预测材料结晶能力的理论模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶材料与其相同化学组分的多晶材料相比,具有明显优越的力、热、光、电、磁等特性,制备体积更大、结构更完美的单晶材料是长期以来人们努力的目标。事实上,不同材料形成单晶体的能力有很大差异。例如,石英在一般条件下便可以形成线径为数十厘米的单晶体,而在各种极端条件(包括采用2000℃高温和109pa高压)下所能制备出的金刚石晶体也只有毫米量级线径。因此在新材料的设计中不仅需要考察特定原子分子构型所对应的物理化学特性,还需要预测其形成这种特定原子分子构型(单晶体)的能力。然而,当前已有的理论都难以对材料的这种结晶能力做出准确预测。
     前不久,我们建立了一个凝结势模型用以预测材料形成单显体的能力,研究表明单元体材料(Ni、Al、Cu、Ar和Mg)的结晶能力随凝结势的增大而单调增强。考虑到大量材料是由多元以上的化学组分构成,本文将凝结势模型推广于二元体系,由此涉及如何定义二元组分材料凝结势等一系列基础问题。我们首先在普遍分析的基础上建立了二元体系的凝结势模型,然后结合大量分子动力学模拟具体研究了(0-6wt.%)Al原子掺杂对于Ni单晶材料结晶能力及(6,17,30wt.%)Au元素的掺杂对Cu单晶结晶能力的影响。分子动力学模拟表明,6%Al元素的掺杂会大大地减弱Ni单晶的结晶能力,而30% Au元素掺杂对Cu单晶的结晶过程几乎没有影响。实验中人们发现添加少于6wt.%的Al元素(一般5.6 wt.%左右)会大大提高镍基单晶高温合金的蠕变寿命,反之则影响合金的综合性能,与我们的分子动力学结果相符。在此基础上我们确定了二元体系凝结势的定义式,并将其应用于二元材料Ni3Al和C3N4的结晶能力的预测,得到Ni3Al单晶形成能力较强而β-C3N4单晶难以合成的结论,均与实验事实吻合,表明凝结势模型可广泛应用于预测体材料的结晶能力。
Materials of single crystal structures that exhibit a lot of superior properties have been widely used in many fields. Because of these excellent properties, continuous efforts have been made to prepare single crystals with larger volume and better structure. In fact, the ability to form different structures of single crystals may considerably differ from one another. For example, single crystal quartz with size of several 10 cm can be easily produced in common experiments, while it is difficult to get diamond grains of only several millimeters even under extreme conditions. So it is urgent in materials design to develop a theory to accurately predict the crystallizing ability.
     Recently, we proposed a condensing potential (CP) model to evaluate the ability of materials to form single crystals, and demonstrated that the ability of some single-component crystals (Ni, Al, Cu, Ar and Mg) increases monotonically with increasing CP. Since the prediction can be easily performed via common ab initio methods, the theory is promising to predict the ability of multi-component materials to form single crystals, which are more common in practice. In the present work, we extended the CP model to two-component systems, and specifically investigated the Al doping (0-6 wt.%) influence on the crystallizing ability of Ni-based crystal and the Au doping (6 wt.%,17 wt.%,30 wt.%) influence on the crystallizing ability of Cu-based crystal. Extensive molecular dynamic (MD) simulations were performed to examine the crystal growth and showed that the A1 doping of only 6 wt.% will considerably decrease the crystallizing ability of the pure crystal but even 30% Au does not. As expected, the ability of the two-component materials to form single crystals also increased monotonically with increasing CP. Then we employed the extended CP model to investigate the crystallizing abilities of Ni3Al crystal and C3N4 crystal. Our predictions were well in agreement with the experimental data, exhibiting a prospect of CP model in predicting the ability of multi-component materials to form single crystals.
引文
[1]. Y.D. Li, et al., A reduction-pyrolysis-catalysis synthesis of diamond [J]. Science,1998.281(5374):246-247.
    [2]. D.C. Look, Recent advances in ZnO materials and devices [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2001.80(1-3):383-387.
    [3]. K. Kumar, K. Ramamoorthy, R. Chandramohan, and K. Sankaranarayanan, A novel growth method for ZnAl2O4 single crystals [J]. Crystal Research and Technology,2006.41(3):217-220.
    [4]. R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata, and M. Morinaga, Development of Ni-based single crystalsuperalloys for power-generation gas turbines [M]. Superalloys 2004, ed. K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, Warrendale:Minerals, Metals & Materials Soc.2004:53-62.
    [5]. R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata, and M. Morinaga, Development of novel Ni-based single crystal superalloys for power-generation gas turbines [J]. Materials at High Temperatures,2007. 24(3):163-172.
    [6]. 胡壮麟,刘丽荣,金涛,孙晓峰,镍基单晶高温合金的发展[J].航空发动机,2005.31(3):1-7.
    [7]. I.M. Razumovskii, et al., New generation of Ni-based superalloys designed on the basis of first-principles calculations [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008. 497(1-2):18-24.
    [8]. K.S. Kang, Y.S. Meng, J. Breger, C.P. Grey, and G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries [J]. Science, 2006.311(5763):977-980.
    [9]. F. Perreault, B. Champagne, and A. Soldera, Theoretical design of sulfinate-based ferroelectric liquid crystals displaying second-order nonlinear optical properties [J]. Chemical Physics Letters,2007.440(1-3):116-120.
    [10]. X.F. Li, J. Zhang, L.H. Shen, Y.M. Ma, W.W. Lei, Q.L. Cui, and G.T. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine [J]. Applied Physics a-Materials Science & Processing,2009. 94(2):387-392.
    [11]. W. Rudnick, R. Haensel, H. Nahme, and N. Schwentner, Luminescence efficiency and grain sizes of ar crystals [J]. Physica Status Solidi a-Applied Research,1985.87(1):319-322.
    [12]. J. Feld, H. Kunttu, and V.A. Apkarian, Photodissociation of f2 and mobility of f-atoms in crystalline argon [J]. Journal of Chemical Physics,1990.93(2): 1009-1020.
    [13]. M.L.A. Dass, D.B. Fraser, and C.S. Wei, Growth of epitaxial cosi2 on (100)si [J]. Applied Physics Letters,1991.58(12):1308-1310.
    [14]. M.T. Kief and W.F. Egelhoff, Growth and structure of fe and co thin-films on cu(111), cu(100), and cu(110) - a comprehensive study of metastable film growth [J]. Physical Review B,1993.47(16):10785-10814.
    [15]. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, and J.E. Sundgren, Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO [J]. Journal of Applied Physics,1996.80(12):6725-6733.
    [16]. P. Hohenberg and W. Kohn, Inhomogeneous electron gas [J]. Physical Review B,1964.136(3B):B864-B871.
    [17]. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects [J]. Physical Review,.1965.140(4A):1133-1138
    [18]. L.J. Sham and W. Kohn,1-particle properties of an inhomogeneous interacting electron gas [J]. Physical Review,1966.145(2):561-567.
    [19]. K. Binder and D.W. Heerman, Monte Carlo Simulation in Statistical Physics [M]. Solide-State Science. Berlin:Springer-Verlang.1988
    [20]. W.D. Wilson and R.A. Johnson, Non-central-force model of lih - phonon dispersion curves and he migration [J]. Physical Review B,1970.1(8): 3510-3514.
    [21]. G.J. Ackland and V. Vitek, Many-body potentials and atomic-scale relaxations in noble-metal alloys [J]. Physical Review B,1990.41(15):10324-10333.
    [22]. W.J. Briels and IIL. Tepper, Crystal growth of the Lennard-Jones (100) surface by means of equilibrium and nonequilibrium molecular dynamics [Journal Article]. Physical Review Letters,1997.79(25):5074-5077.
    [23]. J. Bragard, A. Karma, Y.H. Lee, and M. Plapp, Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts [J]. Interface Science,2002.10(2-3):121-136.
    [24]. J.J. Hoyt, M. Asta, and A. Karma, Atomistic and continuum modeling of dendritic solidification [J]. Materials Science & Engineering R-Reports,2003. 41(6):121-163.
    [25]. J. Martingil, F.J. Martingil, E. Moran, M. Mikiyoshida, L. Martinez, and M. Joseyacaman, Synthesis of low-density and high hardness carbon spheres containing nitrogen and oxygen [J]. Acta Metallurgica Et Materialia,1995. 43(3):1243-1247.
    [26]. T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz, Orientation selection in dendritic evolution [J]. Nature Materials,2006.5(8):660-664.
    [27]. J.J. Hoyt, M. Asta, and A. Karma, Method for computing the anisotropy of the solid-liquid interfacial free energy [J]. Physical Review Letters,2001.86(24): 5530-5533.
    [28]. P.A. Apte and X.C. Zeng, Anisotropy of crystal-melt interfacial free energy of silicon by simulation [J]. Applied Physics Letters,2008.92(22).
    [29]. M. Amini and B.B. Laird, Kinetic coefficient for hard-sphere crystal growth from the melt [J]. Physical Review Letters,2006.97(21).
    [30]. X.X. Ye, C. Ming, Y.C. Hu, and X.J. Ning, Evaluating the ability to form single crystal [J]. Journal of Chemical Physics,2009.130(16).
    [31]. X.X. Ye, C. Ming, Y.C. Hu, and X.J. Ning, Theoretical prediction of the ability for bulk materials to form single crystals [J]. Acta Physica Sinica,2009.58(5): 3293-3301.
    [32]. N.S. Stoloff, C.T. Liu, and S.C. Deevi, Emerging applications of intermetallics [J]. Intermetallics,2000.8(9-11):1313-1320.
    [33]. A.Y. Liu and M.L. Cohen, Structural-properties and electronic-structure of low-compressibility materials - beta-Si3N4 and hypothetical beta-C3N4 [J]. Physical Review B,1990.41(15):10727-10734.
    [34]. X.F. Gong, L. Wang, X.J. Ning, and J. Zhuang, Decay mechanism of double-layer Cu islands on Cu(111) [J]. Surface Science,2004.553(1-3): 181-188.
    [35]. Q. Zhang and V. Buch, C [J]. Journal of Chemical Physics,1990.92(8): 5004-5016.
    [36]. L.M. Raff, Theoretical-studies of the reaction dynamics of the matrix-isolated f2 + cis-d2-ethylene system [J]. Journal of Chemical Physics,1991.95(12): 8901-8918.
    [37]. M.E. Riley, M.E. Coltrin, and D.J. Diestler, A velocity reset method of simulating thermal motion and damping in gas-solid collisions [J]. Journal of Chemical Physics,1988.88(9):5934-5942.
    [38]. F. Cleri and V. Rosato, Tight-binding potentials for transition-metals and alloys [J]. Physical Review B,1993.48(1):22-33.
    [39]. B. Devincre, L.P. Kubin, C. Lemarchand, and R. Madec, Mesoscopic simulations of plastic deformation [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001.309: 211-219.
    [40]. S.N. Luo, A. Strachan, and D.C. Swift, Nonequilibrium melting and crystallization of a model Lennard-Jones system [J]. Journal of Chemical Physics,2004.120(24):11640-11649.
    [41]. X.X. Ye, et al., Predicting the melting temperatures of bulk materials [J]. Epl, 2010.91(4).
    [42]. 陈建亭,有序金属间化合物镍铝合金[M]:北京:科学出版社.708.2003
    [43]. S.V. Divinski, S. Frank, U. Sodervall, and C. Herzig, Solute diffusion of Al-substituting elements in Ni3Al and the diffusion mechanism of the minority component [J]. Acta Materialia,1998.46(12):4369-4380.
    [44]. R.M. Kearsey, J.C. Beddoes, P. Jones, and P. Au, Compositional design considerations for microsegregation in single crystal superalloy systems [J]. Intermetallics,2004.12(7-9):903-910.
    [45]. L.W. Jiang, S.S. Li, and Y.F. Han, Effects of Conical Transition Section on Microstructure of a Ni3Al-base Single Crystal Superalloy IC6SX [M]. Energy and Environment Materials, ed. Y.F. Han, T.M. Wang, and S.X. Zhou.214-218. Vol.650.2010
    [46]. C.S. Han, Strengthening Mechanism of the Ni3Al-based Alloy [J]. Korean Journal of Metals and Materials,2011.49(2):137-144.
    [47]. V.L. Solozhenko, Current trends in the phase-diagram of boron-nitride [J]. Journal of Hard Materials,1995.6(2):51-65.
    [48]. J. Isberg, et al., High carrier mobility in single-crystal plasma-deposited diamond [Journal Article]. Science,2002.297(5587):1670-1672.
    [49]. Z.S. Lou, Q.W. Chen, Y.F. Zhang, W. Wang, and Y.T. Qian, Diamond formation by reduction of carbon dioxide at low temperatures [J]. Journal of the American Chemical Society,2003.125(31):9302-9303.
    [50]. A.Y. Liu and M.L. Cohen, Prediction of new low compressibility solids [J]. Science,1989.245(4920):841-842.
    [51]. C. Ronning, H. Feldermann, R. Merk, H. Hofsass, P. Reinke, and J.U. Thiele, Carbon nitride deposited using energetic species:A review on XPS studies [J]. Physical Review B,1998.58(4):2207-2215.
    [52]. S.E. Rodil, W. Beyer, J. Robertson, and W.I. Milne, Gas evolution studies for structural characterization of hydrogenated carbon nitride samples [Journal Article]. Diamond and Related Materials,2003.12(3-7):921-926.
    [53]. S.F. Yoon, X. Rusli, J. Ahn, Q. Zhang, C.Y. Yang, H. Yang, and F. Watt, Deposition of polymeric nitrogenated amorphous carbon films (a-C:H:N) using electron cyclotron resonance CVD [J]. Thin Solid Films,1999.340(1-2): 62-67.
    [54]. M.A. Monclus, D.C. Cameron, and A. Chowdhurry, Electrical properties of reactively sputtered CNx films [J]. Thin Solid Films,1999.341(1-2):94-100.
    [55]. A.K. Sharma, et al., Synthesis of crystalline carbon nitride thin films by laser processing at a liquid-solid interface [J]. Applied Physics Letters,1996. 69(23):3489-3491.
    [56]. Q. Fu, J.T. Jiu, K. Cai, H. Wang, C.B. Cao, and H.S. Zhu, Attempt to deposit carbon nitride films by electrodeposition from an organic liquid [J]. Physical Review B,1999.59(3):1693-1696.
    [57]. C. Li, C.B. Cao, and H.S. Zhu, Graphitic carbon nitride thin films deposited by electrodeposition [J]. Materials Letters,2004.58(12-13):1903-1906.
    [58]. S. Kundoo, A.N. Banerjee, P. Saha, and K.K. Chattopadhyay, Synthesis of crystalline carbon nitride thin films by electrolysis of methanol-urea solution [J]. Materials Letters,2003.57(15):2193-2197.
    [59]. W.F. Yu, R.G. Cao, Y. Tian, J.Z. Wang, and X.J. Ning, The Effect of Current Density on CNx Crystal Grain Growth in Electrochemical Deposition [J]. Chinese Physics Letters,2011.28(2):113204-113214.
    [60]. D.M. Teter and R.J. Hemley, Low-compressibility carbon nitrides [J]. Science, 1996.271(5245):53-55.
    [61]. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B,1992.46(11):6671-6687.
    [62]. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation (vol 46, pg 6671,1992) [J]. Physical Review B,1993.48(7):4978-4978.
    [63]. H.J. Monkhorst and J.D. Pack, Special points for brillouin-zone integrations [J]. Physical Review B,1976.13(12):5188-5192.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.