柽柳类锌指基因ThZFL的抗逆功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从柽柳(Tamarix hispida)根中的cDNA库中分离出一个与盐相关的类锌指基因(ThZFL)。ThZFL基因全长514bp,开放读码框自103位的ATG起,止于421位的TAA,为318bp,共编码105个氨基酸,推测其分子量为11.25kD,等电点为9.97。对其进行生物学信息分析,这个基因与动物锌指蛋白有部分相似性。
     Northern blot分析表明盐和渗透剂处理都提高了ThZFL在柽柳根部的表达,也能被ABA诱导。亚细胞定位表明ThZFL蛋白是定位在细胞壁中的蛋白。
     将ThZFL基因克隆到酵母表达载体pYES2中,转化酿酒酵母(Saccharomyces cerevisiae)中,空载体pYES2转酵母为对照。分别用NaCl和甘露醇胁迫处理转ThZFL与对照酵母,表明ThZFL基因对盐和渗透有抵抗能力。
     为进一步研究ThZFL的功能,用农杆菌介导法将ThZFL基因转入烟草中,以GUS基因作为对照,得到了转基因烟草。PCR、Southern杂交和Northern杂交检测表明ThZFL和GUS基因分别整合到烟草基因组中,并能够表达。
     选取3个转ThZFL基因株系的种子及叶片进行了非生物胁迫实验,转GUS基因及非转基因烟草作为对照。分析逆境胁迫条件下非转基因、转GUS基因植株和转ThZFL基因植株种子发芽率、相对生长量及丙二醛(MDA)含量。结果显示,胁迫条件下,转ThZFL基因的发芽率、相对生长量明显高于对照,丙二醛含量低于对照。这些结果表明ThZFL的过表达提高了转基因植株的抗盐和耐渗透能力。
This study served to isolate a Zinc-finger-like gene(ThZFL) from the Tamarix hispida roots cDNA library in response to salt treatments. The length of the ThZFL gene was 514bp. The gene open reading frame(ORF) was 381bp in length that was from 103 of ATG to 421 TAA. The ThZFL gene encodes a predicated polypeptide of 105 amino acid with a molecular weight off 11.25kDa and a pI of 9.97. Analyzing the gene by bioinformatics indicated the ThZFL gene has low sequence homology to animal Zinc-finger genes.
     Expression of ThZFL in Tamarix in response to abiotic stress was studied by Northern blot. The results showed that ThZFL was response to treatments of salt and osmotic in T.hispida roots and ThZFL was induced by ABA treatment. Subcellular localization ananlysis showed that the ThZFL protein is localized in the cell wall.
     The ThZFL gene was inserted into pYES2 and transformed into yeast cells(Saccharomyces cervisiae). Yeast cells transformed and pYES2 empty vector were stressed by different abiotic stresses. The results demonstrated that ThZFL exhibits a wide range of abiotic stresses.
     To further characterize the function of ThZFL in plant, we transformed ThZFL gene into tobacco by using Agrobacterium mediated transformation.Furthermore, the GUS gene was transform into tobacco as the control.The transgenic lines were examined by PCR、Northern hybridization and Southern hybridization, confirming that ThZFL gene and GUS gene have been integrated int the genome of tobacco, the foreign ThZFL gene and GUS gene were successfully expressed in all the transgenic lines.
     Based on the above results, tree transgenic lines were selected for investigating the tolerance of abiotic stresses, the GUS gene transgenic line and WT line as contol. Germination percentage of the seeds,relative growth rate and activity of MDA were measured and analysised under different abiotic stresses. The results showed that under abiotic stresses, germination percentage of seeds and relative growth rate in all transgenic lines were higher than that of the control. The MDA content was lower than that of the control. Theses results showed that overexpression of ThZFL in transgenic tobacco increased tolerance to salt and osmotic.
引文
[1]Szabolcs I. Global overview of sustainabal management of salt affected soil. In.Proceeding of the International Workshop on Intergrated Soil Management for Sustainable Use of Salt Affected Soil. Manila, the Philippline,1995,19~38.
    [2]慈龙骏,沈国舫.中国的土地荒漠化及沙区综合开发.面向二十一世纪的林业国际会议学术讨论会的文集,1997,p21
    [3]Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review. Ecotooxicology and Environmental Safety,2005,60:324~349
    [4]Plaut L Z, MayoralM L, Reinhold L. Effect of altered sink source ratio on photosynthetic metabolism of source leaves. Plant Physiology,1985,77:786~791
    [5]牟永花,张德威NaCl胁迫下番茄苗的生长和营养元素积累[J].植物生理学通讯,1998,34(1):14-16
    [6]魏国强,朱祝军,方学智等NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学,2004,37(11):1754~1759
    [7]杨秀玲,郁继华,李雅佳等NaCl胁迫对黄瓜种子萌发及幼苗生长的影响[J].甘肃农业大学学报,2004,39(1):6-17
    [8]戴伟民,蔡润,潘俊松等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报,2002,18(1):58-62
    [9]赵建平,谢虎.佛手瓜耐盐性的研究[J].中国蔬菜,1995(2):19~21
    [10]Wu J L, Seliskar DM, Gallagh er JL. Stress tolerance in the marsh plane Spartinapatens:impact of NaCl on growth and root plasma membrane lipid composit ion. Physiol Plant,1998,102:307~317
    [11]Hasegawa PM, Bressan RA,Handa AK. Growth characteristics of NaCl-selected and nonselected cells of Nicotiana tabacum L. Plant Cell Physiol,1980,21:1347~1355
    [12]Grieve CM, Francois LE, Maas EV. Salinity affects the timing of phasic development in spring wheat. Crop Sci,1994,34:1544~1549
    [13]Chaudhuri K, Choudhuri MA. Effect of short-term NaCl stress on water relations and gas exchange of two jute species. Biologia Plantarum,1997,40:373~380
    [14]Rajesh A, Arumugam R, Venkatesalu V. Growth and photosynthenic characterics of Ceriops roxburghiana under NaCl stress. Photosynthetica,1998,35:285~287
    [15]Kurban H, Saneoka H, Nehira K,Adilla R,Premachandra G S, Fujita K. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi(Bieb.). Soil Science and Plant Nutrition,1999,45:851~862
    [16]Khavarinejad RA, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica,1998,35:461-466
    [17]Parida AK, Das AB,Mittra B. Effect of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove,Bruguiera parviflora. Trees Structure and Function, 2004,18:167~174
    [18]Romeroaranda R, Soria T,Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science,2001,160:265~272
    [19]Kao WY, Tsai TT. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedling of a mangrove species, Kandelia candel(L.)Druce. Journal of Plant physiology, 2001,158:841~846
    [20]Iyengar ERR,Reddy MP. Photosynthesis in high salt-tolerant plants. In:Pesserkali M(ed) Hand book of photosynthesis. Marshal Dekar, Baten Rose,1996, pp 56~65
    [21]Muller M, Santarius KA. Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity. Plant Phyiol.1978,62:326~333
    [22]Maslenkora LT. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids. Physiol Plant,1993,142:629~634
    [23]Rao GG, Rao GR. Pigment composition and chlorophyyase activity in pigment pea and Gingelley under NaCl salinity. Indian J Exp Biol.1986,19:768~770
    [24]张守仁,高荣孚.介绍一种改进的研究气孔运动的方法[J].植物学报,1999,V16(01):89~92
    [25]张其德,温晓刚,,卢从明,冯丽洁.盐胁迫下CO2加倍对春小麦一些光合功能的影响.植物生态学报,2000,24(3):308~311
    [26]Masojidek J, Hall DO. Salinity and drought stresses are amplified by high irradiance in sorghum.Photosythetica,1992,27:159~171
    [27]Everard JD, Gucci R,Kann SC, Flore JA,Loescher WH. Gas exchange and carbon partitioning in the leaves of celery(Apium graveolens L)at various leaves of roots zone salinity. Plant physiol,1994,106:281~292
    [28]Bongi GLoreto F. Gas-exchange properties of salt-stressed Olive. Olea.eyropea L,1989
    [29]Parida AK, Das AB, Mit tra B. Effects of NaCl stress on the structure, pigment complex compsition and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica,2003,41:191~200
    [30]Yang X, Lu C. Photosynthesis is improved by exogenous glycinebetaine in salt-stresses maize plants. Physiologia Plantarum,2005,124:343~352
    [31]许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6:379-387
    [32]Chen M, Fry I V. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol,1997,115:971~980
    [33]Dionisio-Sese ML, Tobita S. Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology,2000, 157:54~58
    [34]Flexas J, Bota J, Galmes J. et al. Keeping a positive carbon balance under adverse condition:response of photosynthesis and respiration to water stress. Physiol plant,2006, 127:343~352
    [35]ReddyMP, Sanish S, Iyengar ERR. Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb.under saline conditions. Photosynthetica, 1992,26:173~179
    [36]Munns, R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002,25:239~250
    [37]Chen LM, Lin CC, Kao CH. Copper toxicity in the rice seedlings:Changes in antioxidative enzyme activities, H2O2 leveland cell wall peroxidase activity in roots. Botanical Bulletin of Academia Sinica,2000,41:99~103
    [38]Kozi Asada. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and plant Molecular Biology,1999,50:601~639
    [39]王爱国,罗广华,邵从本.大豆种子超氧化物歧化酶的研究.植物生理学报,1983,9(1):177~183
    [40]Mittler R. Oxidative stress,antioxidants and stress tolerance. Trends in Plant science,2002, 9:405~410
    [41]刘婉,胡文玉.NaCl胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系.植物生理学通讯,1997,33(6):423-425
    [42]Sreenivasulu, Grimm B, Wobus U. Differential response of antioxidant compounds to salinity stress in salt tolerant and salt sensitive seedings of f oxtail millet. Phsiol.Planta, 2000,109:435-442
    [43]Hassanein AM. Alterations in protein and esterase patterns of peanut in response to salinity stress.Biol. Plant,1999,42:241~248
    [44]Kerk eb L, Donaire J P, RodriguezRosales M P. Plasma membrane H+-ATPase activity is involved in adaptation of tomato calli to NaCl. Physiol Plant,2001,111:483~490
    [45]刘伟,潘延国,柯玉琴.盐胁迫对甘薯叶片氮代谢的影响.福建农业大学学报,1998,27:490~494
    [46]Soussi M, Lluch C, Ocana A. Comparative study of nitrogen fixaion and carbon metabolism in two chick pea cultivars under salt stress. J. Exp. Bot.1999,50:1701~1708
    [47]Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P-C, Bouvier-Durand M, Vartanian N. Current advances in abscisic acid action and signaling. Plant Mol Biol.1994, 26:1557~1577
    [48]Cohen A, Bray EA. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta,1990,182:27~ 33
    [49]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol,1997,115:327~334
    [50]BaoshanWang, Kefu Zhao, Qi Zou. Advances inmech an ism of crop salt tolerance and strategies for raising crop salt tolerance. Chinese Bulletin of Botany,1997,14:25-30
    [51]杜秀敏,殷文璇.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121~122
    [52]赵可夫,范海.盐生植物及其对盐渍生境的适应生理.科学出版社,2005,27
    [53]Zhu J K. Plant salt tolerance. Trends in Plant Science,2001,6(2):66~71
    [54]Breesan R A, P M.Hasegawa, J M.Pardo. Plants use calcium to resolve salt stress. Trends Plant Sci.1998,3:411~412
    [55]沈义国,阎冬青.榆钱菠菜脯氨酸转运蛋白基因的克隆及转基因拟南芥的耐盐性.植物学报,2002,44(8):956~962
    [56]Smirnoff C, Thonke B, Popp M. The compatibility of D-pinitol and 1D-1-omethyl-mucoinositol with malate dehydrogenase activity. Bot Acta,1990,103:270~273
    [57]Khatkar D, Kuhad MS. Short-term salinity induced changes in two wheat cultivars at different growth stages. Biologia Plantarum,2000,43:629~632
    [58]singhSK, Sharma HC, Goswami AM. Datta SP, Singh SP. In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia Plantarum, 2000,43:283~286
    [59]Raza SH. Athar HR,Ashraf M, Hameed A. Glycinebetaine-induced modulation of antioxibant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botan,2007,60:368~376
    [60]Khan MA, Ungar I A, Showalter AM. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plant Ana,2000, 31:2763~2774
    [61]Kishor P B K, Hong ZMiao GH,et al. Overexpression of 2-pyrrolion-5carboxylate Synthase Increases Praline Production and Confers Osmoto lerance in Transgenic Plant. Plant Physiol,1995,108:1387~1394
    [62]Sanada Y, Veda H,Kuribayashi K,et al. Novel light-dark change of proline levels in halophyte(Mesmbryanthemum crystallinum L)and glycophytes(Hordeum vulgare L.and Triticum aestivum L.)leaves and roots under salt stress. Plant Cell Physiol,1995, 36(6):965~970
    [63]Santa-Cruza A, Acostam R A,et al. Shory-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol. Biochem,1999,37(1):65~71
    [64]Falkenberg P, Storm AR. Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of E.coli. Biochim BiophysAct,1990,1034:253~259
    [65]马德钦,吕文,汤岗等.菠菜甜菜碱醛脱氢酶基因的克隆和序列分析[J].生物工程学报,1996,12(1):65-70
    [66]梁青,陈学森,刘文,吴燕.胚抢救在果树育种上的研究及应用[J].园艺学报,2006,33(2)
    [67]王玖瑞,刘孟军,代丽.枣树组织培养研究进展[J].果树学报,2002,19(5):332~339
    [68]Thomas CM, Vos P, Zabiau M,et al. Identification of amplified restriction fragment polyphism (AFLP) markers tightly linked to the tomato Cf29 gene for resistance to Cladosporium fulvum. The Plant Journal,1995,8(5):785-794
    [69]Yeo A. Molecular biology of salt tolerance in the context of whole plant physiology. J.Exp.Bot,1998,49:915~929
    [70]Rodriguez HG, Boberts JKM, Jordan WR, Drew MC. Growth, water relations and accumulation of organic and in organic solutes in roots of Maize seedlings during salt stress. Plant Physiol,1997,113:881~893
    [71]Ershov P V, Reshetova O S, Trofimova M S, et al. Activity of ion transporters and salt tolerance in barley. Russ.J. Plant Physiol,2005,52(6):765~773
    [72]Saiz JF, Leidi EO. Is salinity tolerance related to Na accumulation in Upland cotton seedlings? Plant and Soil.1997,190:67~75
    [73]Curtin D, Wen G. Plant cation-anion balance as affedted by the ionic compositionofthe growing medium. Plant Siol,2004,267(1/2):109~115
    [74]Fusuo Zhang. Environmental Stress and Plant Breeding M.Beijing:Agriculture Press,1993: 330-333
    [75]Cheeseman JM. Mechanisms of salinity tolerance in plants. Plant Physiology,1988, 87:547~550
    [76]Michelet B, Boutrym. The plasma membrane H+-ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiol,1995,108:1~6
    [77]Volkmar KM, Hu Y, Steppuhn H. Physiological responses of plants to salinity:a review. Can J Plant Sci,1998,78:19~27
    [78]Palmgren M G, Harper JF. Pumpingwith plant P-type ATPase. Journal of Experimental Botany,1999,50:883~893
    [79]Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. PNAS,1999,96(10):5862~5867
    [80]Shi Huazhong, Quintero F J, Pardo J M, et al. Role of SOS 1 as a plasma membrane Na+/H+ antiporter that controls long distance Na+ transport in plant. Plant Cell,2002,14:465~ 477
    [81]Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999, 285(5431):1256~1258
    [82]Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol,2000,12: 431~434
    [83]Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y. Effect of salt and osmotic sresses on the expression of genes for the vacuolar H+-pyrophoshatase, H+-ATPase subunit A, and Na+/H+ antipoter from barly. J.Exp.Bot,2004,55:585~594
    [84]Otoch MDL, Sobreira A CM, deAragao M E F, et al. Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. J Plant Physiol,2001, 158:545~551
    [85]Mittova V, Tal M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersion pennellii but not in the cultivated species. Physiol Plant,2002,115:393~400
    [86]Cha-um S, Slipaibulwatana K, et al. Water relation, photosynthetic ability and growth of Thai jasmine rice(Oryza sative L. ssp indica cv. KDML)to salt stress by application of exogenous glycinebetaine and choline.J. Agron.Crop Sci,2006,192(1):25~36
    [87]T anaka Y, Hibino T, Hayashi Y et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplast s, Plant Science,1999,148:131~138
    [88]田路明,黄丛林,张秀海,张潞生,吴忠义.逆境相关植物锌指蛋白的研究进.物技术通报,2005,6:12~16.
    [89]余晓丹.锌指蛋白结构和功能研究进展.国外医学卫生学分册.2004,03-010
    [90]黄骥,张红生.TFⅢA型锌指蛋白及在提高植物耐逆性中的作用.遗传,2007,29(8):915~922
    [91]黄骥,王建飞,张红生.植物C2H2型锌指蛋白结构和功能.遗传.2004,26:414~418
    [92]Jun Ying Wang, Xin Li Xia. Stress Responsive Zinc-finger Protein Gene of Populus euphratica in Tobacco Enhances Salt Tolerance. Journal of Integrative Plant Biology,2008, 50(1):56~61
    [93]Arnab Mukhopadhyay, Shubha Vij. Overexpression of a Zinc-finger Protein Gene from Rice Confers Tolerance to Cold, Dehydration, and Saltstress in Transgenic Tobacco. PNAS,2004,101(16):6309~6314
    [94]赵飞.小菊锌指蛋白基因的分析表达分析及耐盐差异蛋白的分离鉴定,东北林业大学报
    [95]Hideki Sakamoto, Kyonoshin Maruyama, Yoh Sakuma. Arabidopsis Cys2/His2-Type Zinc-Finger Proteins Function as Transcription Repressors under Drought, Cold, and High-Salinity Stress Conditions. Plant Physiology,2004,136(1):2734~2746
    [96]Petra Epple, Amanda A, Mack.Antagonistic Control of Oxidative Stress-induced Cell Death in Arabidopsis by two related, Plant-specific Zinc Finger Proteins. PNAS,2003, 100(11):6831~6826
    [97]Kim J. C, Lee S. H, Yoo C. M, Lee S. L, Chun H. J, et al. A novelcold inducible zinc finger protein from soybean,SCOF-1,enhances cold tolerance in transgenic plants. Plant J, 2001,25:247~259
    [98]Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takatsuji H. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in Petunin. Plant J,2003,36(6):830~841
    [99]Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Nati Acad Sci USA,2004,101:6309~6314.
    [100]Dong-Qing Xu, Ji Huang, Shu-Qiao Guo. Overexpression of a TFIIIA-type Zinc Finger protein gene ZFP252 enhances drought and salt tolerance in rice(Oryza sativa L.). FEBS Letters,2008,582(7):1037~1043
    [101]Sholi Sugano, Hironori Kamnaka. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. The Plant Journal,2003,36:830~841
    [102]Satoshi Iuchi, Hiroyuki Koyama. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. PANS,2007, 104(23):9900~9905
    [103]尹林克.中亚荒漠生态系统中关键中—柽柳(Tamarix—Spp.).干旱区研究,1995,9(12):43~47
    [104]Li H, Wang Y, Jiang J, Liu G, Gao C, Yang C. Identification of genes responsive to salt stress on Tamarix hispida roots. Gene,2009,433:65~71
    [105]Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596~1599
    [106]Kubo K, Sakamoto A, Kobayashi A,Rybka Z, Kanno Y, NakagawaH, Takatsuji H. Cys2/His2 zinc-finger protein family ofpetunia:evolution and general mechanism of target-sequence recognition. Nucleic Acids Res,1998,26:608~615
    [107]Takatsuji H. Zinc-finger transcription factors in plants. Cell Mol Life Sci,1998, 54:582~596
    [108]Liming Xiong, Karen S. Schumaker, and Jian-Kang Zhu. Cell Signaling during Cold, Drought and Salt Stress. The Plant Cell,2002,S165~S183.
    [109]Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH. Abscisic acid pretreatment enhances salt tolerance of rice seedlings:Proteomic evidence. Biochim Biophys Acta,2010, 1804:929-940
    [110]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol,2000,3:217~223
    [111]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot,2007,58:221~227
    [112]Fujiwar Y, Asogawa M. Prediction of subcellular localization using amino acid composition and order. Genome Informatics,2001,12:103~112
    [113]Bork P, Holm L, Sander C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol,1994,30:309~320.
    [114]Fukudda Y, Shinshi H. Characterization of a novel cis-acting element that is esponsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene. Plant Mol Bio,1994, 24:485~493
    [115]Donald RG, CashmoreAR. Mutation of either G box or I box seqences profoundly affects expression from the Arabidopsisrbc S21 A promoter. EMBO J,1990,9:1717~1726
    [116]Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol, 2001,126:1024~1030
    [117]Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep,2007,26:2017~2026
    [118]Lim GH, Zhang X, Chung MS, Lee DJ, Woo YM, Cheong HS, Kim CS. A putative novel transcription factor AtSKIP is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytol,2010,185:103~113
    [119]Yang O, Popova OV, Siithoff U, Luking I, Dietz KJ, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene,2009,436:45~55
    [120]Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger "AlSAP" gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol,2010,72:171~190
    [121]高桂娟,毛凯,杨春华等.牧草及草坪草种子耐盐性研究进展[J].四川草原,2002,(4):33~37
    [122]刘友良.植物水分逆境生理.北京:农业出版社,1992
    [123]Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol,2000, 124:941~948
    [124]Xu S, Wang X, Chen J. Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys2/His2-type transcription factor involved in drought and salt stress. Plant Cell Rep,2007,26:497~506
    [125]Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol,2010,72:357~367
    [126]王爱国.丙二醛作为脂质过氧化指标的探讨[J].植物生理学通讯,1986,(2):55~57
    [127]姜英淑,陈书明,王秋玉等.碳酸盐和干旱胁迫对欧李生理特性的影响[J].林业科学,2009,45(3):19~23
    [128]Horsch RB, Fry JE, Hoffmann NL, Eichholtz D,Rogers SG, Fraley RT. A simple and general method for transferring genes into plants. Science,1985,227:1229~1231
    [129]Fang F, Liu GT. Protective effects of compound FLZ on β-amyloid peptide-(25-35)-induced mouse hippocampal injury and learning and memory impairment. Acta Pharmacol Sin,2006,27:651~658
    [130]Dionisio-Sese M L, Tobita S.Antioxidant responses of rice seedlings to salinity stress. Plant Science,1998,135:1~9
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.