一维ZnCdSe纳米线与CuFeS_2纳米颗粒的制备及光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有与体相材料不同的新异物理与化学性质,在可再生能源、环保等领域具有特殊的应用。本文报道了采用溶剂热法在180-200℃制备出三元黄铜矿结构CuFeS2纳米颗粒和基于气-液-固(Vapor-Liquid-Solid)生长机理的气相法制备ZnCdSe合金纳米线的结果。利用扫描电镜、高分辨透射电子显微镜、X射线衍射仪对两种样品的形貌与晶体结构进行了细致的表征,证明所制备的CuFeS2纳米颗粒和ZnCdSe合金纳米线都是纯度很高的单相。同时还报道了反应条件对CuFeS2纳米材料形貌的控制作用,改变ZnSe与CdSe两种反应物的比例和反应时间,可以制备出尺寸不同的ZnCdSe纳米线,并且对于两种样品的生长机理进行了分析。利用紫外-可见光吸收光谱仪、近场扫描光学显微镜、荧光光谱仪对合成三元半导体材料进行光学性质的研究。结果发现,CuFeS2纳米颗粒的带隙由于粒径很小发生了一定的改变,比以前报道的(0.6eV)要略大(0.673 eV),而且纳米颗粒形状的CuFeS2在325nm激光的作用下发出漂亮的蓝色光,这是由于在CuFeS2中存在Cu+发生了3Eg→1A1g的跃迁现象所致,与所得到的PL谱的峰值对应。而对于合金ZnCdSe纳米线,根据PL谱的结果,利用维加德定律(Vegard law)分别计算出各个元素在化合物中的组分,并且实现了波长在521nm-717nm之间的发光可调谐性。当合金中Zn的含量较多时,PL峰值的变化不是很明显,出现在521nm-533nm之间,而且存在着很强的缺陷发光现象,当Cd的含量增加后,没有出现缺陷发光,发生此现象的原因是由于ZnSe的缺陷能级一般包括Zn离子和Se离子的空位、间隙离子或者其他的杂质缺陷,Se空位形成一种双施主能级,而Zn空位是一种受主型缺陷,新生长的ZnSe晶体,发光层中必然有Zn空位,发光峰是导带电子与Zn空位所俘获空穴的复合发光。具有光学性质可调谐的ZnCdSe三元半导体纳米线在纳米激光器方面有很大的应用价值。
Nano-materials with novel physical and chemical properties different from bulk materials, become more important in the fields, such as renewable energy, environmental protection and so on. In this article, the synthesis of ternary CuFeS2 nanoparticles with chalcopyrite structure which viaed the solventothermal reaction route at 180-200℃, and the growth of ZnCdSe alloy nanowires with hexagonal structure which viaed gas phase method with Vapor-Liquid-Solid (VLS) mechanism are reported. The morphology and structure of two nanomaterials were characterized by scanning electron microscopy, high-resolution transmission electron microscope and X-ray diffraction. The as-prepared CuFeS2 nanoparticles and alloy ZnCdSe nanowires are all high phase-purity. The morphology of CuFeS2 nanoparticles were varied significantly according to reaction conditions. The diameter of ZnCdSe nanowires was also affected by variation of ratio of two reactants of ingredients. The optical properties of the CuFeS2 nanoparticles and ZnCdSe nanowires have been studied by UV-visible absorption spectroscopy, near-field scanning optical microscopy, fluorescence spectroscopy. The band gap of CuFeS2 nanoparticles has been detected to be 0.673 eV, slightly larger than previously reported (0.6 eV). The wider gap possibly resulted from the nano-size effect. The observed blue emission of CuFeS2 nanoparticles irradiated by the 325nm laser beam was originated from the inner shell transition of 3Eg→1A1g in the Cu+of CuFeS2 and coincided to the PL image. For alloy ZnCdSe nanowires, the each component in the compound was calculated by Vegard Law based on the PL spectrum. The tunable wavelength of the emission light between the 521nm-717nm is achived in this study. A strong defect luminescence was found as increase of Zn content in the alloy ZnCdSe nanowires, while the PL peak between 521nm-533nm did not change obviously. Increase of the Cd content did not result in the defect luminescence. The reasons for this phenomenon may due to the defect levels in ZnSe generally include Zn ions and Se ion vacancies, interstitial impurity ions or other defects,Se vacancy to form a double-donor level, while the Zn vacancy is an acceptor-type defects The new growth of ZnSe crystals, light-emitting layer is bound to Zn vacancies, emission peak is Zn vacancy conduction band electron and hole recombination by trapping. The ternary semiconductor nanowires with the tunable optical properties may have potential application in the nano-lasers technology.
引文
[1]薛增泉,刘惟敏.纳米电子学.北京:电子工业出版,2003:9-27
    [2]赵于文.低温等离子体在化学合成中的应用.现代,1991,9(12):48-52
    [3]Gavillet J, Loiseau A, Journet C. Root-growth mechanism for single-wall carbon nanotubes. Physical Review Letters,2001,87(27):27504-27507
    [4]Hirata T, Satake N, Tohji K. Magnetron-type radio frequency plasma control yielding vertically well-aligned carbon nanotube growth. Applied Physics Letters,2003,83(6):1119-1121
    [5]Zhu L B, Xu J W, Wong C P. Electrowetting of aligned carbon nanotube films. The journal of Physics Chemistry B,2006,110 (32):15945-15950
    [6]Zheng M J, Zhang L D, Li G H. Ordered indium-oxide nanowire arrays and their photoluminescence properties.Applied Physics Letters,2001,79(6): 839-841
    [7]Huang M H, Wu Y, Feick H, Yang P D. Catalytic growth of ZnO nanowires by vapor transport. Advanced Materials,2001,13(2):113-116
    [8]Pan Z W, Dai Z, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001,291(5510):1947-1949
    [9]余江龙,张志东,王慧兰.零维纳米材料的特性及研究现状.辽宁工程技术学学报,1999,2(18):173-176
    [10]Wagner R S, Ellis W C, Arnold S M. Study of the Filamentary Growth of Silicon Crystals from the Vapor. Journal of Applied Physics,1964,5(10): 2993-3000
    [11]Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters,1964,4(5):89-91
    [12]Yazawa M, Koguchi M, Hiruma K. Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates. Applied Physics Letters,1991,58(11):1080-1082
    [13]Yan H F, Xing Y J, etal. Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism.Chemical Physics Letters,2000,323 (3-4): 224-228
    [14]Trentler T J, Hickman K M, Goel S C, etal. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors:An Analogy to Vapor-Liquid-Solid Growth. Science,1995,270(5243):1791-1794
    [15]Buhro W E, Hickman K M, Trentler T J. Turning down the heat on semiconductor growth:Solution-chemical syntheses and the solution liquid-solid mechanism. Advanced Materials,1996,8(8):685-687[16]许志华.铜工艺矿物学[J].广州有色金属学报,1999,9(1):1-8[17]李宏煦,王淀佐.硫化矿细菌浸出的半导体能带理论分析[J].有色金属,2004,56(3):36-48
    [18]T Teranishi, K Sato, K Kondo. Optical Properties of a Magnetic Semi-conductor:Chalcopyrite CuFeS2:I Absorption Spectra of CuFeS2 and Fe-Doped CuAlS2 and CuGaS2. Journal of Physics Society of Japan,1974,36(12): 1618-1624
    [19]C L Burdick, J H Ellis. The crystal structure of chalcopyrite determ-ined by X-rays. Proceedings of the National Academy of Sciences,1917,3(11): 644-649
    [20]L Barkat, N Hamdadou, M Morsli, A Khelil, J C Berne'de. Growth and characterization of CuFeS2 thin films. Journal of Crystal Growth,2006, 297(2):426-431
    [21]G Donney, L M Corliss, J D H Domay, N Elliot, J Hastings. Symmetry of Magnetic Structures:Magnetic Structure of Chalcopyrite. Physical Review Letters,1958,112(6):1917-1923
    [22]Holmes J D, Johnston K P, Doty R C, Korgel B A. Control of thickness and orientation of solution-grown siliconnanowires. Science,2000,287(5457): 1471-1473
    [23]Jie J S, Wang G Z, Han X H, Hou J G. Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure. The journal of Physics Chemistry B,2004,108(44):17027-17031
    [24]Huang M H, Wu Y, Yang P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials,2001,13(2):113-116
    [25]Park W I, Kim D H, Jung S W, Yi G C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 2002,80(22):4232-4234
    [26]Duan X, Lieber C M. General Synthesis of Compound Semiconductor Nanowires. Advanced Materials,2000,12(4):298-302
    [27]Li Y, Meng G W, Zhang L D, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters,2000, 76(15):2011-2013
    [28]Wu Y, Yang P. Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials,2000,12(3):605-607
    [29]Zhang X T, Ip K M, Liu Z, Leung Y P, Li Q, Hark S K. Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition. Applied Physics Letters,2004,84(14):2641-2643
    [30]Jie J S, Wang G Z, Hou J G. Growth of Ternary Oxide Nanowires by Gold-Catalyzed Vapor-Phase Evaporation. The journal of Physics Chemistry B,2004, 108(24):8249-8253
    [31]Park W I, Yi G C, Kim M, Pennycook S I. Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures.Advanced Materials,2003,15(6): 526-529
    [32]Zheng R K, Liu H, Zhang X X, Djuris ic A B. Exchange bias and the origin of magnetism in Mn-doped ZnO tetrapods. Applied Physics Letters,2004,85(13): 2589-2591
    [33]Kim H M, Lee W C, Kang T W, Chung K S, Yoon C, Kim C K. InGaN nanorods grown on (111) silicon substrate by hydride vapor phase epitaxy. Chemical Physics Letters,2003,380(1-2):181-184
    [34]Wu Z H, Sun M, Mei X Y, Ruda H E. Growth and photoluminescence characteristics of AlGaAs nanowires. Applied Physics Letters,2004,85(4): 657-660
    [35]Ku J T, Kuo M C, Shen J L, Chou W C. Optical characterization of ZnSe epilayers and ZnCdSe/ZnSe quantum wells grown on Ge/Ge0.95Si0.05/Ge0.9 Si0.1 /Si virtual substrates. Journal of Applied Physics,2006,99():063506-1-0635066
    [36]Zhang B P, Li Y Q, Itoh T. Intermittent photoluminescence and thermal ionization of ZnCdSe/ZnSe quantum dots grown by molecular beam epitaxy.Applied Physics Letters,1998,73(9):1266-1268
    [37]Vodopyanov L K, Kozyrev S P, Litvinchuk A P. Far-infrared analysis of lattice vibrations in ZnSe/ZnCdSe superlattices. Solid State Commun,2002,122(1-2): 21-24
    [38]E Kato, H Noguchi, Aishibashi. Signifi-cant progress in II-VI blue-green laser diodelifetime. Electronics Letters,1998,34(3):282-284
    [39]Y Luo, S P Guo, Y C Chen. Current injection emission from a transparent p-n junction composed of p-SrCu_(2)O_(2)/n-ZnO. Applied Physics Letters,2000, 77(4):475-477
    [40]Ba J H, Polleux J, Antonietti M, Niederberger M. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Advanced Materials,2005,17(20):2509-2512
    [41]Peng X S, Zhang L D, Meng G W. Micro-Raman and infrared properties of SnO2 nanobelts synthesized from Sn and SiO2 powers. Journal of Applied Physics,2003,93(3):1760-1763
    [42]Liu Z Q, Zhang D H, Zhou C W. Laser ablation synthesis and electron transport studies of tin oxide nanowires. Advanced Materials,2003,15(20):1754-1757
    [43]Hu J Q, Ma X L, Shang N G. Large scale rapid oxidation synthesis of SnO2 nanoribbons. The Journal of Physics Chemistry B,2002,106(15):3823-3826
    [44]Liu Y, Dong J, Liu M. Well-Aligned "Nano-box-beams" of SnO2. Advanced Materials,2004,16(4):353-356
    [45]Zheng M J, Li G H, Zhang X Y. Fabrication and structural character-ization of large scale uniform SnO2 nanowire array embedded in anodic alumina membrane. Chemistry of Materials,2001,13(11):3859-3861
    [46]Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters,1964,4(5):89-90
    [47]Liu Y, Liu M. Growth of aligned square-shaped SnO2 tube arrays. Advanced Functional Materials,2005,15(1):57-62
    [48]Junqing Hu, Qingyi Lu, Xianming Liu. A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorganic Chemistry Communications,1999,2(12): 569-571
    [49]M X Wang, L S Wang, D L Peng. Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Materials Chemistry and Physics, 2009,115(2-3):147-150
    [50]Yu-Hsiang A, Ningzhong Bao, Arunava Gupta. Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Science,2010,12(3): 387-390
    [51]L Spanhel, M Haase, H Weller, A Henglein. Surface modification and stability of strong luminescing CdS particles. Journal of the American Chemical Society, 1987,109(19):5649-5655
    [52]M G Bawendi, etal. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Physical Review Letters,1990,65(13): 1623-1626
    [53]L E Brus. Quantum crystallites and nonlinear optics. Applied Physics A,1991, 53(6):465-474
    [54]H Weller, Angew Chem. Chemie im Ubergangsbereich zwischen Festkorper und Molekul. Angewandte Chemie International Edition,1993,32(13):41-53
    [55]C B Murray, etal. Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices. Science,1995,270 (5240): 1335-1338
    [56]Braun P V, Osenar P, Stupp S I. Semiconducting superlattices temp-lated by molecular assemblies. Nature,1996,380(28):325-328
    [57]Y D Li, etal. Non-aqueous Synthesis of CdS Nanorod Smiconductor. Chemistry of Materials,1998,10(9):2301
    [58]W Z Wang, etal. A Novel Pathway to PbSe Nanowires at Room Temperature. Advanced Materials,1998,10(17):1479-1481
    [59]J A Tossell, D S Urch, D J Vaughan. The electronic structure of CuFeS2, chalcopyrite.from x-ray emission and x-ray photoelectron spectroscopy and Xα calculations. Journal of Chemical Physics,1982,77(1):77-82
    [60]Korgel B A, Hanrath T, Davidson F M. In Encyclopedia of Chemical Processing. Marcel Dekker:New York,2006,1(23):3191-3203
    [61]Wang F, Dong A, Buhro W E. Solution-Liquid-Solid Growth of Semiconduc-tor Nanowires. Inorganic Chemistry,2006,45(19):7511-7521
    [62]Wang D, Qian F, Yang C, Zhong Z H, Lieber C M. Rational Growth of Branched and Hyperbranched Nanowire Structures. Nano Letters,2004,4(5): 871-874
    [63]Chan Y F, Duan X F, Wang N. ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy. Applied Physics Letters,2003,83(13): 2665-2667
    [64]Zhang X T, Liu Z, Hark S K. Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition.Applied Physics Letters,2003,83(26):5533-5535
    [65]Zhang X T, Liu Z, Hark S K. Luminescence of ZnSe nanowires grown by metalorganic vapor phase deposition under different pressures. Journal of Applied Physics,2004,95(10):5752-5755
    [66]Urbieta A, FernandezP, Piqueras J. Growth and luminescence properties of micro-and nanoneedles in sintered CdSe. Applied Physics Letters,2004, 85(24):5968-5970
    [67]Y Jiang, X M, T Lee. Growth and luminescence properties of micro-and nanoneedles in sintered CdSe. The Journal of Physics Chemistry B,2004, 108(9):2784-2787
    [68]Fazzio M, Caldas J, Zunger A. Many-Electron Multiplet Effects in the Spectra of 3d Impurities in Heteropolar Semiconductor. Physical Review B,1984, 30(506):3430-3435
    [69]Jonathan R I Lee, Robe W Meulenberg, Khalid M Hanif, etal. Experi-mental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots. Physical Review Letters,2007,98(14):146803-146807
    [70]Robe W M, Geoffrey F S. Pressure-induced electronic coupling in CdSe semiconductor quantum dots. Physical Review B,2002,66(3):035317-035323
    [71]X T Zhang, Z Liu, Quan Li, S K Hark. Growth and Luminescence of Ternary Semiconductor ZnCdSe Nanowires by Metalorganic Chemical Vapor Deposition. The Journal of Physics Chemistry B,2005,109(38):17913-17916
    [72]C X Shan, Z Liu, C M Ng, S K Harka. ZnxCd1-xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposit-ion. Applied Physics Letters,2005,87(3):033108-033111
    [73]Rayapati Venugopal, Lin Ping-I, Chen Yit-Tsong. Photoluminesce-nce and Raman Scattering from Catalytically Grown ZnxCd1-xSe AlloyNanowires. The Journal of Physics Chemistry B,2006,110 (24):11691-11696
    [74]Z Liu, C X Shan, S K Hark. Side-by-side ZnSe/ZnCdSe Bicrystalline Nanoribbons Prepared by a Two-Step Process. The Journal of Physics Chemistry C,2007,111(44):16181-16183
    [75]Reuss R H, etal. Macroelectronics:Perspectives on technology and application. Proceedings of the IEEE,2005,93(7):1239-1256
    [76]Shur M S, Wilson P, Urban D. Electronics on unconventional substrates-Electrotextiles and gaint-area flexible circuits. Material Research Society, 2002,736(2):7-15
    [77]Ucjikoga S. Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays. Material Research Society Bulletin, 2002,27(11):881-886
    [78]Rogers J A, etal. Paper-like electronic displays:Large-area rubber-stamped plastic sheets of electronics and microencapsulated electro-phoretic inks. Proceeding of the National Academy of Sciences,2001,98(9):7835-4840
    [79]Duan X, Huang Y, Wang J, Cui Y, Lieber C M. Indium phosphide nano-wires as building blocks for nanoscale electronic and opto-electronic device. Nature, 2001,409(6816):66-69
    [80]Huang Y, Duan X, Wei Q, Lieber C M. Directed assembly of one-dimensional nanostructures into functional networks. Science,2001,291(5504):630-633
    [81]Tao A,etal. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy. Nano Letters,2003,3(9): 1229-1233
    [82]Whang D, Jin S, Wu Y, Lieber C M. Large-scale hieearchical doctor nanowires and nanoribbons. Nature,2003,3(9):1255-1259
    [83]McDaniel E B, McClain S C, Hsu J W P. Nanometer scale polarimetry studies using a near-field scanning optical microscope. Applied Optics,1998,37(1): 84-92
    [84]Hong M K, Erramilli S, Jeung A. Scanning near field infrared microscope based on a free electron laser. Progress SPIE,1996,2863(1):54-63
    [85]Bae J, Okamoto T, Futii T, Mizuno K, Nozokido T. Experimental dem-onstration for scanning near-field optical microscopy using a metal micro-slit probe at millimeter wavelengths. Applied Physics Letters,1997,71(24): 3581-3583
    [86]Vigoureux J M, Courjon D. Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion. Applied Optics, 1992,31(16):3170-3177
    [87]Kowarz M W. Homogeneous and evanescent contributions in scalar near-field diffraction. Applied Optics,1995,34(17):3055-3063
    [88]Girard C, Dereux A. Near-field optics theories. Reports Progress in Physics, 1996,59(5):657-699
    [89]Carminati R, Saenz J J. Scattering theory of Bardeen's formalism for tunneling: new approach to near-field microscopy. Physical Review Letters,2000,84(22): 5156-5159
    [90]Keller O. Near-field optics:The nightmare of the photon. Journal of Chemical Physics,2000,112(18):7856-7863
    [91]Carminati R, Saenz J J. Scattering Theory of Bardeen's Formalism for Tunnel-ing:New Approach to Near-Field Microscopy. Physical Review Letters,2000, 84(22):5156-5159
    [92]T Teranishi, K Sato, K Kondo. Optical Properties of a Magnetic Semiconduct-or:Chalcopyrite CuFeS2:I Absorption Spectra of CuFeS2 and Fe-Doped CuAlS2 and CuGaS2. Journal of the Physical Society of Japan,1974,36(): 1618-1624
    [93]J A Tossell, D S Urch, D J Vaughan, G Wiech. Laser spectroscopy of molecular LiHe:The 3d 2p 2∏ transition. Journal Chemical Physics,1982,43(1):77-78
    [94]T Teranishi. Cavity Growth by Vancancy Condensation and Transform-ation to Dislocation Loop in the Graphite Structure. Journal of the Physical Society of Japan,1961,16(23):407-413
    [95]G Donney, L M Corliss, J D H Domay, N Elliot, J Hastings. Symmetry of Magnetic Structures:Magnetic Structure of Chalcopyrite. Physical Review, 1958,112(6):1917-1923
    [96]T Teranishi. The Intensity of Satellite Reflections in Electron Diffraction Patterns from Evaporated Alloy Films with CuAu II Type Super-structure. Journal of the Physical Society of Japan,1961,19(205):1881-1892
    [97]Wooley J C, Lamarche A M, T M Holden. Low temperature magnetic behav-iour of CuFeS2 from neutron diffraction data. Journal of Magnetism and magnetic Materials,1996,162(2-3):347-354
    [98]Ok H N, Baek K S, Choi E J. Mossbauer study of antiferromagnetic CuFeS2-x Sex. Physical Review B,1994,50(14):10327-10330
    [99]M.J.Harris,M.P.Zinkin,and I.P.Swainson.Structural transformation and spin-re orientation transition in epitaxial Fe/Cu3Au(100) ultrathin films. Physical Review B,1997,55(9):6957-5897
    [100]A Rais, A M Gismelseed, A D Al-Rawas. Magnetic properties of natural chalc-opyrite at low temperature. Material Letters,2000,46(6):349-353
    [101]L Barkat, N Hamdadou, M Morsli, A Khelil, J C Bernede. Growth and charact-erization of CuFeS2 thin films. Journal of Crystal Growth,2006,297(2):426-431
    [102]J Q Hu, Q Y Lu, B Deng, K B Tang, Y T Qian, Y Z Li, G E Zhou, X M Liu. A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorganic Chemistry Communications,1999,2(12):569-571
    [103]J Q Hu, Q Y Lu, X M Liu. A solvothermal reaction route for the synthesis of CuFeS2 ultrafine powder. Journal Materials Research,1999,14(10):3870-3872
    [104]A M Malyarevich, K V Yuashev, N N Posnov, V S Gurin. Optical tran-sient bleaching and induced absorption of surface-oxidized Cu-Fe-S nanoparticles. Applied Physics B,2000,70(42):111-116
    [105]S K Pradhan, B Ghosh, L K Smanta. Mechanosynthesis of nanocrystalline CuFeS2 chalcopyrite. Physica E,2006,33(1):144-146
    [106]H L Liu, C C Chen, C T Chia, C C Yeh, C H Chen, M Y Yu, S Keller, S P DenBaars. Infrared and Raman-scattering studies in single-crystalline GaN nanowires. Chemical Physics Letters,2001,345(3-4):245-251
    [107]N Yamashita. Photoluminescence Properties of Cu+ Centers in MgS, CaS, SrS and BrS. Journal of Applied Physics,1991,30():3335-3340
    [108]Rayapati Venugopal, Ping-I Lin, Yit-Tsong Chen. Photoluminescence and Raman Scattering from Catalytically Grown ZnxCdl-xSe Alloy Nanowires. The Journal of Physics Chemistry B,2006,110 (24):11691-11696
    [109]Richardson D, Hill R. The variation of energy gap with composition in ZnS-Te alloys. Journal of Physics C:Solid State Physics,1973,6():L115-L119
    [110]Hill R. Energy-gap variations in semiconductor alloys. Journal of Physics C: Solid State Physics,1974,7(3):521-526
    [111]Richardson D, Hill R. The origins of energy gap bowings in substitutional semiconductor alloys. Journal of Physics C:Solid State Phys,1972,5(8): 821-827
    [112]Yu P W, Park Y S. P-type conduction in undoped ZnSe. Applied Physics Letters, 1973,22(7):345-346
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.