Pr_(0.75)Na_(0.25)Mn_(1-x)Fe_xO_3的合成、结构和磁电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强关联钙钛矿锰氧化物体系的研究表明电荷、自旋、轨道和晶格自由度之间存在相互耦合和竞争,并由此诱发产生了绝缘-金属转变、有序化、相分离和变磁相变等一系列新奇物理现象。由此产生很多对上述现象进行解释的理论和模型进一步推动该领域的发展,使得强关联钙钛矿锰氧化物体系的研究成为二十一世纪科学技术特别是凝聚态物理强关联电子系统的主要研究热点之一。但目前仍有很多磁现象产生的物理根源及它们之间的关系没有完全研究清楚。
     本文以具有典型低温相分离特征的Pr_(0.75)Na_(0.25)Mn_(1-x)Fe_xO_3系列样品为具体研究对象,在合成系列单相样品的基础上,通过X-ray衍射(XRD)、X-ray荧光光谱分析(XRF)、扫描电镜(SEM)、红外分析(IR)等多种技术确定了系列样品的微观结构及阳离子比例,用物理性质测量系统(PPMS)对系列样品的M-T、M-H、ρ-T和ρ-H曲线,交流磁化率及弛豫效应等磁电性质进行了系统研究,分析了电荷有序、轨道有序与Fe掺杂量之间的关系,系列样品的低温相分离特征及其与台阶状变磁相变的关系,磁场诱导产生的变磁相变与可能的自旋/轨道量子转变的物理本质。
     采用溶胶凝胶法首次合成了单相的多晶Pr_(0.75)Na_(0.25)Mn_(1-x)Fe_xO_3系列样品,结合XRF分析,证明了sol-gel法确实避免了Na元素挥发和锰氧化物析出,这是由于sol-gel法合成样品较固相反应法所需的温度低、时间短,这是本论文的创新之一,为制备含易挥发元素的氧化物陶瓷样品提供了新的思路。SEM照片表明sol-gel法制得的样品致密度较固相反应法制得的样品致密度稍差一些;IR分析表明MnO6八面体的Jahn-Teller畸变随Fe含量的增加而减弱。
     sol-gel法制得的样品Pr_(0.75)Na_(0.25)MnO_3的电荷有序(CO)峰的相对强度要明显强于用固相反应法制得的相同名义配比的样品(该样品实际Pr/Na=0.80:0.20)。同时,前者的电阻率也明显比后者高。这可以归于两个原因:(1) sol-gel法制得的样品Pr_(0.75)Na_(0.25)MnO_3中Mn4+/Mn3+~1:1对应较强的电荷有序反铁磁(COOAF)相,从而使与之竞争的铁磁金属态相对较弱。(2) sol-gel法制得的样品晶粒间不致密,使晶界电阻较大。
     研究了Fe掺杂对Pr_(0.75)Na_(0.25)MnO_3中CO和磁有序的影响。Fe掺杂抑制了长程CO,并使CO温度向低温移动。在x≤0.05时铁磁成分随Fe含量增加而增加,电阻率随Fe含量增加而下降,然而二者随Fe含量进一步增加均朝相反的趋势变化。这种复杂的现象可以通过几何效应(Fe3+的几何尺寸大小)和电子结构的影响两个方面的竞争来解释。在Pr_(0.75)Na_(0.25)Mn_(1-x)Fe_xO_3中几何效应在低掺杂范围内起主导作用,Fe3+对双交换的削弱作用在高掺杂范围内起主导作用。这一观点为理解强关联体系中的相互作用关系提供了新的机制。x≤0.05样品在2 K出现了台阶状变磁相变现象,这是在相分离框架下由COOAF相向铁磁(FM)相转变引起的。由于Fe掺杂抑制了COOAF相,x≥0.1的样品在2 K下并没有出现台阶状变磁相变。为了考察2 K下无变磁相变现象样品的基态,详细研究了Pr0.75Na0.25Mn0.9Fe0.1O3的基态。分析表明Pr0.75Na0.25Mn0.9Fe0.1O3基态是铁磁团簇和反铁磁基质共存的相分离基态。铁磁团簇体积随外磁场的增加而增大,但是直到5 T场下铁磁团簇仍然没有完全占据该样品。这一结果有力的支持了当今锰氧化物强关联物理中占主导地位的相分离机制。另外,即便是在5 T外场下65 K以下Pr0.75Na0.25Mn0.9Fe0.1O3仍然是绝缘态,65 K以上电阻率表现了磁性半导体的特征。研究了多晶样品Pr0.75Na0.25Mn1-xFexO3(0≤x≤0.30)中2 K下台阶状变磁相变现象。数据分析表明该系列样品中存在三种相。即COOAF、FM、AFII (与COOAF不同类型的一种反铁磁相)。AFII的反铁磁交换作用比COOAF强,首次提出了AFII所占的百分比是临界场Hc大小的决定因素的观点,并用自旋势垒模型解释了多晶锰氧化物中陡峭的台阶状的变磁相变(临界场宽度< 0.01 T)及相关物理现象。自旋阻塞温度以下的台阶状变磁相变和自旋阻塞温度以上的渐变型变磁相变都起源于COOAF相。这两种变磁相变的锐度及临界场大小之间的显著差异主要是由自旋在不同温度下的属性差异引起的。
There exist strong couplings and competitions among the spin, charge, orbital, and lattice degrees of freedom, which can induce a wide variety of newly novel phenomena such as insulator-metal transition, orderings and phase separation and metamagnetic phase transition etc by studying of the strongly correlated perovskite manganites. Therefore, many theories and models have been brought forward in order to explain those phenomena, which will arouse the further development of this research field in the future. This probably makes strongly correlated manganites one of the hotspots in the field of condensed matter physics in the 21st century. While the origins of many magnetic phenomena and the relatation among them are still open questions.
     In this dissertation, based on the preparation of single-phase polycrystalline sample series by a sol-gel technique, the phase-separated Pr0.75Na0.25Mn1-xFexO3 (0≤x≤0.30) at low temperatures are investigated in magnetic fields. XRD (X-ray diffraction), XRF (X-ray fluorescence analysis), SEM (scanning electron microscope) and IR (infrared) spectra were used for microstructure and cationic composition analysises. A PPMS (physics properties measurement system) was used for M-T curves, M-H curves,ρ-T curves,ρ-H curves, ac susceptibility and relaxation effect measurements. The interrelation between charge/orbit ordering and Fe doping was analyzed. At the same time, the phase-separated ground state, the interrelation between the ground state and step-like metamagnetic transition, as well as the mechanisms of magnetic induced metamagnetic transition and the possible quantum spin transition were studied.
     The single-phase polycrystalline perovskites Pr0.75Na0.25Mn1-xFexO3 (0≤x≤0.30) were prepared for the first time by a sol-gel technique. The analysises of XRF and XRD proved that the volatilization of Na and the precipitation of manganese oxide are avoided by sol-gel technique (which offers shorter sintering time and lower temperature than solid-state reaction method). This is a novelty of this dissertation, which proposed a novel idea to prepare oxide ceramics containing volatile element. The scanning electron microscope (SEM) results reveal that the sol-gel-derived compounds are not as compact as ceramic samples. The analysis of IR shows that the Jahn-Teller distortion of MnO6 octahedron decreases with increasing Fe doping.
     The relative intensity of the CO peak of Pr_(0.75)Na_(0.25)MnO_3 synthesized by sol-gel technique is much stronger than that of the sample with the same nominal structural formula synthesized by solid-state method (the real Pr/Na=0.80:0.20). Simultaneously, the resistivity of the former is much larger than that of the latter, which can be ascribed to two factors: First, Mn4+/Mn3+ ~1:1 in the former, which induces stronger charge-orbit ordering antiferromagnetic (COOAF) phase, and weakens the ferromagnetic (FM) phase competed with COOAF. Second, grain boundary effect caused by the granular structure of the sample synthesized by sol-gel technique offers much insulating grain boundary resistance.
     The effects of Fe doping at the Mn site upon the charge and the magnetic order in Pr_(0.75)Na_(0.25)MnO_3 have been investigated. The low temperatures long-range charge order (CO) is suppressed and the CO temperature shift to lower temperatures with increasing Fe doping. The ferromagnetic fraction increases and resistivity decreases with increasing Fe doping for x≤0.05. However, both of them change with contrary trend. This complex behavior is interpreted in terms of the competition between geometric effect (size of the dopant) and the effect of electronic configuration of the dopant. The geometric effect is dominant for low Fe doping, and the weakening of the DE by Fe doping is dominant for high Fe doping in Pr_(0.75)Na_(0.25)Mn_(1-x)Fe_xO_3. This novel competitive mechanism explains the interaction in strongly correlated manganites. The step-like metamagnetic transition at 2 K for the samples with x≤5% is observed and the origin is ascribed to the phase transition from COOAF phase to FM phase in a phase separation scenario. And no step-like metamagnetic transition at 2 K is observed for the samples with x≥0.1 because COOAF phase is suppressed by further Fe doping.
     The ground state of Pr0.75Na0.25Mn0.9Fe0.1O3 is studied detailedly in order to investigate the ground state of the samples without step-like metamagnetic transition at 2 K. The analysis of data shows that there exist correlated ferromagnetic clusters embedded in an antiferromagnetic insulative matrix. The growth of ferromagnetic clusters with increasing magnetic field was examined. The results indicate that the ferromagnetic clusters are far from filling up the whole sample, even up to H = 5 T. This result contributes to directly support the phase separation scenario that is one of the leading theories to explain the physics of manganites. The sample maintains an insulating state at temperatures below 65 K even for H = 5 T and the transport property is natural for magnetic semiconductors at temperatures above 65 K.
     A detailed study of step-like metamagnetic transitions at 2 K in polycrystalline Pr0.75Na0.25Mn1-xFexO3 (0≤x≤0.30) is presented. The data shows that there are three phases in this sample series: COOAF、FM、AFII (antiferromagnet II). The fraction of AFII with larger antiferromagnetic exchange interaction than COOAF is proved to be the effective factor of critical fields (Hc) for the first time. A model of anisotropy barrier has been proposed to explain the extremely sharp step-like transitions (width < 0.01 T) in polycrystalline manganites and related phenomenon. Both step-like metamagnetic transition at 2 K (below the spin blocking temperature TB) and gradually changed metamagnetic transition at temperatures above TB originate from COOAF phase. And the different characteristic of the spins at different temperatures is responsible for the difference between them.
引文
1 R. Mahendiran, A. Maignan, S. Hébert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell and P. Schiffer. Ultrasharp Magnetization Steps in Perovskite Manganites. Phys. Rev. Lett. 2002,89:286602 (4)
    2 E. Dagotto, T. Hotta and A. Moreo. Colossal Magnetoresistant Materials: the Key Role of Phase Separation. Physics Reports. 2001,344:1~3
    3 G. H. Jonker, J. H. Van Santen. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physica (Utrecht), 1950,16:337~349
    4 陈春霞. 钙铁矿锰氧化物中电荷有序现象研究进展. 无机材料学报. 2005,20:1~12
    5 C. Zener. Interaction between the d Shells in the Transition Metals. Phys. Rev. 1950,81:440~444
    6 C. Zener. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev. 1951,82:403~405
    7 J. B. Goodenough. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3. Phys. Rev. 1955,100:564~573
    8 J. B. Goodenough, A. wold, R. J. Arnott and N. Menyuk. Relationship between Crystal Symmetry and Magnetic Properties of Ionic Compounds Containing Mn3+. Phys. Rev. 1961,124:373~384
    9 E. O. Wollan, W.C. Koehler. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3. Phys. Rev. 1955,100:545~563
    10 P. W. Anderson, H. Hasegawa. Considerations on Double Exchange. Phys. Rev. 1955,100:675~681
    11 P. G. de Gennes. Effects of Double Exchange in Magnetic Crystals. Phys. Rev. 1960,118:141~154
    12 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich and J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988,61:2472~2475
    13 P. G. de Gennes. Effects of Double Exchange in Magnetic Crystals. Phys. Rev.1960,118:141~154
    14 M. Julliere. Tunneling between Ferromagnetic Films. Phys. Lett. 1975,54A(3): 225~226
    15 A. J. Mills, P. B. Littlewood and B. I. Shraiman. Double Exchange Alone Does Not Explain the Resistivity of La1-xSrxMnO3. Phys. Rev. Lett. 1995,74: 5144~5147
    16 A. J. Millis, B. I. Shraiman and R. Mueller. Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3. Phys. Rev. Lett. 1996,77:175~178
    17 A. J. Millis. Cooperative Jahn-Teller Effect and Electron-phonon Coupling in La1-xAxMnO3. Phys. Rev. B. 1996,53:8434~8441
    18 A. J. Millis, R. Mueller and B. I. Shraiman. Fermi-liquid-to-polaron Crossover. I. General Results. Phys. Rev. B. 1996,54:5389~5404
    19 A. J. Millis, R. Mueller and B. I. Shraiman. Fermi-liquid-to-polaron Crossover. II. Double Exchange and the Physics of Colossal Magnetoresistance. Phys. Rev. B. 1996,54:5405~5417
    20 田宏伟. 电荷有序锰氧化物 Y0.5Ca0.5MnO3 的磁特性及穆斯堡尔谱研究. 吉林大学博士论文. 2005:26~28
    21 P. D. Sacramento. Coexistence of Antiferromagnetism and Superconductivity in the Anderson Lattice. J. Phys.: Condens. Matter.2003,15:6285~6291
    22 L. W. Zhang, C. Israel, A. Biswas, R. L. Greene and A. de Lozanne. Directr Observation of Percolation in a Manganite Thin Film. Science. 2002,298:805~807
    23 C. N. R. Rao, P. V. Vanitha. Phase Separation and Segregation in Rare Earth Manganates: the Experimental Situation. Current Opinion in Solid State and Materials Science. 2002,6:97~106
    24 S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa and E. Dagotto. Phase Separation in Electronic Models for Manganites. Phys. Rev. Lett. 2000,80:845~848
    25 A. Moreo, S. Yunki and E. Dagotto. Phase Separation Scenario for Manganese Oxides and Related Materials. Science. 1999,283:2034~2040
    26 A. Moreo, M. Mayr, A. Feiguin, S. Yunoki and E. Dagotto. Giant Cluster Coexistence in Doped Manganites and Other Compounds. Phys. Rev. Lett.2000,84:5568~5571
    27 A. Moreo, S. Yunoki and E. Dagotto. Pseudogap Formation in Models for Manganites. Phys. Rev. Lett. 1999,83:2773~2776
    28 Maignan, S. Hébert, V. Hardy, C. Martin, M. Hervieu and B. Raveau. Magnetization Jumps and Thermal Cycling Effect Induced by Impurities in Pr 0.6Ca0.4MnO3. J. Phys.: Condens. Matter. 2002,14:11 809~11 819
    29 V. Hardy, S. Hébert, A. Maignan, C. Martin, M. Hervieu and B. Raveau. Staircase Effect in Metamagnetic Transitions of Charge and Orbitally Ordered Manganites. J. Magn. Magn. Mater. 2003,264:183~191
    30 S. Mori, C. H. Chen and S. W. Cheong. Pairing of Charge-ordered Stripes in (La, Ca)MnO3. Nature. 1998,392:473~476
    31 P. G. Radaelli, D. E. Cox, L. Capogna, S. W. Cheong and M. Marezio. Wigner-crystal and Bi-stripe Models for the Magnetic and Crystallographic Superstructures of La0.333Ca0.667MnO3. Physical Review B. 1999,59: 14440~14450
    32 P. Schiffer, A. P. Ramirea, W. Bao, et al. Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3. Phys. Rev. Lett. 1995,75 (18):3336~3339
    33 V. Hardv, A. Wahl, C. Martin, et al. Low-temperature Specific Heat in Pr0.63Ca0.37MnO3: Phase Separation and Metamagnetic Transition. Phys. Rev. B. 2001,63:224403(8)
    34 M. R. Lees, O. A. Petrenko, G. Balakrishnan, et al. Specific Heat of Pr0.6(Ca1-xSrx)0.4MnO3 (0 ≤ x ≤ 1). Phys. Rev: B. 1999,59:1298~1303
    35 X. G. Li, R. K. Zheng, G. Li, et al. Jahn-Teller Effect and Stability of the Charge-ordered State in La1-xCaxMnO3 (0.5 ≤ x ≤ 0.9) Manganites. Europhys. Lett. 2002, 60(5):670~679
    36 J. Takeuchi, S. Hirahara, T. P. Dhakal, K. Miyoshi and K. Fujiwara. Cr-Doping Effect on the Perovskite (Nd, Sr) MnO3 Single Crystals. Physica B. 2002,312:754~757
    37 C. Martin, A. Maignan, M. Hervieu, et al. Magnetic Phase Diagram of Ru-doped Sm1-xCaxMnO3 Manganites: Expansion of Ferromagnetism and Metallicity. Phys. Rev. B. 2001,63:174402 (7)
    38 N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak,V. I. Ozhogin and K. I. Kugel. Metal-insulator Transition Induced by Oxygen Isotope Exchange in the Magnetoresistive Perovskite Manganites. Nature, 1998,391:159~167
    39 V. N. Smolyaninova, Amlan Biswas, P. Fournier, et al. Influence of Oxygen Isotope Exchange on the Ground State of Manganites. Phys. Rev. B. 2002,65: 104419 (9)
    40 Y. Tomioka1, A. Asamitsu1, Y. Moritomo1, H. Kuwahara1 and Y. Tokura. Collapse of a Charge-Ordered State under a Magnetic Field in Pr1/2Sr1/2MnO3 Phys. Rev. Lett. 1995,74:5108~5111
    41 Q. S. Yuan, T. Kopp. Charge Ordering in Half-doped Pr(Nd)0.5Ca0.5MnO3 under a Magnetic Field. Phys. Rev. B. 2002,65:174423 (6)
    42 Joonghoe Dho and N. H. Hur. Thermal Relaxation of Field-induced Irreversible Ferromagnetic Phase in Pr-doped Manganites. Phys. Rev. B. 2003,67:214414 (6)
    43 A. Asamitsu, Y. Tomioka, H. Kuwahara and Y. Tokura. Current Switching of Resistive States in Magnetoresistive Manganites. Nature. 1997,388:50~52
    44 N. K. Pandey, R. P. S. M. Lobo and R. C. Budhani. Electric-field-tuned Metallic Fraction and Dynamic Percolation in a Charge-ordered Manganite. Phys. Rev. B. 2003,67: 054413(4)
    45 V. Kiryukhin, D. Casa, J. P. Hill, B. Keimer, A. Vigliante, Y. Tomioka and Y. Tokura. An X-ray-induced Insulator–metal Transition in a Magnetoresistive Manganite. Nature. 1997,386:813~815.
    46 Y. Moritomo, H. Kuwahara, Y. Tomioka and Y. Tokura. Pressure Effects on Charge-ordering Transitions in Perovskite Manganites. Phys. Rev. B. 1997,55:7549~7556.
    47 A. Kuriki, Y. Moritomo, A. Machida, E. Nishibori, M. Takata, M. Sakata, Y. Ohishi, O. Shimomura and A. Nakamura. High-pressure Structural Analysis of (Nd, Sm)1/2Sr1/2MnO3: Origin for Pressure-induced Charge Ordering. Phys. Rev. B. 2002,65:113105(4)
    48 J. Hejtmánek, Z. Jirák, J. Sebek, A. ?trejc and M. Hervieu. Magnetic Phase Diagram of the Charge Ordered Manganite Pr0.8Na0.2MnO3. J. Appl. Phys. 2001,89:7413~7415
    49 Z. Jirák, J. Hejtmánek, K. Kní?ek and R. Sonntag. Structure and Properties ofthe Pr1-xKxMnO3 Perovskites (x = 0-0.15). J. Solid State Chem. 1997,132:98~106
    50 Z. Jirák, S. Krupi?ka, Z. ? im?a, D. Dlouhá and Z. Vratislav. Double Degeneracy and Jahn-Teller Sffects in Colossal-magnetoresistance Perovskites. J. Magn. Magn. Mater. 1985,53:153
    51 Z. Jirák, J. Hejtmánek, K. Kní?ek, M. Mary?ko, E.Pollert, M. Dlouhá, S. Vratislav, R. Ku?el and M. Hervieu. Structure and Magnetism in the Pr1?xNaxMnO3 Perovskites (0 ≤ x ≤ 0.2). J. Magn. Magn. Mater. 2002,250:275~287
    52 Jin S, T H Tiefel, M. Mc Cormack, et al. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science. 1994,264:413~415
    53 R. V. Helmolt, J. Weckerg, B. Holzapfel, et al. Giant Negative Magnetoresistance in Perovskite like La2/3Ba1/3MnO3 Ferromagnetic Films. Phys. Rev. Lett. 1993,71:2331~2333
    54 H. L. Ju, J. Gopalakrishnan, J. L. Peng, et al. Dependence of Giant Magnetoresistance on Oxygen Stoichiometry and Magnetization in Polycrystalline La0.67Ba0.33MnO3. Phys. Rev. B. 1995,51:6143~6146
    55 Jonker G H. Magnetic Compounds with Pervoskite Structure. Physica, 1956, Ⅹ Ⅻ:702~722
    56 V. Hardy, A. Maignan, S. Hébert, C. Yaicle, C. Martin, M. Hervieu, M. R. Lees, G. Rowlands, D. Mc K. Paul and B. Raveau1. Observation of Spontaneous Magnetization Jumps in Manganites. Phys. Rev. B. 2003,68:220402 (4)
    57 唐雁坤. 纳米 La2/3Sr1/3MnO3 块状样品的磁电阻效应研究. 吉林大学硕士学位论文. 2003:23~31
    58 J. B. Goodenough, J. M. Longo. In Magnetic and Other Properties of Oxides and Related Compounds. New Series, Group 3, Vol. 4, Pt. A. Landolt-Borstein, Tabellen. 1970, 126~150.
    59 Y. Murakami, H. Kawada, M. Tanaka, T. Arima, H. Moritomo and Y Tokura. Direct Observation of Charge and Orbital Ordering in La0.5Sr1.5MnO4. Phys. Rev. Lett. 1998,80(9):1932~1935
    60 Y. Tokura, N. Nagaosa. Orbital Physics in Transition-Metal Oxides. Science. 2000,288:462~468
    61 Y. Tokura, Y. Tomioka. Colossal Magnetoresistive Manganites. J. Magn. Magn. Matter. 1999,200(1-3):1~23
    62 C. N. R. Rao, A. Arulraj, A. K. Cheetham and B. Raveau. Charge Ordering in the Rare Earth Manganates: the Experimental Situation. Journal of Physics: Condensed Matter. 2000,12:R83~R106
    63 Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo and Y. Tokura. Magnetic-field-induced Metal-insulator Phenomena in Prl-XCaXMnO3 with Controlled Charge-ordering Instability. Phys. Rev. B. 1996,53:R1689~R1692
    64 A. Arulraj, P. N. Santhosh, R. S. Gopalan, A. Guha, A. K. Raychaudhuri, N Kumar and C. N. R. Rao. Charge Ordering in the Rare Earth Manganates: the Origin of the Extraordinary Sensitivity to the Average Radius of A-site Cations . Journal of Physics: Condensed Matter. 1998,10:8497~8504
    65 C. N. R. Rao, A. Arulraj, P. N. Santosh and A. K. Cheetham. Charge-Ordering in Manganates. Chemistry of Materials. 1998,10:2714~2722
    66 P. M. Woodward, T. Vogt, D. E. Cox, A. Arulraj, C. N. R. Rao, P. Karen and A. K. Cheetham. Influence of Cation Size on the Structural Features of Ln1/2A1/2MnO3 Perovskites at Room Temperature. Chemistry of Materials, 1998,10:3652~3665
    67 B. Raveau, A. Maignan and C. Martin. Insulator-metal Transition Induced by Cr and Co Doping in Pr0.5Ca0.5MnO3. J. Solid State Chem. 1997,130:162~166
    68 A. Maignan, F. Damay; C. Martin, et al. Mater. Res. Bull. 1997,32 (7):965~972
    69 F. Damay, C. Martin, A. Maignan, et al. J. Magn. Magn. Mater. 1998,183:143~151
    70 F. Dacnay, A. Maignaa, C. Martin, et al. Mn site Doping Induced Insulator to Metal Transition in Pr0.6Ca0.4MnO3. J. Appl. Phys. 1997,82 (3):1485~1487
    71 J. S. Kang, J. H. Kim, A. Sekiyama, et al. Resonant Photoemission Spectroscopy Study of Impurity-induced Melting in Cr- and Ru-doped Nd1/2A1/2MnO3 (A=Ca, Sr). Phys. Rev. B. 2003,68:012410 (4)
    72 P. V. Vanitha. Effect of Ga and Ge Substitution in the Mn Site of Rare Earth Manganates on Charge Ordering and Related Properties. Solid State Commun. 2002,123:129~133
    73 C. Yaicle, B. Raveau, A. Maignan and M. Hervieu. Effect of Trivalent CationSubstitution for Manganese upon Ferromagnetism in Ln0.57Ca0.43MnO3 (Ln = Pr, Nd). Solid State Commun. 2004,132:487~492
    74 J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garsia, A. Del Moral and Z. Arnold. Evidence for Magnetic Polarons in the Magnetoresistive Perovskites. Nature. 1997,386:256~258
    75 J. B. Goodenough and J. S. Zhou. New Forms of Phase Segregation. Nature. 1997,386:229~230
    76 S. Mori, C. H. Chen and S. W. Cheong. Paired and Unpaired Charge Stripesin the Ferromagnetic Phase of La0.5Ca0.5MnO3. Phys. Rev. Lett. 1998,81:3972~3975
    77 A. Nath, Z. Klencsar, E. Kuzmann, Z. Homonnay, A. Vertes, A. Simopoulos, E. Devlin, G. Kallias, A. P. Ramirez and J. C. Robert. Nanoscale Magnetism in the Chalcogenide Spinel FeCr2S4: Common Origin of Colossal Magnetoresistivity. Phys Rev B. 2002,66:212401(4)
    78 E. Stryjewski, N. Giordano. Inspec Bibliographic Reference Link. Adv. Phys. 1977,26:487~650
    79 Johathan R. Friedman, M. P. Sarachik, J. Tejada and R. Ziolo. Macroscopic Measurement of Resonant Magnetization Tunneling in High-Spin Molecules. Phys. Rev. Lett. 1996,76:3830~3833
    80 Y. Shapira, V. Bindilatti. Magnetization-step Studies of Antiferromagnetic Clusters and Single Ions: Exchange, Anisotropy, and Statistics. J. Appl. Phys. 2002,92:4155~4185.
    81 A. P. Ramirez. Colossal Magnetoresistance. J. Phys. Condens. Matter. 1997,9:8171~8199
    82 J. M. D. Coey, M. Viret and S. V. Molnar. Mixed-valence Manganites. Adv. Phys. 1999,48:167~293
    83 I.G. Deac, J. F. Mitchell and P. Schiffer. Phase Separation and Low-field Bulk Magnetic Properties of Pr0.7Ca0.3MnO3. Phys. Rev. B. 2001,63:172408(5)
    84 J. Burgy, E. Dagotto and M. Mayr. Percolative Transitions with First-order Characteristics in the Context of Colossal Magnetoresistance Manganites. Phys. Rev. B. 2003, 67(1):014410(6).
    85 C. Zener. Interaction Between the d-shell in the Transition Metals. J. Phys. Rev. 1951,81:403~405.
    86 Y. Li, J. P. Miao, Y. Sui, X. J. Wang, W. Zhang, Y. Q. Liu, R. B. Zhu and W. H. Su. Synthesis, Structural and Transport Properties of Pr0.75Na0.25Mn1-xFexO3 (0.0 ≤ x ≤ 0.3). J. Alloys Comp. 2007,447(1-2):1~5
    87 D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R.D. Sánchez, D. García and B. Alascio. Transport and Magnetic Properties of Nanocrystalline La2/3Srl/3MnO3 Powders Synthesized by a Nitrate-citrate Gel-combustion Process. J. Magn. Magn. Mater. 2002,241:207~213
    88 E. Vladimirova, V. Vassiliev and A. Nossov. Synthesis of La1-xPbxMnO3 Colossal Magnetoresistive Ceramics from Co-precipitated Oxalate Precursors. J. Mater. Sci. 2001,36:1481~1486
    89 G. Dezanneau, A. Sin, H. Roussel, H. Vincent and M. Audier. Synthesis and Characterisation of La1?xMnO3±δ Nanopowders Prepared by Acrylamide Polymerization. Solid State Commun. 2002,121:133~137
    90 J. Liu, H. Wang, M. Zhu, B. Wang and H. Yan. Synthesis of La0.5A0.5MnO3 (A = Sr, Ba) by a Hydrothermal Method at Low Temperature. Mater. Res. Bull. 2003,38:817~822
    91 S. T. Aruna, M. Muthuraman and K. C. Patil. Combustion Synthesis and Properties of Strontium Substituted Lanthanum Manganites La1–xSrxMnO3 (0 ≤ x ≤ 0.3). J. Mater. Chem. 1997,7:2499~2503
    92 R. K. Sahu, M. L. Rao and S. S. Manoharan. Ruthenium-induced Enhanced Magnetization and Metal-insulator Transition in Two-dimensional Layered Manganites. J. Mater. Sci. 2001,36:4099~4102
    93 杨淑珍, 周和平. 无机非金属材料测试实验. 武汉工业大学出版社, 1997:238~364
    94 王华馥, 吴日勤. 固体物理实验方法. 高等教育出版社, 1980 :123~128
    95 K. H. Ahn, X. W. Wu, K. Liu and C. L. Chien. Magnetic Properties and Colossal Magnetoresistance of La(Ca)MnO3 Materials Doped with Fe Phys. Rev. B. 1996,54:15 299~15 302
    96 R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976,A32:751~767
    97 徐明祥, 焦正宽. (La2/3Ca1/3)(Mn(3-x)/3Fex/3)O3 体系磁电阻行为的研究. 无机材料学报. 1999,14(2):307~311
    98 Darshan C. Kundaliya, Reeta Vij, R. G. Kulkarni, A. A. Tulapurkar, R. Pinto, S. K. Malik and W. B. Yelon, Structural, Magnetic and Magnetotransport Properties of the La0.67Ca0.33Mn0.9Fe0.1O3 Perovskite. J. Magn. Magn. Mater. 2003,264:62~69
    99 J. W. Cai, O. Wang, B. G. Shen, J. G. Zhao, W. S. Zhan. Colossal Magnetoresistance of Spin-glass Perovskite La0.67Ca0.33Mn0.9Fe0.1O3. Appl. Phys. Lett. 1997,71:1727~1729
    100 S. Tan, S. Yue and Y. H. Zhang. Jahn–Teller Distortion Induced by Mg/Zn Substitution on Mn Sites in the Perovskite Manganites. Phys. Lett. A. 2003,319:530~538
    101 Y. Tokura, K. Kuwahara, Y. Moritomo, Y. Tomioka and A. Asamitsu. Competing Instabilities and Metastable States in (Nd, Sm)1/2Sr1/2MnO3. Phys. Rev. Lett. 1996,76:3184~3187
    102 O. Sikora, A. M. Ole?. Localization Effects in Disordered Kondo Lattices. Physica B. 2005,260:359~361
    103 H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, Y. Tokura. Magnetic Ordering and Relation to the Metal-Insulator Transition in Pr1-xSrxMnO3 and Nd1-xSrxMnO3 with x~1/2 Phys. Rev. Lett. 1997,78:4253~4256
    104 V. G. Prokhorova, G. G. Kaminskya, V. A. Komashkoa, Y. P. Leeb and I. I. Kravchenko. Trapping of Mobile Mu Centers in Single Crystal AlN. Physica B. 2003,334:430~433
    105 Y. Li, J. P. Miao, Y. Sui, Z. Lü, Z. N. Qian, W. H. Su. Phase Separation, Low-field Magnetic and Transport Properties of Pr0.75Na0.25Mn0.9Fe0.1O3. J. Magn. Magn. Mater. 2006,305:247~252
    106 M. Uehara, S. Mori, C. H. Chen, S. -W. Cheong. Percolative Phase Separation Underlies Colossal Magnetoresistance in Mixed-valent Manganites. Nature. 1999,399:560~563
    107 C. Martin, A. Maignan and B. Raveau. High Impact Applications, Properties and Synthesis of Exciting New Materials. J. Mater. Chem. 1996,6:1245~1248
    108 A. Maignan, C. Martin and B. Raveau. Substitution of Manganese by Trivalent and Tetravalent Elements in the CMR Perovskites Pr1-x(Ca,Sr)xMnO3. Z. Phys. B. 1997,102:19~24
    109 A. Maignan, B. Raveau. Mixed-valence Manganites. Z. Phys. B 1997,102:299~307
    110 J. R. Sun, R. W. Li, Y. Z. Zhang and B. G. Shen. Doping Effects from Fe and Ge for Mn in La1-xCaxMnO3 (x = 0.15-0.6). J. Phys. D: Appl. Phys. 2001,34:1333~1338
    111 T. Satoh, Y. Kikuchi, K. Miyano, E. Pollert, J. Hejtmánek and Z. Jirák. Irreversible Photoinduced Insulator-metal Transition in the Na-doped Manganite Pr0.75Na0.25MnO3. Phys. Rev. B. 2002,65:125103(4)
    112 P. Levy, L. Granja, E. Indelicato, D. Vega, G. Polla and F. Parisi. J. Magn. Magn. Mater. 2001,226~230:794~796
    113 F. Damay, C. Martin, A. Maignan and B. Raveau. Charge and Magnetic Order Suppression by Mn Site Doping in Layered and Three-dimensional Manganites. J. Magn. Magn. Mater. 1998,183:143~151
    114 S. Hébert, V. Hardy, A. Maignan, R. Mahendiran, M. Hervieu, C. Martin and B. Raveau. Magnetic-field-induced Step-like Transitions in Mn-site Doped Manganites. J. Solid State Chem. 2002,165:6~11
    115 S. Hébert, V. Hardy, A. Maignan, R. Mahendiran, M. Hervieu, C. Martin and B. Raveau. Avalanche like Field Dependent Magnetization of Mn-site Doped Charge-ordered Manganites. Solid State Commun. 2002,122:335~340
    116 V. Hardy, S. Majumdar, M. R. Lees, D. McK. Paul, C. Yaicle and M. Hervieu. Power-law Distribution of Avalanche Sizes in the Field-driven Transformation of a Phase-separated Oxide. Phys. Rev. B. 2004,70:104423(5)
    117 G. Xiao, E. J. McNiff, Jr, G. Q. Gong, A. Gupta, C. L. Canedy and J. Z. Sun. Magnetic-field-induced Multiple Electronic States in La0.5Ca0.5MnO3+δ Phys. Rev. B. 1996,54:6073~6076
    118 K. H. Ahn, X. W. Wu, K. Liu and C. L. Chien. Effects of Fe Doping in the Colossal Magnetoresistive La1-xCaxMnO3. J. Appl. Phys. 1997,81:5505~5507
    119 S. B. Ogale, R. Shreekala, R. Bathe, S. K. Date, S. I. Patil, B. Hannoyer, F. Petit and G. Marest, Transport Properties, Magnetic Ordering, and Hyperfine Interactions in Fe-doped La0.75Ca0.25MnO3 Localization-delocalization : Transition. Phys. Rev. B. 1998,57:7841~7845
    120 S. Hébert, A. Maignan, C. Martin and B. Raveau. Important role of impurity eg levels on the ground state of Mn-site doped manganites. Solid StateCommun. 2002,121:229~234
    121 Y. Moritomo, K. Murakami, H. Hishikawa, M. Hanawa, A. Nakamura. Impurity-induced Ferromagnetism and Impurity States in Nd1/2Ca1/2(Mn0.95M0.05)O3. Phys. Rev. B. 2004,69:212407(4)
    122 A. P. Ramirez, P. Schiffer, S.-W. Cheong, C. H. Chen, W. Bao, T. T. M. Palstra, P. L. Gammel, D. J. Bishop, B. Zegarski. Thermodynamic and Electron Diffraction Signatures of Charge and Spin Ordering in La1-xCaxMnO3. Phys. Rev. Lett. 1996,76:3188~3191
    123 C. H. Chen, S.-W. Cheong. Commensurate to Incommensurate Charge Ordering and Its Real-Space Images in La0.5Ca0.5MnO3. Phys. Rev. Lett. 1996,76:4042~4045
    124 F. Damay, C. Martin, A. Maignan, B. Raveau. Cation Disorder and Size Effects upon Magnetic Transitions in Ln0.5A0.5MnO3 Manganites. J. Appl. Phys. 1997,82 (12):6181~6185
    125 J. Xu, Y. Matsui, T. Kimura and Y. Tokura. Physica C. 2001,401:357~360
    126 J. A. Mydosh. Spin Glasses: An Experimental Introduction. Taylor& Francis, London. 1993:40~100
    127 S. Chikuzami. Physics of Ferromagnetism. Clarendon. Oxford, 1997. 53~55
    128 G. Williams. In Magnetic Susceptibility of Superconductors and Other Spin Systems, edited by R. A. Hein, T. L. Francavilla, D. H. Liebenberg. Plenum, New York, 1991. 475
    129 J. L. Tholence. In Magnetic Susceptibility of Superconductors and Other Spin Systems. R. A. Hein, T. L. Francavilla and D. H. Liebenberg. Plenum, New York, 1991. 503
    130 J. L. Dormann, R. Cherkaoui, L. Spinu, M. Noguès, F. Lucari, F. D. Orazio, D. Fiorani, A. Garcia, E. Tronc and J. P. Jolivet. From Pure Superparamagnetic Regime to Glass Collective State of Magnetic Moments in γ-Fe2O3 Nanoparticle Assemblies. J. Magn. Magn. Mater. 1998,187:139~144
    131 H. Mamiya, I. Nakatani and T. Furubayashi. Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems. Phys. Rev. Lett. 1998,80:177~180
    132 J. A. De Toro, M. A. López de la Torre, J. M. Riveiro, R. Sáez Puche, A. Gómez-Herrero and L. C. Otero-Díaz. Spin-glass-like Behavior inMechanically Alloyed Nanocrystalline Fe-Al-Cu. Phys. Rev. B. 1999,60:12 918~12923
    133 D. S. Fischer. Spin glasses. II. Phys Status Solidi. 1985,130:13~71
    134 L. M. Fisher, A. V. Kalinov, I. F. Voloshin, N. A. Babushkina, K. I. Kugel and D. I. Khomskii. Quenched-disorder-induced Magnetization Jumps in (Sm, Sr)MnO3. Phys. Rev. B. 2004, 70:212411(4)
    135 E. L. Nagaev. Physics of Magnetic Semiconductors. Mir. 1983:53~55
    136 T. Kimura, Y. Tomioka, R. Kumai, Y. Okimoto and Y. Tokura. Diffuse Phase Transition and Phase Separation in Cr-Doped Nd1/2Ca1/2MnO3: A Relaxor Ferromagnet. Phys. Rev. Lett. 1999,83:3940~3943
    137 C. Yaicle, F. Fauth, C. Martin, R. Retoux, Z. Jirak, M. Hervieu, B. Raveau and A. Maignan. Pr0.5Ca0.5Mn0.97Ga0.03O3, a Strongly Strained System Due to the Coexistence of Two Orbital Ordered Phases at Low Temperature. J. Solid State Chem. 2005,178:1652~1660
    138 S. R??ler, U. K. R??ler, K. Nenkov, D. Eckert, S. M. Yusuf, K. D?rr and K.-H. Müller. Rounding of a First-order Magnetic Phase Transition in Ga-doped La0.67Ca0.33MnO3. Phys. Rev. B. 2004,70: 104417(6)
    139 R. Mahendiran, B. Raveau, M. Hervieu, C. Michel and A. Maignan. Instability of Metal-insulator Transition against Thermal Cycling in Phase Separated Cr-doped Manganites. Phys. Rev. B. 2001,64:064424(6)
    140 K. H. Kim, M. Uehara, C. Hess, P. A. Sharma and S.-W. Cheong. Thermal and Electronic Transport Properties and Two-Phase Mixtures in La5/8-xPrxCa3/8MnO3. Phys. Rev. Lett. 2000,84:2961~2964
    141 D. P. Kozlenko, Z. Jirák, I. N. Goncharenko and B. N. Savenko. Suppression of the Charge Ordered State in Pr0.75Na0.25MnO3 at High Pressure. J. Phys.: Condens. Matter. 2004,16:5883~5895
    142 S. Zouari, A. Cheikh-Rouhou, P. Strobel, M. Pernet and J. Pierre. Structural and Magnetic Properties of Alkali-substituted Praseodymium Manganites Pr1?xAxMnO3 (A=Na, K). Journal of Alloys and Compounds. 2002,333:21~27
    143 P. Li, J. Cai, Q. Zhang, S. Tan and Y. Zhang. Training Effect by the Applied Magnetic Field in the Double-doped Pr0.5+0.5xCa0.5–0.5xMn1–xCrxO3 System. Phys. Rev. B. 2005,71:134418(6)
    144 E. Pollert, J. Hejtmánek, Z. Jirák, K. Kń?zek and M. Mar?sko. Influence ofCo Doping on Properties of Pr0.8Na0.2Mn(1?y)CoyO3 Perovskites. J. Solid State Chem. 2003,174:466~470
    145 V. Hardy, A. Maignan, S.Hébert and C. Martin. Calorimetric and Magnetic Investigations of the Metamagnet Pr0.5Ca0.5Mn0.95Ga0.05O3. Phys. Rev.B. 2003,67:024401(7)
    146 A. Maignan, V. Hardy, C. Martin, S. Hébert and B. Raveau. Abrupt Jumps in the Metamagnetic Transitions of Orbitally Ordered Manganites. J. Appl. Phys. 2003,93:7361~7363
    147 C. Yaicle, C. Martin, Z. Jirak, F. Fauth, G. And?e, E. Suard, A. Maignan, V. Hardy, R. Retoux, M. Hervieu, S. Hébert, B. Raveau, Ch. Simon, D. Saurel, A. B?ulet and F. Bou?ee. Neutron Scattering Evidence for Magnetic-field-driven Abrupt Magnetic and Structural Transitions in a Phase-separated Manganite. Phys. Rev. B. 2003,68:224412(8)
    148 G. X. Cao, J. C. Zhong, S. X. Cao, C. Jing and X. C Shen. Magnetization Step and Spin Reorientation in Pr5/8Ca3/8Mn03 Manganites. Appl. Phys. Lett, 2005,86(4):042507(3)
    149 M. D. Lumsden, B. C. Sales, D. Mandrus, S. E. Nagler and J. R. Thompson. Weak Ferromagnetism and Field-Induced Spin Reorientation in K2V3O8. Phys. Rev. Lett. 2001,86:159~162
    150 N. Tsujii, H. Kitazawa, H. Suzuki, M. Imai and G. Kido. Field-Induced Ferromagnetic Transition in PrInNi4. J. Phys. Soc. Jpn. 2002,71:1852~1856
    151 M. R. Lees, J. Barratt, G. Balakrishnan, D. M. Paul and M. Yethiraj. Influence of Charge and Magnetic Ordering on the Insulator-metal Transition in Pr1-xCaxMnO3. Phys. Rev. B. 1995,52:R14303~R14307
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.