发光稀土硅酸盐微孔晶体材料的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis, Characterization and Properties of Luminescent Microporous Lanthanide Silicates
  • 作者:王光美
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2007
  • 导师:于吉红 ; 徐如人
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-06-01
  • 答辩委员会主席:冯守华
摘要
无机微孔晶体材料在工业催化、吸附、分离以及高新技术先进材料领域具有广阔的应用前景。含稀土元素的硅酸盐分子筛由于其高的热稳定性、均匀的孔道及可调控的发光等特性而具有重要的实际应用。本论文工作集中在温和的水热条件下,将计量比的稀土元素引入到硅酸盐微孔骨架中,制备出新颖的发光稀土硅酸盐微孔晶体,系统地研究其发光性质,并进一步研究其离子交换性、离子电导性、磁性;致力于开发一批具有独特结构和优异性能的新型稀土微孔晶体材料。
     本文在温和的水热体系中,以碱金属为结构导向剂,合成了一系列新颖结构的发光稀土硅酸盐微孔晶体化合物LnSiO-CJn (n = 1-6, Ln = Ce,,Eu ,Tb, Nd,Sm,Gd,Dy,Er),并利用单晶X-射线衍射解析结构,其中包括: TbSiO-CJ1 (Na_3TbSi_3O_9·3H_2O), CeSiO-CJ2 (Na2.4CeSi_6O_(15)·2.6H_2O), EuSiO-CJ2 (Na_2KEuSi_6O_(15)·2H_2O), EuSiO-CJ3 (K_3EuSi_6O_(15)·H_2O), EuSiO-CJ4 (K_3EuSi_6O_(15)·3H_2O), EuSiO-CJ5A (K_8Eu_3Si_(12)O_(32)(NO_3)·H_2O), EuSiO-CJ5B (K_8Eu_3Si_(12)O_(32)(OH)·H_2O), TbSiO-CJ6 (NaTbSiO_4·0.5H_2O), EuSiO-CJ6 (NaEuSiO_4·0.5H_2O)
     这些结构是由[SiO4]四面体和[LnOn](n = 6,7,8)多面体连接成三维开放骨架。他们的结构在一维方向上包含八元环或九元环孔道。水和碱金属阳离子填充于孔道中。其中TbSiO-CJ1是一个首例具有九元环孔道的新型微孔化合物,它结晶在手性空间群P2_12_12_1中,其结构含有独特的螺旋浆构型的手性结构单元[TbSi_6O_9]以及具有较短螺距的硅酸盐螺旋链;LnSiO-CJ2, CJ3, CJ4, CJ5包含由[SiO_4]四面体相互连接而成的硅酸盐单层,相邻的硅酸盐单层通过LnOn(n = 6,7)多面体形成一维八元环孔道的稀土硅酸盐分子筛。LnSiO-CJ6是由LnO_8相互连接成三维结构,单个[SiO_4]四面体以共边(共顶点)镶嵌于其中。
     本论文详细研究和讨论了上述化合物的合成方法、影响因素、结构特点以及物理化学性质等,为探索合成具有新颖结构和优良性能的新颖骨架型稀土硅酸盐微孔材料提供了基础。
Microporous materials with regular pore architectures, typically known as zeolites, constitute an important area of materials science because of their widespread applications in catalysis, separation, and host-guest assemblies. In recent decades, microporous silicates hosting lanthanide elements have attracted considerable attention because such materials have high thermal stability, uniform microporosity and tunable optical property that may have many important applications. A number of lanthanide silicates were prepared under high-temperature and high-pressure hydrothermal conditions to search for fast alkali ion. Recently, luminescent microporous lanthanide silicate materials containing stoichiometric amounts of lanthanide (Ln) in the frameworks have been successfully prepared under mild hydrothermal conditions in the presence of alkali metal cations. Notably, Rocha and co-workers first reported AV-5 (Ln=Ce~(3+)) and AV-9 (Ln=Eu~(3+), Tb~(3+), Er~(3+)) that are synthetic analogues of mineral montregianite, and AV-20 (Ln = Eu, Tb, Sm and Ce) that is closely related to hydrated calcium silicate minerals, known as tobermorites. Tsapatsis and co-workers reported Na_(4.8)Ce_2Si_(12)O_30·4H_2O consisting of corrugated [Si_2O_5~(2-)]_∞silicate layers with 5-, 8-rings connected by CeO6. These microporous lanthanide silicate materials exhibit characteristic luminescent properties of lanthanide.
     This dissertation is focused on the systematic syntheses, structural characterizations and properties of a series of novel microporous lanthanide silicates with diverse framework structures and interesting luminescent properties. These materials are prepared under mild hydrothermal conditions.
     The main results in this dissertation are summarized as follows:
     1. A novel luminescent microporous terbium silicate Na_3TbSi_3O_9·3H_2O (denoted TbSiO-CJ1) have been successfully synthesized. TbSiO-CJ1 crystallizes in the enantiomorphic space group P2_12_12_1. Its structure is featured by aΛ-Co(en)_3~(3+)-like chiral unit of [TbSi_6O_9], and contains helical sechser (six) silicate chains and 9-ring channels. The photoluminescent property of TbSiO-CJ1 has been also studied. The green ~5D_4→~7F_5 transitions of Tb~(3+) in TbSiO-CJ1 at 543 and 550 nm are the strongest, whereas the luminescence from higher excited states (e.g., ~5D_3) is not detectable, implying very efficient nonradiative relaxation to the 5D4 level. The fluorescence decay curves of the ~5D_4→~7F_5 transitions for TbSiO-CJ1, excited at 266 nm, are well-fitted by a single-exponential function, yielding a lifetime value of 3.11 ms. This suggests the presence of a single Tb3+ environment in agreement with the single-crystal structure of TbSiO-CJ1.
     2. LnSiO-CJn (n = 2-5) have been synthesized from M_2O-SiO_2-Ln_2O_3-H_2O (M=K, Na, Ln = Ce, Eu, Tb, Nd, Sm, Gd, Dy, Er) system under mild hydrothermal conditions. Single-crystal structural analyses show that various lanthanide elements, have been successfully introduced into the frameworks of LnSiO-CJn (n = 2-5) with stoichiometric amounts. The framework of LnSiO-CJn (n = 2-5) consists of silicate single layers that are connected by six-coordinated LnO6 octahedra or seven-coordinated LnO_7 polyhedra to form a three dimensional (3D) open framework with 8-ring channels, in which Na+ ions and water molecules reside. In LnSiO-CJ2, the connection of SiO_4 tetrahedra results in a novel corrugated [Si_2O_5]_n~(2n-) silicate layer containing 4-, 5-, 6-, 8-rings parallel to the bc plane, denoted the 4, 5, 6, 8-net , in which each SiO_4 tetrahedron shares three oxygen atoms with other SiO_4 tetrahedra and the fourth oxygen atom is pointing up and down the sheet. EuSiO-CJ3 and EuSiO-CJ4 are both featured by [Si_2O_5]_n~(2n-) silica layers with 4, 6, 8-net, which is further connected by corner-sharing EuO_6 octahedra to form a 3D open framework structure. However, it is noted that the orientation of SiO_4 tetrahedra around the 4, 6, and 8-rings in the 4, 6, 8-net in each framework is different. Differently from LnSiO-CJn (n = 2-4), the connection of SiO4 tetrahedra results in a corrugated [Si_6O_(16)]_n~(8n-) silicate layer containing 6-, 8-, and 12-rings, denoted the 6, 8, 12-net. LnSiO-CJ2, CJ3, CJ4, and CJ5 are all very stable, whose intact crystalline structures can be kept up to 650,700 800,and 1000 oC, respectively. The photoluminescent properties of LnSiO- CJn (n = 2-5), have been studied. Their emission spectra are characteristic for lanthanide, and the lifetime measurements are consistent with the crystallographic data.
     3. LnSiO-CJ6 (Ln=Tb, Eu) have been synthesized from Na_2O-SiO_2-Ln_2O_3-H_2O system under mild hydrothermal conditions at 240℃. TbSiO-CJ6 crystallizes in the tetragonal noncentrosymmetric space group I-4. The structure of TbSiO-CJ6 is composed of macroanionic [TbSiO_4]~- framework, and Na+ ions residing in the channels compensate the negative charge of the framework. Its structure is built up from SiO4 tetrahedra and TbO_7(OH) polyhedra that share edges and/or corners to form an open-framework structure. The photoluminescent properties of LnSiO- CJ6 (Ln=Eu,Tb) have been studied in detail. LnSiO-CJ6 is stable up to 1000℃.
     To sum up, a series of alkali-metal-containing luminescent microporous lanthanide silicates have been synthesized under mild hydrothermal conditions. Various lanthanide elements have been introduced into the frameworks with stoichiometric amounts. These lanthanide silicates are composed of single silicate chains (LnSiO-CJ1), single silicate layers (LnSiO-CJ2, CJ3, CJ4, and CJ5) or singular tetrahedra of SiO4 (LnSiO-CJ6) interconnected by Ln-centered polyhedra (LnO6, LnO7 or LnO8) to form interesting 3-D open frameworks. Their structures contain 8-ring or 9-ring channels in which alkali ions (Na~+ or K~+), NO_3~- ions and water molecules reside. These materials show interesting photoluminescence properties. In addition, they also show ion-exchange capacity, ionic conductivity and magnetic properties. Further detailed investigation on their properties is under the way.
     Note: all formula for CJn
     TbSiO-CJ1 (Na_3TbSi_3O_9·3H_2O),
     CeSiO-CJ2 (Na2.4CeSi_6O_(15)·2.6H_2O),
     EuSiO-CJ2 (Na_2KEuSi_6O_(15)·2H_2O),
     EuSiO-CJ3 (K_3EuSi_6O_(15)·H_2O),
     EuSiO-CJ4 (K_3EuSi_6O_(15)·3H_2O),
     EuSiO-CJ5A (K_8Eu_3Si_(12)O_(32)(NO_3)·H_2O),
     EuSiO-CJ5B (K_8Eu_3Si_(12)O_(32)(OH)·H_2O),
     TbSiO-CJ6 (NaTbSiO_4·0.5H_2O),
     EuSiO-CJ6 (NaEuSiO_4·0.5H_2O)
引文
1. Goodenough, J. B.; Hong, H. Y.-P.; Kafalas, J. A., Mat. Res. Bull. 1976, 11, 203.
    2. Shannon, R. D.; Taylor, B. E.; Gier, T. E.; Chen, H. Y.; Berzins, T., Ionic-Conductivity in Na5YSi4O12-Type Silicates. Inorganic Chemistry 1978, 17, (4), 958-964.
    3. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; et al., Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism. Nature 1992, 359, 710-712.
    4. Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; Mackay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S., Structure of the Microporous Titanosilicate ETS-10. Nature 1994, 367, (6461), 347-351.
    5. Gammel, P. L.; Bishop, D. J.; Dolan, G. J.; Kwo, J. R.; Murray, C. A.; Schneemeyer, L. F.; Waszczak, J. V., Phys. Rev. Lett. 1987, 59, 2592.
    6. 冉新权, 现代无机化学选论. 西北大学出版社: 1993.
    7. 王皖燕, 科技导报 2002, 3, 26.
    8. 张克从, 近代晶体学基础. 科学出版社: 1987.
    9. 林建华, 大学化学 2001, 16, 7.
    10. Liebau F(德)著; 席耀忠 译, 硅酸盐结构化学---结构,成键和分类(structural chemistry of silicates structure,Bonding,and classification ). 中国建筑工业出版社( Springer-Verlag: Berlin): 1989.
    11. Liebau, F., structural chemistry of silicates structure,Bonding,and classification Springer-Verlag: Berlin 1985.
    12.王超. 具有特殊结构的硅酸盐的高温高压合成与表征. 吉林大学博士学位论文, 长春, 2006.
    13. Kudoh, Y.; Takeeuchi, Y., Polytypism of xonotlite.I. Structure of an Ai Polytype. Miner J sapporo 1979, 9, 349-373.
    14. Merlino S, Okenite,Ca10 [Si18O46].18H2O:the first example of a chain and sheet silicate Am. Miner. 1983, 68, 614-622.
    15. Robinson, P. D.; Fang, J. H., The crystal structure of epididymite. Am. Miner. 1970, 55, 1541-1549.
    16. Weiss, A., Zur Kenntnis der faserigen siliciumdioxy-Modifikation. Z. Anorg Allg chem 1954, 275, 95-112.
    17. Donnay, G.; Allmann, R., Si3O10 groups in the crystal structure of ardennite Acta Crystallogr. 1968, B24, 845-855.
    18. Jansen, M.; Keller, H.-L., Ag10[Si4O13],das erste Tetrasilicat. Angew. Chem. 1979, 91, 500.
    19. Merinov, B. V.; Maksimov, B. A.; Ilyukhin, V. V.; Belov, N. V., Dokl. Akad. Nauk SSSR 1980, 255, 348.
    20. Fr?hlich, R., Pb8[Si4O13][SO4]O2,a new tetrasilicate. Acta Crystallogr. 1984, A40,Supplement, C224.
    21. Safronov, A. N.; Nevskii, N. N.; ILyukhin, V. V.; Belov, N. V., New type of silicate radicai Si5O16 in the structure od Na4Sn2[Si5O16].H2O. Sov Phys Dokl 1983, 28, 304-305.
    22. Gramaccioli, C. M.; Liborio, G.; Pilati, T., Structure of Medaite, (HMn6V[Si5O16]O3):the presence of a new kind of heteropolysilicate anion. Acta Crystallogr. 1981, B37, 1972-1978.
    23. Ozawa, T.; Takeuchi, Y.; Mori, H., SUPERSTRUCTURE IN Me~(x+2)/3T~(x-2)/3Ox(Me=Mg,Sc;T=Si,Mg). American insitute of Physics: 1979; p 324-326.
    24. Malinovskii, Y. A.; Baturin, S. V.; O.S., B., A new island silicate radical [Si4O13] in the structure of NaBa3Nd3[Si2O7]Si4O13]. Sov Phys Dokl 1983, 28, 809-812.
    25. Baur, W. H.; Ohta, T., The [Si5O16]pentamer in zunyite refined and emipirical relations for individual silicon-oxygen bonds. Acta Crystallogr. 1982, B38, 390-401.
    26. 徐如人,庞文琴等编, 《分子筛与多孔材料化学》. 2004.
    27. Davis, M. E., Ordered porous Materials for emerging applications. Nature 2002, 417, 813-821.
    28. Cronstedt, A. F.; Vetenskaps, K., Acad Handle Stockholm 1756, 17, 120.
    29. Baerlocher, C.; Meier, W. M.; Olson, D. H., Atlas of zeolite framework types. Elsevier: 2001.
    30. Xu, R.-R., Chemistry of Zeolites and Related Porous Materials-Synthesis and Structure (English Version). Wiley & Sons 2007.
    31. Baerlocher, C.; McCusker, L. B., Database of Zeolite Structures. http://www.iza-structure.org/databases/. In.
    32. Barrer, R. M., Hydrothermal Chemistry of Zeolites. Academic press: 1982.
    33. R. M. Barrer, E. A. D. W., J. Chem. Soc 1952, 1561.
    34. Milton, R. M., US Patent 1959, 2, (882), 243.
    35. Breck, D. M., US Patent 1965, 3, (216), 789.
    36. Breck, D. M., US Patent 1964, 3, (130), 007.
    37. Sand, L. B., US Patent 1969, 3, (436), 174.
    38. Barrer, R. M.; Denny, P. J., J. Chem. Soc 1961, 971.
    39. Arganer, R. J.; Land Lot, G. R., US Patent. 1972, 3, (702), 886.
    40. Wadlinger, R. L.; Kerr, G. T.; Roginski, E. J., US Patent 1967, 3, (308), 069.
    41. Shannon, M. D.; Cassi, J. L.; Cox, P. A.; Andrews, S. J., Nature 1991, 353, 417.
    42. Delprato, F.; Delmotte, L.; Guth, J. L.; Huve, L., Zeolites 1990, 10, 54.
    43. Lawton, S. L.; Rohrbaugh, W. J., Science 1990, 247, 1319.
    44. Lobo, R. F.; Davis, M. E., J. Am. Chem. Soc 1995, 117, 3766.
    45. Lobo, R. F.; Pan, M.; Chan, I.; Li, H. X.; Medrud, R. C.; Zones, S. I.; Crozier, P. A.; Davis, M. E., SSZ-26 and SSZ-33 - 2 Molecular-Sieves with Intersecting
    10-Ring and 12-Ring Pores. Science 1993, 262, (5139), 1543-1546.
    46. Zones, S. I.; Olmstead, M. M.; Santilli, D. S., Guest Host Relationships in the Synthesis of Large Pore Zeolite Ssz-26 from a Propellane Quaternary Ammonium Compound. Journal of the American Chemical Society 1992, 114, (11), 4195-4201.
    47. Bialek, R.; Meier, W. M.; Davis, M.; Annen, M. J., The Synthesis and Structure of Ssz-24, the Silica Analog of Alpo4-5. Zeolites 1991, 11, (5), 438-442.
    48. Nakagawa, Y., US Patent 1993, 5, (254), 514.
    49. Nakagawa, Y., US Patent 1993, 5, (271), 921.
    50. Zones, S. I., EU. Patent Appl. EP 1987, 231, 019.
    51. Weitamp, J.; Ernst, S.; Kumar, R., Appl. Catal., 1986, 27, 207.
    52. Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J.; Davis, M. E., A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature 1996, 381, (6580), 295-298.
    53. Corma, A.; Diaz-Cabanas, M.; Martinez-Triguero, J.; Rey, F.; Rius, J., A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature 2002, 418, (6897), 514-517.
    54. Zones, S. I.; Yuen, L. T.; Nakagawa, Y.; Van Nordstrand, R. A.; Toto, S. D., Proc.
    9th,Int. Zeol. Conf., Montrealm 1992, 163.
    55. Zones, S. I.; Santilli, D. S., Proc. 9th, Int. Zeol. Conf., Montrealm 1992, 171.
    56. Lobo, R. F.; Zones, S. I.; Davis, M. E., Structure-Direction in Zeolite Synthesis. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 1995, 21, (1-4), 47-78.
    57. Taramasso, M.; Perego, G.; Notari, B., Proc. 5th Inter. Conf. on Zeolites. 1980, 40.
    58. 庞文琴,裘式纶,周凤歧, 杂原子分子筛合成的研究进展. 《吉林大学自然科学学报》(特刊) 1992, 78.
    59. 庞文琴,景晓燕,张密林, 高等学校化学学报 1982, 3, 577.
    60. 裘式纶, 吉林大学博士学位论文. 1988.
    61. Barrer, R. M., Isomorphous Replacements in the Framework of Zeolites and Other Tectosilicates Academic Press 1982; p 251-305.
    62. Millini, R.; Perego, G.; Bellussi, G., Topics in Catalysis 1999, 9, 13-34.
    63. Breck, D. W., Zeolite Molecular Sieves P.320. Wiley,: New York 1974.
    64. Barrer, R. M.; Freund, E. F., J. Chem. Soc. 1974, 1049.
    65. Barrer, R. M.; Freund, E. F., J. Chem. Soc. Dalton 1974, 2054.
    66. Barrer, R. M.; Freund, E. F., J. Chem. Soc. Dalton 1974, 2060.
    67. Appleman, D. E.; Clark, J. R., Am. Miner. 1965, 50, 1827.
    68. Philips, M. W.; Gibbs, G. V.; Ribbe, P. H., Am. Miner. 1974, (59), 79.
    69. Ito, T.; Morimoto, H., Acta. Cryst. 1953, 6, 24.
    70. Taramasso, M.; Manara, G.; Fattore, V.; Notari, B., GB Patent, 1980, 2,024, 790, .
    71. Klotz, M. R., US Patent 1981, 4, 269, 813, .
    72. Burton, A.; Elomari, S., Chem. Commun. 2004, 2618.
    73. Hong, S. B.; Kim, S. H.; Kim, Y. G.; Kim, Y. C.; Barrett, P. A.; Camblor, M. A., Synthesis of microporous gallosilicates with the CGS topology. Journal of Materials Chemistry 1999, 9, (10), 2287-2289.
    74.Cho, H. H.; Kim, S. H.; Kim, Y. G.; Kim, Y. C.; Koller, H.; Camblor, M. A.; Hong, S. B., Synthesis and characterization of gallosilicate molecular sieves with high gallium contents: Examples of structure direction exerted by gallium. Chemistry of Materials 2000, 12, (8), 2292-2300.
    75. Kim, S. H.; Kim, S. D.; Kim, Y. C.; Kim, C. S.; Hong, S. B., Synthesis and characterization of Ga-substituted MER-type zeolites. Microporous and Mesoporous Materials 2001, 42, (1), 121-129.
    76. Hong, S. B.; Lee, S.-H.; Shin, C.-H.; Woo, A. J.; Alvarez, L. J.; Zicovich-Wilson, C. M.; Camblor, M. A., J. Am. Chem. Soc. 2004, 126, 13742.
    77. Han, B.; Shin, C.-H.; Warrender, S. J.; Lightfoot, P. W., P. A.; ; Camblor, M. A.; Hong, S. B., Structural Chemical Zoning in the Boundary Phase Zeolite TNU-7 (EON). Chem. Mater. 2006, 18, 3023-3033.
    78. Lee, Y.; Kim, S. J.; Wu, G.; Parise, J. B., Chem. Mater. 1999, 11, 879.
    79. Vaughan, D. E. W.; Strohmaier, K. G., U.S. Pat. 1992, 5, 096,686,.
    80. Strohmaier, K. G.; Vaughan, D. E. W., Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. J. Am. Chem. Soc. 2003, 125, 16035.
    81. Breck, D. W., Zeolite Molecular SieVes. Krieger: Malabar, FL 1984, p 65.
    82. Warrender, S. J.; Wright, P. A.; Zhou, W.; Lightfoot, P.; Camblor, M. A.; Shin, C.-H.; Kim, D. J.; Hong, S. B., TNU-7: A Large-Pore Gallosilicate ZeoliteConstructed of Strictly Alternating MOR and MAZ Layers. Chem. Mater. 2005, 17, 1272-1274.
    83. Notari, B., Catal. Today 1993, 18, 163.
    84. Taramasso, M.; Perego, G.; Notari, B., U.S. Pat. 1983, 4.410.501,.
    85. Perego, G., Bellusi, G., Bellusi, G., Corno, C., Taramasso, M., Buonomo, F., Esposito, A., Stud. Surf, Sci. Catal. 1986, 28, 129.
    86. Huybrechts, D. R. C.; De Bruycker, L.; Jacobs, P. A., Nature 1990, 345, 240.
    87. Reddy, J. S.; Kumar, R.; Ratnasamy, P., Appl. Catal. 1990, 58, L1.
    88. Camblor, M. A.; Corma, A.; Martinez, A., J. Chem. Soc., Chem. Commun. 1992, 589.
    89. Blasco, T.; Camblor, M. A.; Corma, A.; Perez-Pariente, J., J. Am. Chem. Soc. 1993, 115, 11806.
    90. Camblor.M. A, C. M., Corma. A, Gibert.L, Esteve. P,Martinez. A, Valencia.S., J. Chem. Soc., Chem. Commun. 1996, 1339.
    91. Reddy, K. M., Kaliaguine, S., Sayari, A., Ramaswamy, A. V., Reddy, V. S., Bonneviot, L. , Catal. Letter. 1994, (23), 175.
    92. Corma, A.; Navarro, M. T.; Perez-Pariente, J., . J. Chem. Soc., Chem. Commun. 1994, 147.
    93. Tanev, P. T., Chibwe, M., Pinnavaia, T. J. , Nature 1994, 368, 321.
    94. Belhekar. A. A, D. T. K., Chaudhari. K, Hegde. S. G, Chandwakar. A. , J, Stud. Surf. Sci. Catal. 1998, 113, 195.
    95. Schindler. G. P, B. P., Hoelderich. W. F, Appl. Catal. A 1998, 166, 267.
    96. Balkus, J. K. J.; Gabrielov, A. G.; Zones, S. I., Stud. Surf. Sci. Catal. 1995, 97, 519.
    97. Dartt, C. B.; Davis, M. E., Characterization and catalytic activity of titanium containing SSZ-33 and aluminum-free zeolite beta. Applied Catalysis a-General 1996, 143, (1), 53-73.
    98. Kuznicki, S. M., U.S. Pat. 1989, 4.853.202.
    99. Kuznicki, S. M., U.S. Pat. 1990, 4.938.939.
    100. Harrison, W. T. A., Gier, T. E., Stucky, G. D. , Zeolites 1995, 15, 408.
    101. Chapman, D. M., Roe, A. L. , Zeolites 1990, 10, 730.
    102. Smolin, Y. I.; Tkachev, S. P., Kristallografiya 1969, 14, 22.
    103. Rocha, J., Brandao, P., Lin, Z., Kharlamov, A., Anderson, M. W. , Chem. Commun. 1996, 669.
    104. Behrens, E. A.; Poojary, D. M.; Clearfield, A., Chem. Mater. 1996, 8, (6), 1236.
    105. Liu, X., Shang, M., Thoms, J. K., Microporous Mater. 1996, 10, 273.
    106. Roberts, M. A., Sankar, G., Thoms, J. M., Jones, R. H., Du, H., Chen, J., Pang, W., Xu, R., Nature 1996, 381, 401.
    107. Liu, Y. L.; Du, H. B.; Xiao, F. S.; Zhu, G. S.; Pang, W. Q., Synthesis and characterization of a novel microporous titanosilicate JLU-1. Chemistry of Materials 2000, 12, (3), 665-670.
    108. Du, H., Zhou, F., Pang, W., Yue, Y. , Microporous Mater. 1996, 7, 73.
    109. Wang, X. Q.; Liu, L. M.; Jacobson, A. J., Open-framework and microporous vanadium silicates. Journal of the American Chemical Society 2002, 124, (26), 7812-7820.
    110. Hung, L. I.; Wang, S. L.; Kao, H. M.; Lii, K. H., Hydrothermal synthesis, crystal structure, and solid-state NMR spectroscopy of a new indium silicate: K2In(OH)(Si4O10). Inorganic Chemistry 2003, 42, (13), 4057-4061.
    111. Hung, L.; Wang, S. L.; Szu, S. P.; Hsieh, C. Y.; Kao, H. M.; Lii, K. H. W., Hydrothermal synthesis, crystal structure, solid-state NMR spectroscopy, and ionic conductivity of Na5InSi4O12, a silicate containing a single 12-membered ring. Chemistry of Materials 2004, 16, (9), 1660-1666.
    112. Hung, L. I.; Wang, S. L.; Chen, C. Y.; Chang, B. C.; Lii, K. H., Rb3In(H2O)Si5O13: A novel indium silicate with a CsSO4-topological-type structure. Inorganic Chemistry 2005, 44, (9), 2992-2994.
    113. Hung, L. I.; Wang, S. L.; Chen, Y. H.; Lii, K. H., Rb-6(InCo)(2)(Si9O26): A mixed-metal silicate containing 20-membered-ring silicate single layers with a very low Si : O ratio. Inorganic Chemistry 2006, 45, (5), 2100-2103.
    114. Dal Negro, A.; Rossi, G.; Ungaretti, L., Acta Crystallogr. 1967, 23, 260.
    115. Karpov, O. G.; Pushcharovskii, D. Y.; Pobedimskaya, E. A.; Belov, N. V., Dokl. Akad.Nauk SSSR 1976, 228, 88.
    116. Salvado′, M. A.; Pertierra, P.; Garc?′a-Granda, S.; Khainakov, S. A.; Garc?′a, J. R.; Bortun, A. I.; Clearfield, A., Inorg. Chem. 2001, 40, 4368.
    117. Corcoran, J. E. W.; Vaughan, D. E. W., Solid State Ionics 1989, 32/33, 423.
    118. Dyer, A.; Jáfar, J. J., J. Chem. Soc., Dalton Trans., 1990, 3239.
    119. Lin, Z.; Rocha, J.; de Jesus, J. D. P.; Ferreira, A., Synthesis and structure of a novel microporous framework stannosilicate. Journal of Materials Chemistry 2000, 10, (6), 1353-1356.
    120. Lin, Z.; Rocha, J.; Ferreira, A.; Anderson, M. W., Synthesis of microporous titano-alumino-silicate ETAS-10 with different framework aluminum contents. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2001, 179, (2-3), 133-138.
    121. Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; MacKay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S., Nature 1994, 367, 347-351.
    122. Liao, C. H.; Chang, P. C.; Kao, H. M.; Lii, K. H., Synthesis, crystal structure, and solid-state NMR spectroscopy of a salt-inclusion stannosilicate: [Na3F][SnSi3O9]. Inorganic Chemistry 2005, 44, (25), 9335-9339.
    123. Maksimov, B. A.; Kharitonov, Y. A.; Ilyukhin, V. V.; Belov, N. V., Dokl. Akad. Nauk SSSR 1968, 183, 1072.
    124. Lin, Z.; Rocha, J.; Brandao, P.; Ferreira, A.; Esculcas, A. P.; deJesus, J. D. P.; Philippou, A.; Anderson, M. W., Synthesis and structural characterization of microporous umbite, penkvilksite, and other titanosilicates. Journal of Physical Chemistry B 1997, 101, (36), 7114-7120.
    125. Ilyushin, G. D., Inorg. Mater., 1993, 29, 853.
    126. Ylyukhin, G. D.; Ylyukhin, A. P.; Shumyatskaya, N. G.; Voronkov, A. A.; Nevsky, N. N.; Belov, N. V., Dokl. Akad.Nauk SSSR, 1982, 256, 860.
    127. Ferreira, A.; Lin, Z.; Rocha, J.; Morais, C. M.; Lopes, M.; Fernandez, C., Ab i nitio structure determination of a small-pore framework sodium stannosilicate. Inorganic Chemistry 2001, 40, (14), 3330-3335.
    128. Klemperer, W. G.; Marquart, T. A.; Yaghi, O. M., Angew. Chem. Int. Ed. Eng., 1992, 31, 49.
    129. 唐有祺主编, 当代化学前沿 1.3.2 钒和钛 (金松林等). 中国致公出版社: 1997.
    130. Evans, H. T., Am. Mineral. 1973, 58, 412.
    131. Rinaldi, R.; Pluth, J. J.; Smith, J. V., Acta Crystallogr. Sect. B 1975, 31, 1598.
    132. Branda?o, P.; Hanif, H.; Philippou, A.; Ferreira, A.; Ribeiro-Claro, P.; Rocha, J.; Anderson, M. W., Synthesis and Characterization of Two Novel Large-Pore Crystalline Vanadosilicates. Chem.Mater. 2002, 14.
    133.Brandao, P.; Valente, A.; Philippou, A.; Ferreira, A.; Anderson, M. W.; Rocha, J., Hydrothermal synthesis and characterisation of two novel large-pore framework vanadium silicates. European Journal of Inorganic Chemistry 2003, (6), 1175-1180.
    134. Wang, X. Q.; Liu, L. M.; Jacobson, A. J., The novel open-framework vanadium silicates K-2(VO)(Si4O10)center dot H2O (VSH-1) and Cs-2(VO)(Si6O14)center dot 3H(2)O (VSH-2). Angewandte Chemie-International Edition 2001, 40, (11), 2174-2176.
    135. Lin, J.; Su, Q.; Zhang, H. J.; Wang, S. B., Mater.Res.Bull. 1996, 31, 189.
    136. Huang, J.; Wang, X. Q.; Liu, L. M.; Jacobson, A. J., Synthesis and characterization of an open framework vanadium silicate (VSH-16Na). Solid State Sciences 2002, 4, (9), 1193-1198.
    137. Pabst, A., Acta Cryst. 1959, 12 733.
    138. Pluth, J. J.; Smith, J. V., Proc. Nat. Acad. Sci. USA 2002, 99, 11002.
    139. Angela, M. l., Kristallstruktur und Absorptionsspektrum von Cs4CuSi2O7, EPR-Spektren von K6CuSi2O8 und A4CuSi2O7 (A = Rb, Cs), Vergleich mit Ogyptisch Blau, CaCuSi4O10. Z. anorg. allg. Chem. 1998, 624 1085-1086.
    140. Anto′ nio Moreira dos Santos; Paula Branda? o; Andrew Fitch; Ma′ rio S. Reis; Vitor S. Amaral; Roch, J. o., Synthesis, crystal structure and magnetic characterization of Na2Cu5(Si2O7)2: An inorganic ferrimagnetic chain. Journal of Solid State Chemistry 2007, 180, 16-21.
    141. Liang, J.; Wang, Y.; Yu, J.; Li, Y.; Xu, R., Chem. Commun. 2003, 882-883.
    142. Brandao, P.; Paz, F. A. A.; Rocha, J., A novel microporous copper silicate: Na2Cu2Si4O11 center dot 2H(2)O. Chemical Communications 2005, (2), 171-173.
    143. dos Santos, A. M.; Amaral, V. S.; Brandao, P.; Paz, F. A. A.; Rocha, J.; Ferreira, L. P.; Godinho, M.; Volkova, O.; Vasiliev, A., Singlet ground state determined by isolated Cu2+ chain topology in microporous Na2Cu2Si4O11 center dot
    2H(2)O and Na2Cu2Si4O11. Physical Review B 2005, 72, (9).
    144. Rocha, J.; Brandao, P.; Lin, Z.; Esculcas, A. P.; Ferreira, A.; Anderson, M. W., Synthesis and structural studies of microporous titanium-niobium-silicates with the structure of nenadkevichite. Journal of Physical Chemistry 1996, 100, (36), 14978-14983.
    145. Rocha, J.; Brandao, P.; Phillippou, A.; Anderson, M. W., Synthesis and characterisation of a novel microporous niobium silicate catalyst. Chemical Communications 1998, (24), 2687-2688.
    146. Francis, R. J.; Jacobson, A. J., The first organically templated open-framework niobium silicate and germanate phases: Low-temperature hydrothermal syntheses of [(C4N2H11)Nb3SiO10] (NSH-1) and [(C4N2H11)Nb3GeO10] (NGH-1). Angewandte Chemie-International Edition 2001, 40, (15), 2879-2881.
    147.Salvado, M. A.; Pertierra, P.; Garc?′a-Granda, S., Novel Silicate Anion: Si8O2212-. Hydrothermal Synthesis and X-ray Powder Structure ofThree New Niobium Silicates. Inorg. Chem 2001, 40, 4368-4373.
    148. Wang, X. Q.; Huang, J.; Liu, L. M.; Jacobson, A. J., The novel open-framework uranium silicates Na-2(UO2)(Si4O10)center dot 2.1H(2)O (USH-1) and RbNa(UO2)(Si2O6)center dot H2O (USH-3). Journal of Materials Chemistry 2002, 12, (3), 406-410.
    149. Wang, X. Q.; Huang, J.; Jacobson, A. J., [(CH3)(4)N][(C5H5NH)(0.8)((CH3)(3)NH)(0.2)]U2Si9O23F4 (USH-8): An organically templated open-framework uranium silicate. Journal of the American Chemical Society 2002, 124, (51), 15190-15191.
    150. Huang, J.; Wang, X.; Jacobson, A. J., Hydrothermal synthesis and structures of the new open-framework uranyl silicates Rb-4(UO2)(2)(Si8O20) (USH-2Rb), Rb-2(UO2)(Si2O6)center dot H2O (USH-4Rb) and A(2)(UO2)(Si2O6)center dot 0.5H(2)O (USH-5A; A = Rb, Cs). Journal of Materials Chemistry 2003, 13, (2), 191-196.
    151. Chen, C. S.; Chiang, R. K.; Kao, H. M.; Lii, K. H., High-temperature, high-pressure hydrothermal synthesis, crystal structure, and solid-state NMRspectroscopy of Cs-2(UO2)(Si2O6) and variable-temperature powder X-ray diffraction study of the hydrate phase Cs-2(UO2)(Si2O6)(.)0.5H(2)O. Inorganic Chemistry 2005, 44, (11), 3914-3918.
    152. Chen, C. S.; Lee, S. F.; Lii, K. H., K(UO)Si2O6: A pentavalent-uranium silicate. Journal of the American Chemical Society 2005, 127, (35), 12208-12209.
    153. Chen, C. S.; Kao, H. M.; Lii, K. H., K-5(UO2)(2)[Si4O12(OH)]: A uranyl silicate containing chains of four silicate tetrahedra linked by SiO center dot center dot center dot HOSi hydrogen bonds. Inorganic Chemistry 2005, 44, (4), 935-940.
    154.周立亚, 稀土离子掺杂复合氧化物发光材料的制备、表征及其发光性能研究. 中山大学博士学位论文 2005.
    155. 孙家跃,; 杜海燕,; 胡文样, 固体发光材料北京:化学工业出版社. 2003, p56.
    156. 徐光宪主编,, 稀土(下)第 2 版. 北京:冶金工业出版社: 1995; p 124-132.
    157. 张思远; 毕宪章, 稀土光谱理论. 吉林科学技术出版社: 1991.
    158. 林海燕, 稀土掺杂氧化物纳米晶和硼酸盐的制备及光谱性质研究. 吉 林 大 学 硕 士 学 位 论 文 2004.
    159. Judd, B. R., Phys. Res. 1962, 127, 750.
    160. Ofelt, G. S., J. Chem. Phys. 1962, 37, ( 511).
    161. Adachi, G.; Sorita, K.; Kawata, K.; Tomokiyo, K.; Shiokawa, J., Inorg. Chem. Acta. 1985, 109, 117.
    162. Lei, Z. Q.; Wang, Y. P., Chinese Chemical Letters 1991, 11, (2), 881.
    163. Yoshino, N.; Paoletti, S.; Kido , J., Macromolecules 1985, 18, 1513.
    164. 陈占恒, 稀土新材料及其在高技术领域中的应用. 稀土 2000, 21, (1), 53-57.
    165. 余宪恩; 徐金荣; 肖勇强, 高显色荧光粉的新型体系. 中国照明电器 2000, 7, 11-13.
    166.苏文斌; 谷学新; 邹洪等, 稀土元素发光特性及其应用. 化学研究 2001, 12, (4), 55-59.
    167. Ronda, C. R.; Justel, T.; Nikol, H., Rare earth phosphors: fundamentals and applications. J. Alloys.C omp. 1998, 275-277, (669-676).
    168. Ronda.C.R., Recent achievements in research on phosphors for lamps and displays. J. Lumin. 1997, 72 -74, 49-54.
    169. Leskela, M., Rare earths in electroluminescent and field emission display phosphors. J. A lloys.Comp. 1998, 275-277, 702-708.
    170. 杨遇春, 稀土漫谈. 化学工业出版社 p7: 1999.
    171. 章伟光, 稀土发光材料的开发与应用. 贵州化工 2001, 26, (3), 36 -38.
    172. 于桂贤; 袁绍暇, 发光材料的研制及应用. 化工新型材料 2001, 29, (6), 1-5.
    173. Mcclured, S.; Kiss, Z., Survey of the spectra of the divalent rare-earth ions in cubic c rystals. J. C hem.Ph ys. 1963, 39, 32 51-3257.
    174. 刘行仁, 我国稀土发光材料科学技术发展回顾与展望. 世界科技研究与发展 2003, 25, ( 1), 79-84.
    175. 徐长远; 王永生; 黄最明等, 发光材料研究进展. 光电子技术与信息 1997, 10, (1), 8-12.
    176. Imanaka; Tamura, N. S.; Kobayashi , Y., J. Alloy.Compd. 2000, 303-305, 371.
    177. Watanabe, M., Japan Kokai 1973, ,73 /74, 787.
    178. Fukuda, Y.; Fukushuma, F.; Tsujimoto, Y., Ger.Ofen. 1970, 240, 9953.
    179. R onda, C. R.; K ynast, U. H., J. Alloy.Compd. 1993, 192, 55.
    180. Watanave, M.; N ishimra, T., Gwe.Ofen. 1993, 281, 6069.
    181. Leskela, M.; Suikkanen, J., J. Less-CommonMet. 1985, 112, 71.
    182. 张思远, 发光与显示 1993, (3), 180.
    183. 陈维君; 殷凤英; 王守东, 化学与粘结 1997, 1, 170.
    184. Dahmouche, K.; Santill, C. V.; Pulcinelli, S. H., J. Phys.Chem.B. 1993, 103, 4973.
    185. Felsche, J. Solid State Chem. 1972, 5, 266.
    186. Lammers, M. J. J.; Blasse, G., J. Electrochem. Soc. 1987, 134, 2068.
    187. Van Vliet, J. P. M.; Blasse, G., Mater.Res.Bull. 1990, 25, 391.
    188. Wamnaker, W. L.; Ter Vrugt, J. W.; Verlijsdonk, G., J. Solid StateChem. 1971, 3, 452.
    189. Kiliaan, H. S.; Blasse, G., J. Electrochem.Soc. 1989, 136, 562.
    190. Sigai, A. G.; Alexander, M. N. A., U.S .Patent, US4748391.
    191. Hopkins, R. H.; Melaned, N. T., J.Cryst.Growth 1971, 10, 218.
    192. Wickleder, M. S., Inorganic Lanthanide Compounds with Complex Anions. Chem. Rev. 2002, 102, 2011-2087.
    193. Felsche, J., Struct. Bonding (Berlin) 1973, 13, 99.
    194. 田一光. 吉林大学博士学位论文, 长春, 1992.
    195. Rabo, J. A.; Angell, C. L.; Kasai, P. H.; Schomaker, V., Discuss.Faraday Soc., 1966, 41, 328.
    196. Smith, J. V.; Bennett, J. M.; Flanigen, E. M., Nature, 1967, 251, 241.
    197. Newsam, J. M., Solid State Chemistry,Eds. Oxford Univ.Press.,: 1990 Vol. 2, p Chapter Zeolites,n.8.
    198. Corma, A.; Fornes, V.; Rey, F., Appl. Cat., 1990, 59, 333.
    199. 傅兴吉; 王桂馥; 刘举正; 赵永年; 梁映秋; 徐如人, 吉林大学自然科学学报, 1982, (4), 125.
    200. 刘举正; 徐如人; 康鸿业; 金春光; 李淑杰, 石油炼制 1980, 1, (1), 1.
    201. 刘举正; 徐如人等, 石油炼制 1978, 11-12.
    202. 徐如人; 刘举正等, 吉林大学自然科学学报 1977, 3, 73.
    203. 徐如人; 俞国桢; 陆玉琴; 冯守华; 常文翠,, 高等学校化学学报 1980, 1, (1), 1.
    204. 傅兴吉; 刘举正; 梁映秋; 徐如人, 光谱学与光谱分析 1983, 4, (1).
    205. Xu, R.-R..; Chen, Y. G. In The Proceedings of Fifth International Conference on Zeolite, Heyden and Son Ltd.,, 1980; Heyden and Son Ltd.,, 1980; p 321.
    206. Rees, L. V. G.; Zuyi, T., Zeolites, 1986, 6(4), 234.
    207. Rees, L. V. G.; Zuyi, T., Zeolites, 1986,, 6(3), 201.
    208. 陈忠国; 徐小杰; 佘励勤; 蒋金秀; 王素琴, 石油炼制 1979, (8), 16.
    209. 李宣文; 佘励勤; 刘兴云, 催化学报,1982, 3(1), 34
    210. 刘凤仁; 张晏清, 石油炼制 1981, (3), 12.
    211. 刘凤仁; 张晏清; 李惠生, 石油炼制 1981, (8), 12.
    212. 常可怡; 柏子龙; 陈绍洲; 冯冰; 刘馥英, 石油学报(石油加工), 1984, 5(3), 401.
    213. 李荣生; 张武阳; 宋瑞方, 高等学校化学学报 1984, 5, (3), 401.
    214. 佘励勤; 刘兴云; 李宣文, 石油炼制 1981, (8), 12.
    215. 王秋莹; 柳南辉; 柏任航; 袁世雪; 孟益民, 催化学报, 1987, 8, (1), 93.
    216. 傅军; 鲍书林; 须沁华; 胡澄, 第四届全国分子筛学术会议论文集. 桂林,4A13, 1991,10.
    217. 李全芝; 熊锦程; 朱雷鸣; 薛志元; 戴林森 In 第四届全国分子筛学术会议论文集,桂林 4A15, 1991; 1991.
    218. 舒兴田; 何鸣元 In 第四届全国分子筛学术会议论文集,桂林, 5A11, 1991; 1991.
    219. 严爱珍; 傅军; 何杰; 须沁华, 第四届全国分子筛学术会议论文集. 桂林,4A09, 1991; Vol. 10.
    220. 陈连璋; 鲍钟瑛; 王祥生, 燃料化学学报 1984, 12, (2), 112.
    221. 陈连璋; 王晓晗, 第四届全国分子筛学术会议论文集,桂林 1991, 10, 3A25.
    222. 傅军. 南京大学博士学位论文, 1991.
    223. Venuto, P. B.; Habib, E. T., Catal.. Rev.-Sci. Eng., 1978, 18, (1), 1-150.
    224. Narita, K., J.Lumin. 1971, 4, 73.
    225. Pott, G. T.; Stork, W. H. J., Catal. Rev.-Sci. Eng. 1975, 12, (2), 163-199.
    226. Ozin, G. A.; Kuperman, A.; Wiggenhauser, H., Polym. Prepr.(Am.Chem. Soc., Div Polym. Chem.) 1989, 30, (2), 552.
    227. 苏锵, 忠国化学会第四届无机化学讨论会论文摘要集 1992, p 666.
    228. McClure, D. S., Solid State Phys. 1959, 9, 399.
    229. A.A.卡明斯基著,; 陈长庚; 林仲达译, 激光晶体. 科学出版社: 1981; p 66.
    230. Blasse, D. S., Handbook on the Physics and Chemistry of Rare Earths , . North-Holland Publishing Company Chapter 34 1979; p 237.
    231. Tanguay, J. F.; Suib, S. L., Catal. Rev.-Sci. Eng. 1987, 29, (1), 1-40.
    232. 孙家跃. 吉林大学博士学位论文.
    233. Arakawa.T; Takata, T.; Takakuwa, M.; Adachi; Gin-Ya; Shiokawa, J., Mat. res. Bull. 1982, 17, 171
    234. Arakawa, T.; Takakuwa, M.; Shiokawa, J., Bull.Chem. Soc. Jpn. 1984, 57, (4), 948.
    235. Arakawa, T.; Takakuwa, M.; Adachi, G. Y.; Shiokawa, J., J..Chem.Soc., Chem. Commun. 1979, 453.
    236.Bergaya, F.; Damme, H. V., J. . Chem. Soc., Faraday Trans .2 1983, 79, 505
    237. Kasai, P. H.; Bishop, R. J. J., J. Phys.Chem 1977, ,81, 1527.
    238. Araka, T.; Takata, T.; Adachi, G.; Shiokawa, J., J. Luminescence, 1979, 20, 325.
    239. Arakawa, T.; Takata, T.; Shiokawa, J., Chem.Phys. Lett., 1980, 72, 469.
    240. Garten, R. L.; Peglass, M. N.; Boudart, M., J.Catal, 1970, 18, 90.
    241. 轻部健二, 公开特许公报(A),平 2-249286.
    242. Tsutomn, I.; Kenji, K.; Jan, Kokai Tokkyo Koho JP, 90249286.
    243. Nobukazu, K.; Nobuhiro, K.; Seramikkusu, N., 1990, 3, (12), 29.
    244. Ramamurthy, V.; Corbin, D. R., et al ,Tetrahedron Lett. 1989, 30, (40), 5833.
    245. Ramamurthy, V.; Corbin, D. R.; Turro, N. J.; Sato, Y., Tetrahedron Lett., 1989, 30, (43), 5829.
    246. Wada, Y.; Yoshizawa, Y.; Morikawa, A., J .Chem. Soc.,Chem. Commun. 1990, 55, (18), 5269.
    247. Ramamurthy, V.; Corbin, D. R.; Eaton, D. F., J.Org. Chem. 1990, ,55, (18), 5269.
    248. Kelly, G.; Willsher, C. J.; Wilkinson, F.; et al; Can, J .Chem. 1990, 68, (6), 812.
    249. Fox, M. A.; Pettit, T. L., Langmuir, 1989, ,5, 1056.
    250. Bard, A. J., J .Photochem. 1979, 10, 59-75.
    251. Stein, G.; E., W., J .Chem..Phys. 1975, 62, 208.
    252. Horrocks, W., D; Sudnik, D. R., J. Am. Chem. Soc. 1979, 101, 334.
    253. Shannon, R. D.; Gier, T. E.; Fovas, C. M.; Nelen, J. A.; Appleman, D. E., Phys. Chem. Miner. 1980, 5, 245-253.
    254. Haile, M. PhD Thesis. Massachusetts Institute of Technology ,, 1992.
    255.Haile, S. M.; Wuensch, B. J.; Siegrist, T.; Laudise, R. A., Conductivity and Crystallography of New Alkali Rare-Earth Silicates Synthesized as Possible Fast-Ion Conductors. Solid State Ionics 1992, 53-6, 1292-1301.
    256. Haile, S. M.; Wuensch, B. J.; Laudise, R. A., Hydrothermal Synthesis of New Alkali Silicates .2. Sodium Neodymium and Sodium Yttrium Phases. Journal of Crystal Growth 1993, 131, (3-4), 373-386.
    257. Haile, S. M.; Wuensch, B. J.; Siegrist, T.; Laudise, R. A., Hydrothermal Synthesis of New Alkali Silicates .1. Potassium Neodymium Phases. Journal of Crystal Growth 1993, 131, (3-4), 352-372.
    258. Haile, S. M.; Wuensch, B. J.; Laudise, R. A.; Maier, J., Structure of Na3NdSi6O15 center dot 2H(2)O - A layered silicate with paths for possible fast-ion conduction. Acta Crystallographica Section B-Structural Science 1997, 53, 7-17.
    259. Haile, S. M.; Wuensch, B. J., Comparison of the crystal chemistry of selected MSi6O15-based silicates. American Mineralogist 1997, 82, (11-12), 1141-1149.
    260. Haile, S. M.; Wuensch, B. J.; Siegrist, T., The structure and conductivity of K8Nd3Si12O32(OH): A layered silicate with paths for possible fast-ion condution. Journal of Solid State Chemistry 1999, 148, (2), 406-418.
    261. Haile, S. M.; Wuensch, B. J., X-ray diffraction study of K3NdSi7O17: a new framework silicate with a linear Si-O-Si bond. Acta Crystallographica Section B-Structural Science 2000, 56, 773-779.
    262. Haile, S. M.; Wuensch, B. J., Structure, phase transitions and ionic conductivity of K3NdSi6O15 center dot xH(2)O. II. Structure of beta-K3NdSi6O15. Acta Crystallographica Section B-Structural Science 2000, 56, 349-362.
    263. Haile, S. M.; Wuensch, B. J., Structure, phase transitions and ionic conductivity of K3NdSi6O15 center dot xH(2)O. I. alpha-K3NdSi6O15 center dot 2H(2)O and its polymorphs. Acta Crystallographica Section B-Structural Science 2000, 56, 335-348.
    264. Rocha, J.; Ferreira, P.; Carlos, L. D.; Ferreira, A., The first microporous framework cerium silicate. Angewandte Chemie-International Edition 2000, 39, (18), 3276-3279.
    265. Ananias, D.; Ferreira, A.; Rocha, J.; Ferreira, P.; Rainho, J. P.; Morais, C.; Carlos, L. D., Novel microporous europium and terbium silicates. Journal of the American Chemical Society 2001, 123, (24), 5735-5742.
    266. Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J., Novel microporous lanthanide silicates with tobermorite-like structure. Journal of the American Chemical Society 2003, 125, (47), 14573-14579.
    267. Ananias, D.; Ferreira, A.; Carlos, L. D.; Rocha, J., Multifunctional sodium lanthanide silicates: From blue emitters and infrared S-band amplifiers to X-ray phosphors. Advanced Materials 2003, 15, (12), 980-985.
    268. Rocha, J.; Carlos, L. D., Microporous materials containing lanthanide metals. Current Opinion in Solid State & Materials Science 2003, 7, (3), 199-205.
    269. Ananias, D.; Rainho, J. P.; Ferreira, A.; Rocha, J.; Carlos, L. D., The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates. Journal of Alloys and Compounds 2004, 374, (1-2), 219-222.
    270. Kostova, M. H.; Ananias, D.; Paz, F. A. A.; Ferreira, A.; Rocha, J.; Carlos, L. D., Evolution of Photoluminescence across Dimensionality in Lanthanide Silicates. J. Phys. Chem. B. 2007, 111, 3576-3582.
    271. Ananias, D.; Paz, F. A. A.; Carlos, L. D.; Geraldes, C.; Rocha, J., Optical detection of solid-state chiral structures with unpolarized light and in the absence of external fields. Angewandte Chemie-International Edition 2006, 45, (47), 7938-7942.
    272. Jeong, H.-K.; Chandrasekaran, A.; Tsapatsis, M., Synthesis of a new open framework cerium silicate and its structure determination by single crystal X-ray diffraction. Chemical Communications 2002, (20), 2398-2399.
    273. Rocha, J.; Ferreira, P.; Lin, Z.; Brandao, P.; Ferreira, A.; deJesus, J. D. P., The first synthetic microporous yttrium silicate containing framework sodium ions. Chemical Communications 1997, (21), 2103-2104.
    274. Rocha, J.; Ferreira, P.; Lin, Z.; Brandao, P.; Ferreira, A.; de Jesus, J. D. P., Synthesis and structural characterization of microporous yttrium and calcium silicates. Journal of Physical Chemistry B 1998, 102, (24), 4739-4744.
    275. Ponomarev, V. I.; Filipenko, O. S.; Atovmian, L. O., SoV. Phys. Dokl. 1988, 33, 87.
    276. Filipenko, O. S.; Shilov, G. V.; Leonova, L. S.; Tkacheva, N. S.; Dimitrova, O.V.; Ponomarev, V. I., Russ. J. Coord. Chem. 1999, 25,, 877-884.
    277. Maksimov, B. A.; Ilyukhin, V. V.; Belov, N. V., SoV. Phys. Dokl. 1969, 13, 638.
    278. Huang, M.-Y.; Chen, Y.-H.; Chang, B.-C.; Lii, K.-H., High-temperature, high-pressure hydrothermal synthesis, crystal structure, and luminescence properties of Cs3EuSi6O15, a new europium(III) silicate with a three-dimensional framework structure. Chemistry of Materials 2005, 17, (23), 5743-5747.
    279. Lowry, T. M., Optical Rotatory Power. Dover Publication: New York, 1964.
    280. Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta , J.; O’Connor, C. J., Science 1993, 1596-1599.
    281. Neeraj, S.; Natarajan, S.; Rao, C. N. R., Chem. Commun. 1999, 165-166.
    282. Gier, T. E.; Bu, X.; Feng, P.; Stucky, G. D., Nature 1998, 395, 154-157.
    283. Kniep, R.; Will, H. G.; Boy, I.; R?hr, C., Angew. Chem. Int. Ed. 1997, 36, 1013-1014.
    284. Yilmaz, A.; Bu, X.; Kizilyalli, M. S., G. D., Chem. Mater. 2000, 12, 3243-3245.
    285. 王宇, 具有手性结构特征的金属磷酸盐的合成与表征. 吉林大学博士学位论文 2004, 及其发表的论文.
    286. Treacy, M. M. J.; Newsam, J. M., Nature 1988, 332, 249-251.
    287. Davis, M. E.; Lobo, R. F., Chem. Mater. 1992, 4, 756-768.
    288. Davis, M. E., Acc. Chem. Res. 1993, 26, 111-115.
    289. 徐如人,; 庞文琴等编, 《分子筛与多孔材料化学》. 科学出版社 2004; p 63.
    290. Vorma, A., Mineralogical Magazine and Journal of the Mineralogical Society 1963, 33, 615-617.
    291. Haile, S. M. PhD thesis. Massachusetts Institute of Technology, Massachusetts, Cambridge, 1992.
    292. Nelson, A. E.; Schulz, K. H., Surface chemistry and microstructural analysis of CexZr1-xO2-y model catalyst surfaces. Applied Surface Science 2003, 210, (3-4), 206-221.
    293. Luo, F.; Jia, C. J.; Song, W.; You, L. P.; Yan, C. H., Chelating ligand-mediated crystal growth of cerium orthovanadate. Crystal Growth & Design 2005, 5, (1), 137-142.
    294. Felsche, J., Naturwissenschaften 1971, 58, 218.
    295. Marchand, R. L.; Haridon, P.; Laurent, Y. J., Solid State Chem. 1978, 24, 71.
    296. Smolin, Y. I., Kristallografiya 1969, 14, 985.
    297. Michel, C.; Buisson, G.; Bertaut, E. F., Compt. Rend 1967, 264, 397.
    298. Maksimov, B. A.; Ilyukhin, V. V.; Kharitonov, Y. A.; Belov, N. V., Kristallografiya 1970, 15, 926.
    299. Kolitsch, U.; Ijevskii, V.; Seifert, H. J.; Wiedmann, I.; Aldinger, F. J., Mater. Sci 1997, 32, 6135.
    300. Mu¨ ller-Bunz, H.; Schleid, T., Z. Anorg. Allg. Chem 1999, 625, 613.
    301. Kono, Y.; Uematsu, K.; Sato, M., Kidoruip 1994, 24, 148.
    302. Avestisyan, E. I.; Chichagov, A. V.; Belov, N. V., Kristallography 1970, 15, 1066–1067.
    303. Chichagov, A. V.; Belov, N. V., Geokhimiya 1968, (1968), 1456–1461.
    304. Chichagov, A. V.; Ilyukhin, V. V.; Belov, N. V., Dokl. Akad. Nauk SSSR 1967, 177, 574–577.
    305. Merinov, B. V.; Maksimov, B. A.; Ilyukhin, V. V.; Belov, N. V., Dokl. Akad. Nauk SSSR 1979, 248, 1108.
    306. Maksimov, B. A.; lyukhin, V. V.; Belov, N. V., Kristallografiya 1966, 11, 681.
    307. Nikolsky, Y. V., Dokl. Akad. Nauk SSSR 1976, 230, 331.
    308. Steele, I. M.; Pluth, J. J.; Ito, J., Z. Kristallogr 1978, 147, 119.
    309. Kono, Y.; Uematsu, K.; Sato, M., Kidoruip 1994, 24, 148.
    310. Balko, V. P.; Bakakin, V. V., Zh. Struk. Khim 1975, 16, 837.
    311. Merinov, B. V.; Maksimov, B. A.; IIyukhin, V. V.; Belov, N. V., Dokl.Akad. Nauk SSSR 1980, 255, 348–351.
    312. Chi, L.-S.; Chen, H.-Y.; Deng, S.-Q.; Zhuang, H.-H.; Huang, J.-S., Acta Crystallogr 1996, C52, 2385.
    313. Chi, L.-S.; Chen, H.-Y.; Lin, X.; Zhuang, H.-H.; Huang, J.-S., Jiegon Huaxue 1998, 17, 297.
    314. Mu¨ ller-Bunz, H.; Grossholz, H.; Schleid, T., Z. Anorg. Allg.Chem 2001, 627, 1436.
    315. Serhan, K.; Taibi, M.; Aride, J.; Boukhari, A.; Darriet, J.; LeFlem, G. J., Solid State Chem. 1994, 110, 384.
    316. Zenser, L.-P.; Weil, M.; Gruehn, R., Z. Anorg. Allg. Chem 1999, 625, 423.
    317. Benbertal, D.; Mosset, A.; Trombe, J. C., Mater. Res. Bull. 1994, C 29, 47.
    318. Betteridge, P. W.; Cheetham, A. K.; Howard, J. A. K.; Jakubicki, G.; McCarroll, W. H., Inorg. Chem 1984, 23, 737.
    319. Fallon, G. D.; Gatehouse, B. M., Refinement of the Structure of' Sodium Gadolinium Silicate',NaGdSiO4.xNaOH (x _~ 0.2). Acta Crystallogr. 1982, B38, 919–920.
    320. Malinovskii, Y. A., Dokl. Akad. Nauk SSSR 1984, 274, 75–78.
    321. Sebais, M.; Dorokhova, G. I.; Pobedimskaya, E. A.; Khomyakov, A. P.; , Dokl. Akad. Nauk SSSR 1984, 278, 353–357.
    322. Dakhlaoui, A.; Toumia, M.; Smiri, L. S.; Bulou , A., Infrared and polarized Raman spectra of a noncentrosymmetric compound“sodium samarium fluorosilicate” NaSmSiO4·0.25NaF. Spectrochimica Acta Part A 2005, 61, 193–198.
    323. Avetisyan, E. I., ; Chichagov, A. V.; Belov, N. V., Soy. Phys. Crystallogr 1971, 15, 926-927.
    324. Kiliaan, H.S. ; Van Herwltnenf, P.; G., B., SENSITIZATION 0FTb3+LUMINESCENCEIN NaGdSi04. Materials Chemistry and Phqvics 1987, 18, 351-358.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.