粉末冶金技术,1999,17(2):83~88
    [35] 李继光,孙旭东,茹红强等,湿化学法合成α-Al2O3纳米粉,材料研究学报,1998.2,12(1):105~107
    [36] M.Nofz, R.St?sser, G. Scholz, I.D?rfel, The thermally induced transformation of pseudoboehmite gels-a comparison of the effects of corundum seeding and iron doping. Journal of the European Ceramics Society, 25 (2005) 1095~ 1107
    [37] Th.Oberbach, C.Gunther, G.Werner, G.Tomandl, G.Wolf. Influence of different amounts of hematite seedings on the temperature of phase transformation of transition aluminas into corundum. Thermochimica Acta, 271(1996):155~162
    [38] M.Rajendran, A.K.Bhattacharya. A process for the production of sub-micron to millimetre sized thermally stable α-alumina spheres. Material Science and Engineering, B(1999):217~222
    [39] Yiquan-Wu, Yu-feng Zhang, Xiao-xian Huang, Jing-kun Guo, Preparation of platelike nano alpha alumina particles. Ceramics International, 27(2001):265~268
    [40] 吴义权,张玉峰,黄校先等,低温制备纳米α-Al2 O3粉体,无机材料学报,2001.3,16(2):349~352
    [41] C.Scott Nordahl, Gary L.Messing. Thermal analysis of phase transformation kinetics in α-alumina seeded boehmite and γ-Al2 O3. Thermochimica Acta, 318(1998): 187~199
    [42] L.Radonjic, V.Srdic. Effect of magnesia on the desification behavior and grain growth of nucleated gel alumina. Material Chemistry and Physics, 47(1997):78~84
    [43] 叶青,王道,周志清,氧化铝溶胶及涂层研究I:氧化铝溶胶的性质,北京工业大学学报,2002, 28(1):55~57
    [44] 姜建华,无机非金属材料工艺原理,北京:化学工业出版社,2005. 436~438
    [45] 曲远方,功能陶瓷材料,北京:化学工业出版社,2003. 306~309
    [46] Jinhui Peng, Pinjie Hong et al . Microwave Plasma Sintering of Nanocrystal Alumina. J. Mater. Sci. Technol, 1998, 14: 173
    [47] Akira Nakajima, Gary L.Messing. Liquid-phase sintering of alumina coated with magnesium aluminosilicate glass. J. Am. Ceram. Soc, 1996, 79 (12):3199~3210
    [48] Horn D S, Messing G L. Anisotropic grain growth in TiO2-doped alumina [J]. Mater Sci Eng, 1995, A195: 169~178
    [49] Powers J D, Glaeser A M. Titanium effects on sintering and grain boundary mobility of alumina [J]. Ceram Eng Sci Proc, 1997, 18(5): 617~623
    [50] M. Sathiyakumar, F.D.Gnanam. Influence of MnO and TiO2 additives on density, microstructure and mechanical properties of Al2 O3. Ceramics International 28(2002): 195~200
    [51] Anteneh Kebbede, John Parai, Altaf H.Carim, Anisotropic Grain Growth in α- Al 2 O3 with SiO2 and TiO2 Additions. J.Am.Ceram.,83 [11]: 2845~2851 (2000)
    [52] Amiya Pgoswami, Sukumar Roy, Impurity-dependent morphology and grain growth in liquid-phase-sintered alumina. J. Am. Geram. Soc, 2001.84 (7): 1620~1626
    [53] Baik S, Moon J H. Effects of magnesium oxide on grain-boundary segregation of calcium during sintering of alumina [J] . J. Am. Cerm. Soc. 1991, 74: 819~822
    [54] Wang Xinyu, LI Shi-pu, HE Jian-hua, JIANG Xin, LI Jian-hua, The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic. Journal of Wuhan University of Technology – Mater.Sci.Ed, 2003.7,18 (2):23~24
    [55] Manor E. Grain growth inhibition in nanocrystalline alumina doped with chromia [J]. Nanostructured Materials, 1997, 8(3): 359~366
    [56] Tzing W H, Tuan W H. Exaggerated grain growth in Fe-doped Al2 O3 [J]. J Mater Sci Lett, 1999, 18: 1115~1117
    [57] Toy C, Demirci M, Onurlu S. Colloidal method for manganese oxide addition to alumina powder and investigation of properties [J]. J Mater Sci, 1995, 30(16): 4183~4187
    [58] Robert F. Cook. A. G. Schrott, Calcium segregation to grain boundaries in alumina. J. Am. Ceram. Soc, 1988, 71(1): 50~58
    [59] Amiya Pgoswami, Sukumar Roy, Impurity-dependent morphology and grain growth in liquid-phase-sintered alumina. J. Am. Ceram. Soc, 2001, 84(7): 1620~1626
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.