介孔SiO_2负载磷钨酸催化剂的研究及催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以介孔材料SBA-15和改性SBA-15(SBA-15-NH2)为载体,用浸渍法和原位合成法制备了一系列负载型磷钨酸催化剂,运用傅里叶变换红外光谱(FT-IR)、透射电镜(TEM)、X-射线衍射(XRD)、N2-吸附脱附、NH3-TPD等分析手段对所制备的催化剂进行表征,并且通过催化合成苹果酯的反应评价催化剂的催化活性、选择性及重复使用性能。
     以SBA-15为载体,采用浸渍法制备了一系列不同负载量的负载磷钨酸催化剂HPW/SBA-15,并对其进行FT-IR、TEM、XRD、N2-吸附脱附及NH3-TPD分析。结果表明,浸渍法制备的催化剂中磷钨酸仍然保持Keggin型结构,磷钨酸成功进入SBA-15孔道内部,在高负载量下,磷钨酸在SBA-15孔道内部发生晶相聚集,介孔孔道发生堵塞使比表面积、孔容和孔径明显减小, HPW/SBA-15的酸性较纯磷钨酸略有下降。此外,浸渍法制备的HPW/SBA-15催化剂在催化苹果酯合成反应中显示出了很高的活性及较好的选择性,但是重复使用效果不佳,在最佳工艺条件下重复使用6次以后,反应转化率仅为30%。
     分别采用灼烧和溶剂萃取去除模板法制备SBA-15,使用氨丙基三甲氧基硅烷(APTES)对SBA-15孔道表面进行氨基改性,然后采用浸渍法制备催化剂HPW/NH2/SBA-15,FT-IR、TEM、XRD、N2-吸附脱附及NH3-TPD分析结果表明,磷钨酸在载体表面高度分散没有晶相产生,同时仍然保持了Keggin型结构特征。溶剂萃取去模板法制备的SBA-15表面比灼烧法制备的载体富含羟基,因此能嫁接更多的氨基,进而能负载更多的磷钨酸,并且磷钨酸分散性更好。该法制备的催化剂显示出了较好的重复使用性能,重复使用6次,反应转化率一直维持在50%左右,但是由于氨基与磷钨酸较强的化学作用导致催化剂酸性降低,进而导致催化剂的活性不高。
     利用原位合成法在SBA-15的合成过程中加入磷钨酸制备负载催化剂DS-HPW/SBA-15,FT-IR、TEM、XRD、N2-吸附脱附及NH3-TPD分析结果表明,该法制备的催化剂中磷钨酸高度分散没有晶相峰产生,依然保持了Keggin型结构特征峰,在较低负载量时催化剂仍然保持了SBA-15长程有序的规整孔道结构,在负载量达到33.3%时,催化剂高度有序的结构遭到破坏。溶脱实验表明,该催化剂具有较好的水热稳定性,同时,在催化苹果酯合成反应中显示出了高活性和较好的重复使用性,重复使用6次以后,反应转化率为80.3%。
12-Tungstophosphoric acid was supported on SBA-15 and amine-modified SBA-15 by impregnation and direct synthesis . The structure and properties of the catalysts were characterized by FT-IR, XRD, N2 adsorption-desorption, TEM, and NH3–TPD. And the catalytic activity, selectivity and reusability was evaluated by catalytic synthesis of fructone.
     A series of different loading of catalysts expressed as HPW/SBA-15 were prepared by impregnating SBA-15 with HPW, and were characterized by FT-IR, XRD, N2 adsorption-desorption, TEM, and NH3–TPD. The result showed that the Keggin structure of the heteropolyanions was Maintained, but the Acid of the catalysts was reduced. And the BET surface area, pore volume and pore diameter decreased beacause the tungstophosphoric acid entered the pore, and in the high-loading amount aggregation occurred. The catalysts exhibited excellent catalytic activity and selectivity except for reusability, and the reaction conversion dropped to 30% after reused for six times.
     Templates were Removed by calcination and extraction, and the prepared SBA-15 was modified by APTES, and 12-tungstophosphoric acid was supported on amine-modified SBA-15 by impregnation. The structure and properties of the catalyst were characterized by FT-IR, XRD, N2 adsorption-desorption, TEM, and NH3–TPD. The result showed that the Keggin structure of the heteropolyanions was maintained and the tungstophosphoric acid dispersed highly. The surface of SBA-15 prepared by extracting template contains more silanol groups and can combine more amino and phosphotungstic acids. The catalysts exhibited excellent reusability but low activity beacause the acidity of the catalysts were reduced.
     SBA-15 ordered mesoporous silica materials containing of HPW heteropoly acid were synthesized via involving HPW in the SBA -15 synthesis process. The results of FT-IR, XRD, N2 adsorption-desorption, TEM, and NH3–TPD showed that the Keggin structure of the heteropolyanions was maintained and the tungstophosphoric acid dispersed highly. The catalysts maintained the ordered mesoporous structure in the low-loading amount, but the ordered structure damaged in the loading amount of 33.3%. The catalysts exhibited excellent catalytic activity, selectivity and reusability, and the reaction conversion reached up to 80.3% after reused for six times.
引文
[1] Kresge C T, Leonowicz M E, Roth W J, etc. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359(6397):710-712
    [2] Beck J S, Vartuli J C, Roth W J, etc. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114(27): 10834-10843
    [3] Zhao Dongyuan, Huo Qisheng, Feng Jianglin, etc. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J Am Chem Soc, 1998, 120:6024-6036
    [4] Jun S, Joo S H, Ryoo R. Synthesis of new ,nanoporous carbon with hexagonally ordered mesostructure[J]. J Am Chem Soc, 2000, 122: 10712-10713
    [5]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004:597
    [6] Edler Karen J, White John W. Room– temperature formation of molecular sieve MCM-41[J]. J Chem Soc Chem Commun, 1995 (2): 155-156
    [7] Chatterjee M, Iwasaki T, Hayashi H, etc. Room-temperature formation of thermally stable aluminum-rich mesoporous MCM-41[J]. Catal Lett, 1998, 52: 21-23
    [8]Wu C G, Bein T. Microwave synthesis of molecular sieve MCM-41, Chem Commun. 1996: 925-926
    [9] Lin Wenyong, Chen Jiesheng, Sun Yan, etc. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel[J]. J Chem Soc Chem Commun, 1995(23): 2367-2368
    [10] Fyfe Colin A, Fu Guoyi. Structure Organization of Silicate Polyanions with Surfactants: A New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials[J]. J Am Chem Soc, 1995, 117(38): 9709-9714
    [11] Gallis Karl W, Landry Christopher C. Synthesis of MCM–48 by a Phase Transformation Process[J]. Chem Mater, 1997, 9(10): 2035-2038
    [12] Maclachlan Mark J, Coombs Neil, Ozin Geoffrey A. Non - aqueous supramolecular assembly of mesostructured metal germanium sulfides from (Ge4S10)(4-) clusters[J]. Nature, 1999, 397(6721):681-684
    [13]姚云峰,张迈生,杨燕生等.纳米介孔分子筛MCM-41的微波辐射合成法[J].物理化学学报,2001:1117-1122
    [14] Newalkar Bharat L, Komarneni Sridhar, Katsuki Hiroaki. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process[J]. Chem Commun, 2000, 2(23): 2389-2390
    [15] Yang Peidong, Zhao Dongyuan, Margolese David I, etc. Generalized syntheses of large– pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998,396(6707):152-155
    [16] Lin W Y, Chen J S, Sun Y, etc. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel[J]. J Chem Soc Chem Commun, 1995(23): 2367-2369
    [17] Zhao Dong Yuan, Yang Pei Dong, Melosh Nick, etc. Continuous mesoporous silica films with highly ordered large pore structures[J]. Adv Mater,1998, 10(16): 1380-1385
    [18] Brinker C Jeffrey,Lu Yunfeng, Sellinger Alan, etc. Evaporation - induced self-assembly. Nanostructures made easy[J]. Adv Mater, 1999, 11(7): 579-585
    [19] Melosh N A, Lipic P, Bates F S, etc. Molecular and Mesoscopic Structures of Transparent Block Copolymer-Silica Monoliths[J]. Macromolecules,1999, 32(13): 4332-4342
    [20] Melosh N A, Davidson P, Chmelka B F. Monolithic mesophase silica with large ordering domains[J]. J Am Chem Soc, 2000, 122(5): 823-829
    [21] Yang Peidong, Zhao Dongyuan, Margolese, etc. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework[J]. Chem Mater,1999, 11(10): 2813-2826
    [22] Grosso David, Illia Galo, Crepaldi E L, etc. Nanocrystalline transition -metal oxide spheres with controlled multi-scale porosity[J]. Adv Funct Mater, 2003, 13(1): 37-42
    [23] Crepaldi E L, Soler-Illia G, Grosso D, etc. Design and post -functionalisation of ordered mesoporous zirconia thin films[J]. Chem Commun, 2001 (17): 1582-1583
    [24] Namba S, Mochizuki Atsushi, Kito Muneharu. Fine control of pore size of highly ordered MCM-41 by using template mixtures of dodecyltrimethylammonium bromide/hexadecyltrimethylammonium bromide with various molar ratios[J]. Chem Lett, 1998(7): 569-570
    [25] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995,267(5199):865-867
    [26]Zhao D, Feng J, Huo Q, etc. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science, 1998, 279(5350): 548-552
    [27] Tian B, Liu Xiaoying, Yu Chengzhong, etc. Microwave assisted template removal of siliceous porous materials[J]. Chem Commun, 2002(11):1186-1187
    [28] Ravikovitch P I, Neimark Alexander V. Characterization of Micro- and Mesoporosity in SBA-15 Materials from Adsorption Data by the NLDFT Method[J]. Journal of Physical Chemistry B, 2001, 105(29): 6817-6823
    [29] Galarneau Anne, Cambon Helene, Di Renzo, etc. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis[J]. New J Chem, 2003,27(1): 73-79
    [30] Kleitz Freddy, Schmidt Wolfgang, Schuth Ferdi. Calcination behavior of differentsurfactant-templated mesostructured silica materials[J]. Microporous Mesoporous Mater, 2003, 65(1): 3-29
    [31]Chia-Min Yang, Bodo Zibrowius, Wolfgang Schmidt, etc. Stepwise Removal of the Copolymer Template from Mesopores and Micropores in SBA-15[J]. Chem. Mater, 2004, 16:2918-2925.
    [32] Kruk M, Jaroniec Mietek, Ryoo R, etc. Characterization of the Porous Structure of SBA-15[J]. Chem Mater, 2000,12(7): 1961-1968
    [33] Choi M, Heo W, Kleitz Freddy. Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness[J]. Chem Commun, 2003 (12): 1340-1341
    [34] John S Lettow, Yong Jin Han, Patrick Schmidt-Winkel, etc. Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas[J]. Langmuir 2000, 16:8291-8295
    [35] Beck J S, Vartuli J C, Roth W J, etc. A new family of mesoporous molecular sieves prepared with liquid-crystal templates[J]. J Am Chem Soc, 1992, 114:10834-10843
    [36] Monnier A, Schuth F, Huo Q S, etc. Cooperative Formation df Inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261:1299-1303
    [37]Huo Q S, Margolese D I, Ciesla U, etc. Generalized synthesis of periodic surfactant/inorganic composite-materials[J]. Nature, 1994, 368:317-321.
    [38] Huo Q S, Margolese D I, Ciesla U, etc. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chem. Mater, 1994, 6:1176-1191
    [39]张一平,周春晖,王学杰等.有机功能化介孔氧化硅的制备和表征[J].化学进展,2008,20(1):34-40
    [40] X Feng, etc. Functionalized Monolayers on Ordered Mesoporous Supports[J]. Science, 1997, 276, 923-926
    [41]薛屏,徐立冬.环氧基功能化SBA-15介孔分子筛的制备、表征及其固定化青霉素酰化酶[J].分子催化,2006,20(6):579-584
    [42]张广宏,季生福,万会军等.铜锰基SBA-15催化剂的制备及甲苯燃烧消除的催化性能[J].北京化工大学学报,2008,35(1):5-10
    [43]邵芸.嫁接法制备Ni/SBA-15催化剂的催化氯苯加氢脱氯[J].2011,27(9): 1691-1696
    [44]乐颖毅.表面选择性修饰的介孔硅材料为载体的钨基催化剂的制备、表征及其在非均相催化反应中的应用[D]:[硕士学位论文].上海:复旦大学,2009
    [45] Kozhevnikov I V, Matveev K I. Homogeneous catalysts based on heteropoly acids (review)[J]. Appl catal A:Gen, 1983, 5(2): 135-150
    [46]王恩波,胡长文,徐林.多酸化学导论[M].北京:化学工业出版社,1998.1-35
    [47] Yusuke Izumi, Kazyo Urabe. Catalysis of heteropolyacids entrapped in activated carbon[J]. Chemistry Letters,1981:663-666
    [48] Sulikowski B, Haber J, Kubacka A, etc. Novel "ship-in-the-bottle" type catalyst: evidence for encapsulation of 12-tungstophosphoric acid in the supercage of synthetic faujasite[J]. Catalysis Letters,1996,39:27-31
    [49] Yusuke Izumi, Katsunori Hisano, Tomoko Hida. Acid catalysis of silica-included heteropolyacid in polar reaction media[J]. Applied Catalysis A: General, 1999, 181:277-282
    [50]胡玉才,叶兴凯,吴越.杂多酸在膨润土上的固载化-表面酸性和吸附机理的研究[J].离子交换与吸附, 1995, 11(l):55一67
    [51]孙渝,乐英红,李惠云等. MCM-41负载磷钨杂多酸催化剂的性能研究[J].化学学报, 1999, 57: 746-753
    [52]张雪峥,乐英红,高滋. PW/SBA-15负载型催化剂的性能研究[J]. 2001,22:1169-1172
    [53] Kaleta Waldema, Nowinska Krystyna. Immobilization of heteropoly anions in Si-MCM-41 channels by means of chemical bonding to aminosilane groups[J]. Chem Comm, 2001 (6): 535-536
    [54]杨水金.合成苹果酯的催化剂研究[J].香料香精化妆品, 2003(1): 23-26
    [55]刘晓娣,刘士荣.活性炭负载磷钨酸催化剂的表征及其催化性能[J].分子催化,2007,21(6): 503-509
    [56]杨水金,沈益忠,黄永葵. H3PW6Mo6O40/SiO2催化合成苹果酯[J].化工中间体,2011(10):45-48
    [57]张富民,袁超树,王军.SBA-15负载杂多化合物在苹果酯合成中的催化性能[J].高校化学工程学报,2006,20(6):1021-1024
    [58]郭红起,刘士荣,毛明富等.SBA-15固载磷钨酸催化剂的制备及催化性能[J].分子催化,2011, 25(6): 497
    [59]施介华,胡玉华,王桂.活性炭负载磷钨酸催化合成己二酸二正丁酯的研究[J].高校化学工程学报,2007(2):269-274
    [60]罗玉梅,杨水金.磷钨酸催化合成苹果酯[J].化学与生物工程, 2004(2): 22-25
    [61]杨仕豪,兰柳波,李移.苹果酯和苹果酯-B的合成研究[J].化学世界,1999:90-93
    [62] Daniel Carriazo, Concepcio Domingo, Cristina M. PMo or PW heteropoly acids supported on MCM-41 silica nanoparticles: Characterisation and FT-IR study of the adsorption of 2-butanol[J]. Journal of Solid State Chemistry, 2008, 181:2046-2057
    [63] Karimi Z, Mahjoub A R, Davari A F. SBA immobilized phosphomolybdic acid: Efficient hybrid mesostructured heterogeneous catalysts[J]. Inorganica Chimica Acta, 2009,362:3725–3730
    [64]蔡晓慧,朱广山,辛明红.氧化处理去除介孔材料模板的研究[J].高等学校化学学报,2006,27(7):1214-1216
    [65]旷春桃,李湘洲,胡珍等.H3PW12O40/C催化合成苹果酯和苹果酯-B[J].食品科技2007(6):162-165
    [66] Hong-liang Li, Nina Perkas, Qiao-ling Li. Improved Silanization Modification of a SilicaSurface and Its Application to the Preparation of a Silica-Supported Polyoxometalate Catalyst[J]. Langmuir, 2003, 19:10409-10413
    [67] Jessica M,Rosenholm, Mika Linde. Chem. Mater,2007, 19:5023-5034
    [68]赖小勇.几种介孔材料的硬模板法制备及其气敏性质研究[D].[博士学位论文].吉林:吉林大学,2009
    [69] Gagea B C, Lorgouilloux Y, Altintas Y. Bifunctional conversion of n-decane over HPW heteropoly acid incorporatedinto SBA-15 during synthesis[J]. Journal of Catalysis,2009, 265 :99-108
    [70] Alexei Lapkin, BengüBozkaya, Tim Mays, Preparation and characterisation of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica[J]. Catalysis Today,2003, 81:611–621
    [71] Li J J, Hu Q, Tian H. Expanding mesoporosity of riblock-copolymer-templated silica under weak synthesis acidityJournal of Colloid and Interface[J]. Science, 2009,339:160–167
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.