有机/无机复合弱碱性阴离子交换树脂合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β—萘磺酸是重要的染料中间体。伴随着p—萘磺酸的生产,产生了大量含磺酸基的芳香族有机化合物的废水。离子交换与吸附作为一种有效的化学分离方法,具有优越的分离选择性和很高的浓缩倍数,操作方便,效果突出。
     采用化学沉淀法对大孔弱碱性阴离子树脂D301R进行水合氧化铁复合反应,并对水合氧化铁负载的大孔弱碱性阴离子交换树脂HFO-D301R进行表征。采用水合氧化铁复合大孔弱碱性阴离子交换树脂法处理β—萘磺酸混合废水,并对该过程进行系统的研究。对各种不同因素影响下水合氧化铁复合树脂HFO-D301R对β—萘磺酸废水交换吸附进行热力学实验研究,分别考察了时间、温度、pH值、盐含量等对该过程的影响。实验结果表明,复合离子交换树脂对β—萘磺酸废水的吸附平衡时间为5h;该交换吸附过程为放热过程,温度越高树脂吸附交换量越低,低温有利于树脂吸附交换反应的进行;pH=4有利于交换吸附的进行;含盐量对该过程的影响主要是来自于废水中大量的Cl-、SO42-和SO32-离子的竞争交换作用。随着溶液pH值的增加,溶液的β—萘磺酸的浓度升高,表明pH值过高不利于交换吸附反应。
     除了上述静态因素,考察了动态因素对交换吸附的影响。流速低时,处理效果较好,随着流速的增加,穿透时间提前,并且穿透曲线的形状趋于平坦,完全穿透时间延长。当含浓度加倍时,穿透时间大大提前。并且在流速以2BV/h时作了β-萘磺酸混合酸废水穿透曲线。
     以β—萘磺酸为代表物研究其在HFO-D301R树脂上的吸附交换过程。分别应用Langmuir模型、Freundlich模型采用非线性最小二乘法对等温平衡吸附数据进行拟合,结果发现Freundlich模型能更准确反映该交换吸附过程。以Van't Hoff方程、Gibbs方程和Gibbs-Helmholtz方程描述该交换吸附过程,获得了不同温度时HFO-D301R吸附交换β—萘磺酸的标准自由能变以及不同交换吸附量下的交换吸附焓变,从理论上证明了该交换吸附过程是放热过程。β—萘磺酸在HFO-D301R树脂上的静态交换吸附显示了良好的动力学特征。对动态交换吸附实验数据进行拟合,其符合一级反应动力学过程。进一步研究测定交换率(F)与时间(t)的关系,发现实验数据按“[1-3(1-F)2/3+2(1-F)]-t”标绘,呈良好的线性关系,线性相关系数为0.94769,说明该过程为颗粒扩散控制。
A large amount of wastewater characterized by high concentration of organic substances is discharged as the production ofβ-naphthalenesulfonic acid, which is an important intermediate in the production of fluorescent whitening agents, direct dyes, and fungicides. The ion exchange technology has shown great selectivity and easy manipulation in the separation process.
     The macroporous weakly anion exchang resin are composited hydrated ferric oxide by a way of chemical precipitation and represented the characteristic of that loaden hydrated ferric oxide on.With themβ-naphthalenesulfonic acid mixture wastewater are treated and studied systematicly.Lauching a variety of different factors (3-naphthalenesulfonic acid are adsorbed and exchanged by the resin(HFO-D301R) loaden hydrated ferric oxide,and are investigated thermodynamics and time, temperature, pH and salt content that impacted of them. The experimental results showed that the equilibium time of composite ion-exhanger absorbed P-naphthalenesulfonic acid wastwater is about 5h.The absorption and exchang process is exomthermic, and if the temperature of the process is higher the absorption and exchange capacity is low.So a lower temperarure is conducive to the conduct of exchanger. "pH=4" is positive for the adsorption. Salinity major impacted of the process that a mass of ions(Clˉ,SO42-,SO32-) in the wastewater are competitive.
     In addition to the static factors, the dynamic factors on adsorption exchange is researched. Velocity is lower, the better results, as the increase of the velocities penetrating time is ahead, and the shape of the penetrating curve is flattened, fully penetrating time is extended. When you double the containing concentrations, penetrating time bring forward significantly. And in the flow velocity to 2BV/h aβ-naphthalene sulfonate mixed acid waste water penetrating curve is worked.
     Theβ-naphthalenesulfonic acid was chosen to study the behavior of the resin adsorption and exchange process. Freundlich isotherm was best to simulate the adsorption among the isotherm models of Langmuir and Freundlich. A first-order adsorption kinetics equation was developed for the process, and relevant parameters were calculated. Furthermore, results showed that the process was controlled by the particle diffusion, i.e. PDC.
引文
[1]谢锐.我国染料行业几种主要废水的治理技术概况[J].化工环保,1994,14(3):139-141
    [2]吴昌龙,陈金龙.废硫酸及含硫酸废水的治理[J].化工环保.1999,19(3):140-155
    [3]张亚雷,陈卓.含酸废水资源化处理技术与应用实践[J].工业水处理.2003,23(2):59-61
    [4]许俊生等.三氯乙醛合成过程中废硫酸的综合利用[J].化工环保,1993,13(6):374-379
    [5]郭崇涛等.含有机杂质的废硫酸的回收方法[J].染料工业,1982,(4):50-52
    [6]田野.利用气液分离型非挥发性溶液浓缩装置回收染料行业废稀酸效果好[J].化工环保通讯,1996,(1):7-10
    [7]胡金波等.萃取-吸附法净化再生酸[J].燃料与化工.1992,23(6):314-316
    [8]彭盘英,王玉萍,崔世海等.γ酸废水的综合利用[J].化工环保.2000,20(6):30-34
    [9]祝万鹏,魏欣雨,杨志华等,2-3酸生产废水资源化技术研究[J].给水排水,2000,26(12):44-46
    [10]伍时华,路敏,童张法.从发酵液中提取柠檬酸的研究进展[J].广西工学院学报.2005,16(3):9-14
    [11]袁吕江,李学刚,赵海伶等.大黄酸提取工艺的改革探析[J].中医药学刊.200422(7):1359-1361
    [12]张永刚,赵西往,靳晓霞.钢铁酸洗废液资源化的膜处理技术[J].工业水处理.2006,26(12):18-20
    [13]周国平,杨建男, 罗士平.阴离子交换膜渗析法回收含硫酸钠的高浓度硫酸废水[J].膜科学与技术.2002,22(6):24-27
    [14]Fu boqiang, Liujian. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid[J], Journal of Chromatography A,2005,1089:18-24
    [15]周希圣,张全兴.树脂吸附法处理2-萘酚生产中含p—萘磺酸的工业废水的研究[J].江苏化工学院学报,1991,3(1):39-44
    [16]许昭怡,张慧春,王勇.大孔树脂吸附法处理萘系染料中间体生产废水的进展[J].化工环保,1999。19(1):20
    [17]龙超,张全兴.树脂吸附法处理高浓度DSD酸氧化工序生产废水的研究[J].离子交换与吸附.2002,18(1):45-50
    [18]万继伟,张文玲,陈丽.吸附树脂在废水处理中的应用[J].资源与环境.2007,23(6):35-39
    [19]罗刚,张全兴.超高交联树脂对水溶液中山梨酸的吸附研究[J].工业用水与废水,2003,34(3):30-32
    [20]张炜铭,徐仲艳.苯基周位酸生产废水处理试验研究[J].化工环保,2001,21(3):125-131
    [21]冯艳菊,王林,郭亚军,王正平.天然产物特殊分离技术的研究进展[J].应用化工.2006,35(7):545-553
    [22]刘军海,裘爱泳.杜仲叶绿原酸提取纯化工艺的研究[J].中药材.2004,27(12):942-946
    [23]任健,夏文水.葵花籽仁酶解体系中绿原酸的分离纯化技术[J].中国油脂.2007,32(1):59-61
    [24]谷芳芳,任凤莲,吴梅林.大孔吸附树脂对熊果酸吸附性能的研究[J].广州化学.2006,31(2):23-27
    [25]乔五忠,王艳辉,李美粉等.利用大孔吸附树脂精制甘草酸的研究[J].中成药.2006,28(6):794-796
    [26]S. Brandani, V. Brandani. On the Purification ofβ-Naphthalenesulfonic Acid from Dilute Aqueous Solutions Containing Sulfuric Acid[J]. Ind. Eng. Chem. Res. 1998,37(1),4528-4530
    [27]何燧源等人.用萃取第三相形成法治理β-萘磺酸废水Ⅰ.β-萘磺酸-水三辛胺(苯)体系的萃取机理[J].华东理工大学学报.1995,21(2):99-102
    [28]周希圣,张全兴.树脂吸附法处理2-萘酚生产中含p—萘磺酸的工业废水的研究[J].江苏化工学院学报,1991,3(1):39-44
    [29]张莉,陆晓华.乳化液膜法处理有机素磺酸类废水的应用及稳定性[J].湖北化工,2002,(3):28-30
    [30]彭书传,魏凤玉等.β-萘磺酸钠生产废水的治理[J].中国环境科学.1998,18(5):455-457
    [31]Chen Y H, Chang C Y, Huang S F, et al.Decompostition of 2-naphthalene sulfonate in Aqueous Solution by Ozonation with UV Radiation[J]. Water Research,2002,36(16): 4144-4145
    [32]Rivera-Utrilla J, Sanchez-Polo M, Zaror C A.Degradation of Naphtholenesulfonic Acids by Oxidation with Ozone in Aqueous Phase[J].Physical Chemistry Chemical Physics,2002,4(7):1129-1134
    [33]Reemtsma T, Zyvicki B,Stuber M, et al. Removal of Sulfur-Organic Polar Micropollutants in a Membrane Bioreactor Treating Industrial Wastewater[J]. Enviromental Science and Technology,2002,35(6):1102-1106
    [34]黎泽华,栾兆坤,王曙光等.氧化催脱-离子交换处理2-萘酚生产废水研究[J].环境科学,2001,22(6):53-56
    [35]Hawash S I, El-Diwani G, Eissa S,et al.Profuction of Naphthalene Sulfonic Acid Isomers[J]. Afinidad,1993,49(441):302-308
    [36]Sato T,Shiozaki O, Ishimoto A, et al.Neutralization of naphthalene sulfonic acids with byprofuct alkali metal sulfites in the manufacture of naphthol[J]. Jpn.Kokai Tokkyo Koho,JP03264561.1991-11-25
    [37]Changhai LI, Pengfei SHI. Removal of β-Naphthalenesulfonic acid from Aq-ueous Dilute Sol-ution Using Bagasse fly Ash[J]. J. Chinese Chemical Engineering,2002, 10(4):598-603
    [38]Changhai LI, Pengfei SHI. Adsorption of β-Naphthalenesulfonic acid/Sulfuric Acid from Waste-water By Weakly Basic Resin[J]. J. Chinese Chemical Engineering, 2003,11 (1):38-41
    [39]Changhai LI, Hongren SHI, Pengfei SHI. Adsorption of β-Naphthalenesulfonic Acid /Sulfuric Acid from Waste-water By Weakly Basic Resin[J].J.Environmental Science, 2005,17(4):646-649
    [40]李长海,石宏仁,唐洪宇.弱碱性树脂吸附分离β-萘磺酸废水热力学性能研究[J].化工学报,200455(7):1117-1123
    [41]李长海,史鹏飞.由大孔弱碱性阴离子树脂吸附分离β-萘磺酸的研究[J].应用化学,2002,19(2):23-29
    [42]李长海,史鹏飞.弱碱性树脂处理β-萘磺酸废水的研究[J].化学工程,2001,29(6):41-48
    [43]李长海,史鹏飞.基于弱碱性树脂吸附β-萘磺酸/硫酸性能及模型模拟[J].离子交换与吸附,2001,17(5):23-29
    [44]李长海,史鹏飞.由弱碱性阴离子树脂分离β-萘磺酸的研究[J].环境污染与防治技术,2003,25(6):23-29
    [45]李长海,史鹏飞.树脂法吸附分离β-萘磺酸废水过程及模拟[J].哈尔滨工业大学学报,2001,33(6):43-49
    [46]李长海,史鹏飞.用弱碱性离子交换树脂分离β—萘磺酸的研究[J].化工环保,2001,21(6):12-17
    [47]Wataru Takatsuji and Hiroyuki Yoshida. Adsorption of Organic Acid on Polyaminated Highly Porous Chitosan:Equilibria[J]. Ind. Eng. Chem. Res.1998,37(11):1300-1309
    [48]李晖,卢定强,肖洁瑾等.335弱碱性阴离子交换树脂对甘草酸的吸附过程[J].生物加工过程.2006,4(4):46-50
    [49]代书玲,张鲁嘉,徐虹.离子交换法分离-天冬氨酸和-丙氨酸[J].氨基酸和生物资源.2006,28(1):42-45
    [50]陈秀兰,李炎,黄雪松.离子交换树脂分离合成茶氨酸[J].食品与发酵工业.2006,32(4):126-129
    [51]应国清,孟优娣,游文淑.大孔离子交换树脂分离纯化玻璃酸的研究[J]离子交换与吸附,I999,15(4):349—353
    [52]周本省.工业水处理技术[M]北京:化学工业出版社,2002
    [53]李洪桂等湿法冶金学[M]湖南长沙:中南大学出版社,2002年4月
    [54]刘时杰.铂族金属矿冶学[M]北京:冶金工业出版社,2001年
    [56]刘冰扬,赵建民.离子交换法处理含铜废水的实验研究[J]南京理工大学学报,1995,19(2):184—188
    [57]孟祥和,胡国飞.重金属废水处理[M]北京:化学工业出版社2000年5月
    [58]吴克明,石瑛,王俊,黄羽.离子交换树脂处理钢铁钝化含铬废水的研究[J] 工业安全与环保,2005,31(4):22—23
    [59]张丽珍,刘惠茹.弱碱离子交换树脂应用于含酚废水的处理[J]惠州大学学报(自然科学版),2001,21(4):52—56
    [60]许昭怡,张慧春,王勇,张全兴等.大孔树脂吸附法处理萘系染料中间体生产废水的进展[J]化工环保,1999,19(1):20—24
    [61]徐灵,王成端,姚岚.离子交换树脂处理含铬废水的研究[J].工业安全与环保2007,33(11):12—13
    [62]刘剑虹,庞广昌,于金华,张晓玲等.酪蛋白磷酸肽(CPPS)的纯化研究[J]食品科学,2001,22(4):31—35
    [63]Luiz C A. Oliveira, Rachel V R A Rios, Jose D Fabris, et al.Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water[J].Carbon, 2002,40(12):2177-2183
    [64]徐志兵,周建军,魏先文.负载Ti02的碳纳米管光催化降解睛纶废水的研究[J].安徽师范大学学报(自然科学版),2005,28(1):61-64
    [65]徐魁,雷乐成,周明华.Ti02/活性炭催化剂对4-CP的吸附和光催化活性[J].环境化学,2006,25(5):562-566
    [66]谭树成,郑经堂.活性炭纤维负载Ti02光催化剂研究[J].炭素,2006,233(3):15-18
    [67]员汝胜,郑经堂,关蓉波.活性炭纤维负载Ti02薄膜的制备及对亚甲基蓝的光催 化降解[J].精细化工,2005,22(10):748-751
    [68]Lai C H.Removal of metal ions and humic acid from water by iron — coated filter media[J].Chemosphere,2001,44(4):1177-1184
    [69]Gregory V K, Benjamin M M, Ronald S S.Adsorption of natural organic matter (NOM) on iron oxide:effects on NOM omposition and formation of organo — halide compounds during chlorination[J].Water Research,1997,31(7):1643-1650
    [70]何炳林,孙君坦,李弘.高分子固载化络合物催化剂的研究进展[J]石油化工,1988,7(4):247—256
    [71]冉瑞成,蒋硕健.一种新型聚合物催化剂—聚苯乙烯一四氯化钛复合物[J].高分子通讯,1985,(10):376—379
    [72]李玉良,欧阳均.聚合物载体一稀土金属络合物的表征及其催化聚合共轭双烯的活性[J].高分子学报,1988,2月第1期
    [73]郭洪猷,王平,梁春群,吴念祖.铁离子交联聚丙烯酸树脂颗粒的合成及粒径控制[J].北京化工大学学报1996,23(2):28—32
    [74]黄文强,候信,李晨曦,何炳林.聚苯乙烯磺酞氯与三氯化铁复合物的合成及其对乙酸和正丁醇酯化反应的催化作用[J].离子交换与吸附1996,12(5):425-430
    [75]刘福安,吕艳,黄化民高分子载体FeC13催化剂的合成及其在加成酯化反应中的应用[J]石油化工,1990,19:814-818
    [76]潘丙才,张庆建,陈新庆,张炜铭,潘丙军,张全兴.基于Donnan膜效应的树脂基水合氧化铁的制备及对砷的吸附性能研究[J]中国科学B辑:化学,2007,37(5):426-431
    [77]Arup K. SenGupta,Dr.,Bethlehem,Luis H.Cumbal.Hybrid anion exchanger for selective removal of contaminating ligands from fluids and method of manufacture thereof[P].United States Patent:7291578
    [78]Sudipta Sarkar, Arup K. SenGupta, A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination:Process concept and laboratory evaluation[J]. Journal of Membrane Science 324 (2008) 76-84
    [79]SudiptaSarkar,Lee M.Blaney,Anirban Gupta,Debabrata Ghosh,ArupK.SenGupta。 Use of ArsenX np,a hybrid anion exchanger,for arsenic removal in remote villages in the Indian subcontinent[J] Reactive & Functional Polymers 67 (2007) 1599-1611
    [80]卢红芳.载银树脂的制备及抗菌性能研究[D].西安:西安建筑科技大学,2007
    [81]卢玲,石可喻,袁直,何炳林.大孔交联聚甲基丙烯酸羟乙酯树脂的制备及其结构性能[J]应用化学2002,19(9):817-821
    [82]高建峰,徐春彦,高保娇,庄源益.离子交换树脂负载Pd-Cu双金属催化剂的制备及其 对硝酸盐的催化脱除作用[J].化学通报,2008,(10):765-770
    [83]张华.现代有机波谱分析[M].北京:化学工业出版社,2005.250—329.
    [84]黄子卿.电解质溶液理论导论(修汀版)[M],北京:科学出版社,1983.
    [85]丁伯吉斯.溶液中的金属离子[M],北京:原子能出版社,1987.
    [86]大淹仁志,田中元治,舟桥重信.溶液反应的化学[M],北京:高等教育出版社,1985.
    [87]胡纪华,杨兆禧,郑忠,胶体与界面化学[M],广州:华南理土大学出版社,1997.
    [88]Hassan A. Arafat, Marcus Franz, Neville G. Pinto,immobilization of phenol in cement-based solidified/stabilized[J]. Langrmuir,1999,15(18):5997-6003.
    [89]陈一良.树脂吸附法处理苯甲醇生产废水的基础研究及工艺开发[D],南京:南京大学硕士毕业论文,2004.
    [90]何炳林,黄文强.离子交换与吸附树脂[M],上海:上海科学教育出版社.1995.
    [91]龙超,张全兴,陈个龙.大孔弱碱性树脂对高水溶性磺酸类染料中间体的吸附.应用化学[J],2004,21(10):997—1002.。
    [92]潘丙才.大孔树脂对芳香酸的吸附性质及其在2一蔡酚废水处理中的应用[D],南京:南京大学博士毕业论文,2003
    [93]方梅,张启斌,方国桢.亚硫酸盐和亚硫酸氢盐的分光光度测定简便快速新方法[J]四川大学学报(自然科学版)2006,43(6):1347—1351
    [94]赵振国.Langmuir方程在稀溶液吸附中的应用[J],大学化学.1999.14(5):7
    [95]耿信笃,工彦,虞启明.液一固吸附体系中扩展的Langmuir方程的推导和检验[J],化学学报.2001.59(11):1847
    [96]Chuncai Yao. Extended and improved Langmuir equation for correlating adsorption equilibrium data[J]. Separation and Purification Technology.2000.19:237-242
    [97]工宜辰.Freundlicb吸附等温式的理论推导[J],烟台师范学院学报(自然科学版),1993.9(4):77
    [98]Sadbana Sbanual and Gopal P. Aganval. Interactions of Proteins with Inuuobilized Metal Ions:A Comparative Analysis Using Various Isotbenn Models [J]. Analytical Biocliemism.2001,288:126-140
    [99]Ho Y S., Ng J. C. Y, Mcka G. Kinetics of pollutant sorption by biosorbents[J]. Separ.&Purif.Methods.2000,29(2):189-232
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.