基于机器视觉的灵武长枣定位与成熟度判别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵武长枣是宁夏的重要经济林果,每年仅有20天左右的最佳采摘期。目前完全依靠人力架梯手工拣摘,采摘成本高、劳动力需求量大、强度高、且效率低。由于灵武长枣的经济价值高,种植面积还在逐年扩大。因此,对自动采摘技术的需求日趋强烈。自动化果蔬采摘机器人视觉系统首要解决的关键问题就是果实的定位与成熟度判别。本文主要研究在自然场景下,基于机器视觉的灵武长枣定位与成熟度判别方法,旨在为灵武长枣自动采摘机器人的研制奠定理论与技术基础。
     本文的研究内容及结果如下:
     1、在灵武长枣的灰度图像预处理中,提出了给定3×3滤波模板图像块中心阈值T,减少排序次数的中值滤波算法,提高了灰度图像处理速度;对于灵武长枣的彩色图像,结合HSI颜色空间各分量的特性,利用平均色度,提出了矢量结合标量的改进矢量中值滤波算法,对灵武长枣彩色图像进行降噪处理。
     2、根据灵武长枣的颜色特性,提出了两种在自然场景下的灵武长枣图像分割算法。
     (1)基于L*a*b*颜色空间各分量的特性,提出了基于L*a*b*颜色空间的给定阈值图像分割改进算法,红色分量阈值定为110。该分割算法能快速识别树上是否有成熟的长枣,算法的分割错误率为7.4%。
     (2)提出了基于色差融合的彩色图像分割算法,以颜色特征0.33R-0.5G+0.17B为基准,融合颜色特征R-G,分割红色目标区域;再以颜色特征0.122R+0.378G-0.5B为基准,融合颜色特征2R-G-B,分割绿色目标区域。该算法能很好的解决轻度的粘连、遮挡和光线不均等问题对图像分割的影响,并可以分别提取红色区域和绿色区域,分割成功率达到93.27%。
     3、经统计分析,得出了灵武长枣的横径与纵径的线性关系b1=1.64a+6.422;验证了灵武长枣呈近似椭球形,长枣体形与椭球体的拟合度超过90%;建立了灵武长枣外形的数学模型验证得出两个重要的结论:(1)灵武长枣的平面投影是近似椭圆;(2)在灵武长枣的平面投影中,近似椭圆具有短径不变的特性。根据这两个结论,推导了椭圆投影中心坐标;利用相机成像模型和基于最小二乘法的椭圆来拟合图像上的长枣、并确定长枣中心坐标,实现长枣在图像中的定位。
     4、建立了自然场景下灵武长枣生长成熟期的图像分类库;由实验测得的灵武长枣可溶性固形物含量和长枣表面颜色的红绿比,分析得到了二者与长枣生长成熟期的成熟度等级的关系;制定了基于机器视觉识别自然场景下生长成熟期的灵武长枣成熟度等级规则;建立了基于颜色的灵武长枣生长成熟期的成熟度颜色演化模型,提出了基于颜色演化模型的色调H与红色比相结合的灵武长枣成熟度等级识别算法,该算法的判别精度达到92.60%。
     本文的研究成果可解决自动采摘机器人视觉系统的关键问题,为林果采摘机器人系统奠定理论与技术基础。
Lingwu long jujubes are important economical fruits in Ningxia with the best picking period of about only20days. Currently, their picking totally relies on humans, which is with large manpower demand, high labor intensity and low efficiency. The planting area is becoming larger year by year due to their high economic value. So there is an increasing demand for automatic picking techniques. The primary issue of establishing automatic picking robots based on machine vision is to solve the problem of localization and maturity recognition of targeting fruits. This dissertation studied how to automatically localize Lingwu long jujubes and recognize their maturity accurately and efficiently in natural scenes using machine vision, which should lay theoretical and technical foundations for making automatic picking robots of the jujubes.
     The main research contents and related results are as follows.
     1. For preprocessing jujubes' gray-scale images, a novel median filter method combined the given threshold value T at the3×3filtering template block center was proposed to reduce sorting counts and accelerated the image processing as result; as for colored images, utilizing components of the HSI color space and the median chromaticity with combining the vector and scalar were implemented in the vector median filtering to annihilate noises of colored images of jujubes.
     2. According to the characteristics of color distribution of jujubes, two different segmentation approaches against the natural scenes were carried out.
     (1) The improved threshold segmentation:based on the L*a*b*color space, utilize the threshold value of red-green given as110to segment the mature jujubes quickly and the error rate reached7.4%.
     (2) The chromatism fusion segmentation:firstly, take the color feature0.33R-0.5G+0.17B as base to fuse the R-G feature in order to segment the red regions; secondly, take0.122.R+0.378G-0.5B to fuse the2R-G-B feature as to segment the green regions; in the end, combine red and green regions together to accomplish the segmentation of jujubes. This proposed method functions well against mild adhesion, occlusion and unbalanced light conditions, and its accuracy reached93.27%.
     3. Through statistic analysis, the linear mathematical model of the jujubes' transverse and vertical diameters was established as b1,=1.64a+6.422, which verified that the shape of jujubes is more likely to be the ellipsoid and the degree of jujube-ellipsoid fitting achieved90%; the model of the jujubes' shape was built as and two key conclusions were brought up:(1) the planar projection of the jujube should always be elliptical;(2) transverse diameter after the planar projection is invariant. Based on the two conclusions, the Lingwu long jujubes in images were localized in images using the camera pin-hole model and least square ellipse fitting.
     4. On the image recognition of jujubes in automatic picking, a catalog consisting of jujubes of different levels of maturity under natural scenes was established and classified accordingly as well; given soluble solid content of jujubes that was measured by experiments as well as facial colors with corresponded levels of maturity, a recognition hierarchy of maturity that is based on machine vision was constructed for jujubes growing in natural scenes and the evolutional model of jujubes' maturity-color was also raised; based on the evolutional model, maturity recognition was implemented combining hue and red ratio and reached the accuracy of92.60%.
     The research results can solve the key problems of the vision system of the picking robots, which will provide both theoretical and technical foundations for the fruit-picking robot systems.
引文
1. 白景萍.精准林业与3S技术[J].山西林业科技,2008,(04):34-36.
    2.班兆军.灵武长枣酒化规律及调控技术研究[D]:天津科技大学,2009.
    3.蔡健荣,赵杰文.基于圆形Hough变换的遮挡果实特征提取.中国农业机械学会2006年学术年会,中国江苏镇江,2006.
    4. 曾俊,李德华.彩色图像SUSAN边缘检测方法[J].计算机工程与应用,2011,(15):194-196.
    5. 陈利兵.草莓收获机器人采摘系统研究[D]:中国农业大学,2005.
    6.韩非.蓝莓采摘机器人视觉识别与标定技术研究[D]:东北林业大学,2011.
    7. 韩海彪,张有林,沈效东,等.采收成熟度对灵武长枣贮藏品质的影响[J].食品工业科技,2008a,(03):265-266.
    8.韩海彪,张有林,沈效东,等.采收成熟度对灵武长枣贮藏品质的影响[J].食品工业科技,2008b,(03):265-266.
    9. 何东健,乔永亮,李攀,等.基于SVM-DS多特征融合的杂草识别[J].农业机械学报,2013,(02):182-187.
    10.侯义锋.有色果实采摘机械手的设计[J].农机化研究,2013,(04):76-80.
    11.颉敏华,张永茂,李守强,等.灵武长枣采后保鲜贮藏特性研究[J].西北植物学报,2008,(05):1031-1035.
    12.阚江明.基于计算机视觉的活立木三维重建方法[D]:北京林业大学,2008.
    13.李斌,汪懋华,李莉.基于单目视觉的田间菠萝果实识别[J].农业工程学报,2010,(10):345-349.
    14.李东升,张莲洁,盖志武,等.国内外除草技术研究现状[J].森林工程,2002,(01):17-18.
    15.李江波,饶秀勤,应义斌.基于照度-反射模型的脐橙表面缺陷检测[J].农业工程学报,2011,(07):338-342.
    16.李牧,陆怀民,方红根,等.我国农林机器人的研究现状及发展趋势[J].森ss 工程,2003,(05):39-41.
    17.李文彬,霍光青,冯敏,等.立木整枝技术及设备研究[J].森林工程,2009,(02):32-34.
    18.李文彬,阚江明,孙仁山.立木枝权点自动识别方法[J].北京林业大学学报,2007,(04):1-4.
    19.李文彬,齐垂辉,霍光青,等.遥控自动立木整枝机避让机构曲臂上摆运动仿真的研究[J].森林工程,2009,(01):25-27.
    20.林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报,2005,10(1):1-10.
    21.刘合翔,吴斌.人工智能技术在精准林业中的运用与发展[J].西北林学院学报,2006,(01):183-188.
    22.刘继展,李萍萍,李智国,等.面向机器人采摘的番茄力学特性试验[J].农业工程学报,2008,(12):66-70.
    23.刘晋浩,陆怀民,葛安华.新型智能伐根清理机器人[J].机器人技术与应用,2001,(02):12-13.
    24.刘晋浩,潘海兵,舒庆.草方格铺设机器人多体动力学仿真与试验[J].农业机械学报,2009,(06):153-157.
    25.刘晋浩,舒庆.草方格铺设机器人虚拟样机建模及平顺性分析[J].北京林业大学学报,2007,(04):72-74.
    26.刘茂超,田来科,邸兴,等.光学图像的消模糊处理[J].光子学报,2008,37(Sup 1).
    27.刘长林,张铁中,杨丽.果蔬采摘机器人研究进展[J].安徽农业科学,2008,(13):5394-5397.
    28.陆怀民.林木球果采集机器人设计与试验[J].农业机械学报,2001,(06):52-54.
    29.罗希平,田捷.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312.
    30.吕明忠,罗鹏,高敦岳.一种基于色差的彩色图像的边缘检测方法[J].华东理工大学学报,2001,(05):561-564.
    31.宁夏回族自治区质量技术监督局.鲜灵武长枣果实质量标准[S].宁夏:宁夏农林科学院,2005.
    32.钱建平,杨信廷,吴晓明,等.自然场景下基于混合颜色空间的成熟期苹果识别方法[J].农业工程学报,2012,(17):137-142.
    33.任守纲,马超,谢忠红,等.基于分水岭和梯度的蝴蝶兰图像分割方法[J].农业工程学报,2012,(09):125-129.
    34.任玉锋,任贤,雷茜.灵武长枣采后生理及贮藏保鲜技术研究进展[J].河北农业科学,2009,(01):13-15.
    35.宋怀波,何东健,潘景朋.基于凸壳理论的遮挡苹果目标识别与定位方法[J].农业工程学报,2012,(22):174-180.
    36.宋健,张铁中,徐丽明,等.果蔬采摘机器人研究进展与展望[J].农业机械学报,2006,,(05):158-162.
    37.汪强,席磊,任艳娜,等.基于计算机视觉技术的烟叶成熟度判定方法[J].农业工程学报,2012,(04):175-179.
    38.王加华,王一方,韩东海.多品种洋梨糖度近红外普适性模型的建立[J].食品安全质量检测学报,2012,(05):443-447.
    39.王乐妍,张冬仙,章海军,等.基于激光光致发光光谱的果实成熟度测试方法研究[J].光谱学与光谱分析,2008,(12):2772-2776.
    40.王明珠,龙荣.灵武长枣采收与贮藏保鲜技术[J].宁夏农林科技,2012,(11):19-20.
    41.王琦,赵奇,刘淑清.对我国林业装备技术发展中存在问题的思考[J].林业机械与木工设备,2005,(07):10-11.
    42.王瑞庆,张继澍,马书尚.基于电学参数的货架期红巴梨无损检测[J].农业工程学报,2009,(04):243-247.
    43.王虓,李文彬,张百杰.山地果园单轨车轨道结构有限元分析及优化[J].广东农业科学,2012,(02):138-141.
    44.王昱潭,李文彬,刘倩.球面圆弧锥齿轮接触点轨迹方程[J].农业工程学报,2012,(03):65-69.
    45.魏振忠.基于机器视觉的在线柔性三坐标测量系统研究[D]:北京航空航天大学,2003.
    46.吴强,李喜宏,陈嘉,等.不同成熟度对灵武长枣贮藏效果的研究[J].北方园艺,2008,(04):255-256.
    47.吴晓光,王涤琼,盛慧.一种获取图像区域最小外接矩形的算法及实现[J].计算机工程,2004,(12):124-125.
    48.邢亚阁,李喜宏,张静,等.不同成熟度的灵武长枣在采后贮藏过程中几种糖含量和果实品质的变化[J].植物生理学通讯,2007,(04):729-730.
    49.熊俊涛,邹湘军,陈丽娟,等.基于机器视觉的自然环境中成熟荔枝识别[J].农业机械学报,2011,(09):162-166.
    50.徐正冈.基于图像信息的柑桔成熟度无损检测方法的研究[D]:浙江大学,2001.
    51.喻菊芳,陈卫军,朱连成.灵武长枣发展中值得注意的问题[J].宁夏农林科技,2003,(04):60-61.
    52.张光弟,俞晓艳.影响灵武长枣保鲜效果的几个关键因素[J].宁夏农学院学报,2004,25(1): 30-33.
    53.张光年.基于色差梯度的彩色边缘检测方法[J].首都师范大学学报(自然科学版),2008,(04):5-9.
    54.张广军.视觉测量.北京:科学出版社,2008.
    55.张俊梅,柯秋红,李文彬,等.无线遥控自动立木整枝机机载控制系统设计[J].科技导报,2012,(12):42-45.
    56.张俊梅,李文彬,撒潮,等.遥控自动立木整枝机电源控制系统[J].北京林业大学学报,2007,(04):22-26.
    57.张俊珍.图像分割方法综述[J].科技信息,2012,(6):169.
    58.张强,王正林,精通.MATLAB图像处理[Z].北京:电子工业出版社,2009.
    59.张勤,武金荣,杨丽荣,等.灵武长枣嫁接育苗技术研究[J].宁夏农林科技,2004,(06):9-10.
    60.张铁中,林宝龙,高锐.水果采摘机器人视觉系统的目标提取[J].中国农业大学学报,2004,(02):68-72.
    61.张婷婷.基于小波分析的玉米果穗成熟度分级[D]:吉林大学,2011.
    62.赵洪卫,韩东海,宋曙辉,等.小型西瓜果实成熟度表征因子筛选[J].农业工程学报,2012,(17):281-286.
    63.赵杰文,张海东,刘木华.简化苹果糖度预测模型的近红外光谱预处理方法[J].光学学报,2006,(01):136-140.
    64.赵金英,张铁中,杨丽.西红柿采摘机器人视觉系统的目标提取[J].农业机械学报,2006,(10):200-203.
    65.朱连成,魏卫东,喻菊芳.灵武长枣的优良性状及发展前景[J].宁夏农林科技,2002,(03):33-34.
    66.曹乐平,温芝元,陈理渊.基于分形维数的柑橘形状与光滑度的机器视觉分级[J].测试技术学报,2009,(05):407-411.
    67.崔瀚元,张宏霞,张晓波,等.灵武长枣成熟特征分析[J].农产品加工(学刊),2009,(02):73-74.
    68.魏天军,窦云萍.灵武长枣果实发育成熟期生理生化变化[J].中国农学通报,2008,(04):235-239.
    69.魏天军,李百云.采收期和品种对枣果实品质的影响[J].中国农学通报,2009,(09):184-187.
    70.杨军,章英才,苏伟东,等.灵武长枣多糖含量测定的研究[J].北方园艺,2011,(14):35-37.
    71.应义斌,饶秀勤,马俊福.柑橘成熟度机器视觉无损检测方法研究[J].农业工程学报,2004,20(2):144-147.
    72.郁网庆,吕平,贾连文,等.苹果成熟度确定方法[J].中国果菜,2012,(11):37-39.
    73.袁春龙,李华,任亚梅.杨梅成熟度指标的研究[J].西北农业学报,2003,(01):76-80.
    74.袁挺,许晨光,任永新,等.基于近红外图像的温室环境下黄瓜果实信息获取[J].光谱学与光谱分析,2009,(8):2054-2058.
    75.张鹏,李江阔,冯晓元,等.可见/双红外漫反射光谱预测磨盘柿成熟度阴.食品研究与开发,2013,(11):91-94.
    76. Abdullah M Z, Mohamad-Saleh J, Fathinul-Syahir A S, et al. Discrimination and classification of fresh-cut starfruits ( Averrhoa carambola L.) using automated machine vision system[J]. Journal of Food Engineering,2006,76(4):506-523.
    77. Alamar M C, Bobelyn E, Lammertyn J, et al. Calibration transfer between NIR diode array and FT-NIR spectrophotometers for measuring the soluble solids contents of apple[J]. Postharvest biology and technology,2007,45(1):38-45.
    78. Aleixos N, Blasco J, Navarron F, et al. Multispectral inspection of citrus in real-time using machine vision and digital signal processors[J]. Computers and electronics in agriculture,2002,33(2): 121-137.
    79. Alkofer J. Digital color image processing method and apparatus employing three color reproduction functions for adjusting both tone scale and color balance[Z]. Google Patents,1988.
    80. Alvarez L, Lions P, Morel J. Image selective smoothing and edge detection by nonlinear diffusion. II[J]. SIAM Journal on numerical analysis,1992,29(3):845-866.
    81. Astola J, Haavisto P, Neuvo Y. Vector median filters[J]. Proceedings of the IEEE,1990,78(4): 678-689.
    82. Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications[J]. Optics letters, 1988,13(7):547-549.
    83. Baeten J, Donne K, Boedrij S, et al. Autonomous fruit picking machine:A robotic apple harvester[J]: Springer Tracts in Advanced Robotics (STAR),2008,42:531-539.
    84. Bar L, Sochen N, Kiryati N. Image deblurring in the presence of salt-and-pepper noise[J]. Springer-Lecture Notes in Computer Science,2005,3459:107-118.
    85. Bieniek A, Moga A. An efficient watershed algorithm based on connected components [J]. Pattern Recognition,2000,33(6):907-916.
    86. Blaffert T, Dippel S, Stahl M, et al. The laplace integral for a watershed segmentation[C]:2000 International Conference on Image Processing, Vancouver, BC,2000,3:444-447.
    87. Blasco J, Aleixos N, Molto E. Machine vision system for automatic quality grading of fruit[J]. Biosystems Engineering,2003,85(4):415-423.
    88. Buemi F, Massa M, Sandini G. Agrobot:a robotic system for greenhouse operations[C],4th Workshop on robotics in Agriculture, IARP, Tolouse,1995:172-184.
    89. Canny J F. Finding edges and lines in images[R].Massachusetts Institute of Technology Report, 1983.
    90. Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,(6):679-698.
    91. Chen S, Ramli A R. Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation[J]. IEEE Transactions on Consumer Electronics,2003,49(4): 1301-1309.
    92. Cheng H, Sun Y. A hierarchical approach to color image segmentation using homogeneity [J]. IEEE Transactions on Image Processing,2000,9(12):2071-2082.
    93. Cubero S, Aleixos N, Molto E, et al. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables[J]. Food and Bioprocess Technology, 2011,4(4):487-504.
    94. Edan Y. Design of an autonomous agricultural robot[J]. Applied Intelligence,1995,5(1):41-50.
    95. Edan Y, Haghighi K, Stroshine R, et al. Robot gripper analysis:finite element modeling and optimization[J]. Applied Engineering in Agricultural,1992,8(4):563-570.
    96. Edan Y, Miles G E. Systems engineering of agricultural robot design[J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(8):1259-1265.
    97. Edan Y, Miles G E. Design of an agricultural robot for harvesting melons[J]. Transactions of the ASAE,1993,36(2):593-603.
    98. Edan Y, Rogozin D, Flash T, et al. Robotic melon harvesting[J]. IEEE Transactions on Robotics and Automation,2000,16(6):831-835.
    99. Effendi Z, Ramli R, Ghani J A. A Back Propagation Neural Networks for Grading Jatropha curcas Fruits Maturity[J]. American Journal of Applied Sciences,2010,7(3):390-394.
    100.Evans A N, Liu X U. A morphological gradient approach to color edge detection[J]. IEEE Transactions on Image Processing,2006,15(6):1454-1463.
    101.Gillespie A R, Kahle A B, Walker R E. Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches[J]. Remote Sensing of Environment,1986,20(3): 209-235.
    102.Gota A, Min Z J. Analysis and Comparison on Image Restoration Algorithms Using MATLAB[J]. International Journal of Engineering Research & Technology (IJERT),2013,2(12):1350-1360.
    103.Hayashi S, Ganno K, Ishii Y, et al. Robotic harvesting system for eggplants[J]. Japan Agricultural Research Quarterly,2002,36(3):163-168.
    104.Heikkila J, Silven O. A four-step camera calibration procedure with implicit image correction[C]: 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1997: 1106-1112.
    105.Hwang H, Haddad R. Adaptive median filters:new algorithms and results[J]. IEEE Transactions on Image Processing,1995,4(4):499-502.
    106.Iida M, Furube K, Namikawa K, et al. Development of watermelon harvesting gripper[J]. Journal of the Japanese Society of Agricultural Machinery (Japan),1996,58(3):19-26.
    107.Illingworth J, Kittler J. A survey of the Hough transform[J]. Computer vision, graphics, and image processing,1988,44(1):87-116.
    108.Ishak W, Hudzari R M. Image based modeling for oil palm fruit maturity prediction[J]. Journal of Food, Agriculture & Environment,2010,8(2):469-476.
    109.Jimenez A R, Ceres R, Pons J L. A survey of computer vision methods for locating fruit on trees[J]. Transactions of the AS AE-American Society of Agricultural Engineers,2000,43(6):1911-1920.
    110.Jung C R. Unsupervised multiscale segmentation of color images[J]. Pattern Recognition Letters, 2007,28(4):523-533.
    111.Kacur J, Mikula K. Solution of nonlinear diffusion appearing in image smoothing and edge detection[J]. Applied Numerical Mathematics,1995,17(1):47-59.
    112.Kassay L. Hungarian robotic apple harvester[C]:ASAE Paper,1992:1-14.
    113.Kim K, Lee S, Kim M, et al. Determination of apple firmness by nondestructive ultrasonic measurement[J]. Postharvest biology and technology,2009,52(1):44-48.
    114.Kim Y. Image enhancing method and circuit using mean separate/quantized mean separate histogram equalization and color compensation[Z]. Google Patents,2000.
    115.Kiryati N, Eldar Y, Bruckstein A M. A probabilistic Hough transform[J]. Pattern recognition,1991, 24(4):303-316.
    116.Kondo N. Fruit grading robot[C]:2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2003,2:1366-1371.
    117.Kondo N, Monta M. Chrysanthemum cutting sticking robot system[J]. Journal of Robotics and Mechatronics,1999,11:220-224.
    118.Kondo N, Monta M, Fujiura T. Fruit harvesting robots in Japan[J]. Advances in Space Research, 1996,18(1):181-184.
    119.Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering[J]. IEEE Transactions on Signal Processing,1998,46(2):375-390.
    120.Lee D, Schoenberger R, Archibald J, et al. Development of a machine vision system for automatic date grading using digital reflective near-infrared imaging[J]. Journal of Food Engineering,2008, 86(3):388-398.
    121.Lee J. Digital image smoothing and the sigma filter[J]. Computer Vision, Graphics, and Image Processing,1983,24(2):255-269.
    122.Lim J S. Two-dimensional signal and image processing[M]. Englewood Cliffs, Prentice Hall,1990.
    123.Lleo L, Barreiro P, Ruiz-Altisent M, et al. Multispectral images of peach related to firmness and maturity at harvest[J]. Journal of Food Engineering,2009,93(2):229-235.
    124.Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(6):992-1000.
    125.Lorente D, Aleixos N, Gomez-Sanchis J, et al. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment J]. Food and Bioprocess Technology,2012,5(4): 1121-1142.
    126.Mendoza F, Aguilera J M. Application of image analysis for classification of ripening bananas[J]. Journal of food science,2004,69(9):E471-E477.
    127.Mery D, Pedreschi F. Segmentation of colour food images using a robust algorithm[J]. Journal of Food engineering,2005,66(3):353-360.
    128.Mizrach A. Nondestructive ultrasonic monitoring of tomato quality during shelf-life storage[J]. Postharvest biology and technology,2007,46(3):271-274.
    129.Monta M, Kondo N, Shibano Y. Agricultural robot in grape production system[C]:1995 IEEE International Conference on Robotics and Automation, Nagoya,1995,3:2504-2509.
    130.Murakami N, Inoue K, Otsuka K. Selective harvesting robot of cabbage[C]:ASAE,1995,2:24-31.
    131.Otsu N. A threshold selection method from gray-level histograms[J]. Automatica,1975, 11(285-296):23-27.
    132.Patino L. Fuzzy relations applied to minimize over segmentation in watershed algorithms[J]. PATTERN RECOGNITION LETTERS,2005,26(6):819-828.
    133.Razali M H, Ismail W, Ishak W, et al. Modeling of oil palm fruit maturity for the development of an outdoor vision system[J]. International journal of food engineering,2008,4(3):1396-1396.
    134.Reed J N, Miles S J, Butler J, et al. AE-Automation and Emerging Technologies:Automatic Mushroom Harvester Development J]. Journal of Agricultural Engineering Research,2001,78(1): 15-23.
    135.Sarig Y. Robotics of fruit harvesting:a state-of-the-art review[J]. Journal of Agricultural Engineering Research,1993,54(4):265-280.
    136.Scher A, Rosenfeld A, Dias Velasco F R. Some new image smoothing techniques[J]. IEEE Transactions on Systems Man and Cybernetics,1980,10:153-158.
    137.Schertz C E, Brown G K. Basic considerations in mechanizing citrus harvest[J]. Transactions of the ASAE,1968,11(3):343-346.
    138.Shao Y, He Y, Gomez A H, et al. Visible/near infrared spectrometric technique for nondestructive assessment of tomato'Heatwave'( Lycopersicum esculentum) quality characteristics[J]. Journal of food engineering,2007,81(4):672-678.
    139.Smith S M, Brady J M. SUSAN--a new approach to low level image processing[J]. International journal of computer vision,1997,23(1):45-78.
    140.Sobel M E. Asymptotic confidence intervals for indirect effects in structural equation models[J]. Sociological methodology,1982,13(1982):290-312.
    141.Soille P. Morphological image analysis applied to crop field mapping[J]. Image and Vision computing,2000,18(13):1025-1032.
    142.Starck J, Murtagh F, Candes E J, et al. Gray and color image contrast enhancement by the curvelet transform[J]. IEEE Transactions on Image Processing,2003,12(6):706-717.
    143.Strickland R N, Kim C, Mcdonnell W F. Digital color image enhancement based on the saturation component[J]. Optical Engineering,1987,26(7):267609.
    144.Tai X, Wu C. Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model:Springer,2009:502-513.
    145.Taniwaki M, Hanada T, Sakurai N. Postharvest quality evaluation of "Fuyu" and "Taishuu" persimmons using a nondestructive vibrational method and an acoustic vibration technique[J]. Postharvest biology and technology,2009,51(1):80-85.
    146.Taniwaki M, Takahashi M, Sakurai N. Determination of optimum ripeness for edibility of postharvest melons using nondestructive vibration[J]. Food research international,2009,42(1): 137-141.
    147.Tarrio P, Bernardos A M, Casar J R, et al. A harvesting robot for small fruit in bunches based on 3-D stereoscopic vision[C],4th World Congress Conference of Computers in Agriculture and Natural Resources, Orlando, Florida, USA,2006:270-275.
    148.Trahanias P E, Venetsanopoulos A N. Color image enhancement through 3-D histogram equalization[C],11th IAPR International Conference on Pattern Recognition,1992. Vol.III. Conference C:Image, Speech and Signal Analysis, Proceedings,, The Hague,1992:545-548.
    149.Valero C, Crisosto C H, Slaughter D. Relationship between nondestructive firmness measurements and commercially important ripening fruit stages for peaches, nectarines and plums[J]. Postharvest biology and technology,2007,44(3):248-253.
    150.van Henten E J, Hemming J, Van Tuijl B, et al. An autonomous robot for harvesting cucumbers in greenhouses[J]. Autonomous Robots,2002,13(3):241-258.
    151. Van Henten E J, Schenk E J, Van Willigenburg L G, et al. Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot[J]. biosystems engineering, 2010,106(2):112-124.
    152.Van Henten E J, Van T Slot D A, Hol C, et al. Optimal manipulator design for a cucumber harvesting robot[J]. computers and electronics in agriculture,2009,65(2):247-257.
    153.Van Henten E J, Van Tuijl B V, Hemming J, et al. Field test of an autonomous cucumber picking robot[J]. Biosystems Engineering,2003,86(3):305-313.
    154.Van Henten E J, Van Tuijl B, Hoogakker G, et al. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system[J]. Biosystems engineering,2006,94(3):317-323.
    155.Van Kollenburg-Crisan L M, Bontsema J, Wennekes P. Mechatronic system for automatic harvesting of cucumbers[S], Department for Environment, Food and Rural Affairs,1999.
    156.Vantaram S R, Saber E, Dianat S A, et al. Multiresolution adaptive and progressive gradient-based color-image segmentation[J]. Journal of Electronic Imaging,2010,19(1):013001-013001-21.
    157.Vardavoulia M I, Andreadis I, Tsalides P. A new vector median filter for colour image processing[J]. Pattern Recognition Letters,2001,22(6):675-689.
    158.Whittaker A D, Miles G E, Mitchell O R, et al. Fruit location in a partially occluded image[S]. Transactions of the ASAE-American Society of Agricultural Engineers,1987,30.
    159.Wichner B D, Peterson M D, Stahl K A. Achieving color balance in image projection systems by injecting compensating light[Z]. Google Patents,2004.
    160.Wink A M, Roerdink J B. Denoising functional MR images:a comparison of wavelet denoising and Gaussian smoothing[J]. Medical Imaging, IEEE Transactions on,2004,23(3):374-387.
    161.Wong K, Lam K, Siu W. An efficient color compensation scheme for skin color segmentation[C]. Proceedings of the 2003 International Symposium on Circuits and Systems,2003. ISCAS'03,2003: 11-676-11-679.
    162.Xu L, Oja E, Kultanen P. A new curve detection method:randomized Hough transform (RHT)[J]. Pattern recognition letters,1990,11(5):331-338.
    163.Yu W, Hou Z, Song J. Color image segmentation based on marked-watershed and region-merger[J]. Dianzi Xuebao(Acta Electronica Sinica),2011,39(5):1007-1012.
    164.Zeng J, Li D. Color image edge detection method using VTV denoising and color difference[J]. Optik-International Journal for Light and Electron Optics,2012,123(22):2072-2075.
    165.Zhang G, Wei Z. A position-distortion model of ellipse centre for perspective projectionfJ]. Measurement Science and Technology,2003,14(8):1420-1426.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.