大庆地区牛轮状病毒的分离及其全序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A群轮状病毒(Rotavirus, RV)是新生牛病毒性腹泻的主要病原之一。牛轮状病毒(Bovine Rotavirus, BRV)属于呼肠孤病毒科(Reoviridae),轮状病毒属(Rotavirus)。牛轮状病毒性腹泻多发生在1月龄以内的犊牛,腹泻犊牛严重脱水,甚至有些犊牛因电解质紊乱引起死亡。
     为了解A群轮状病毒在大庆牧场中的流行情况及优势流行株血清型,本研究自2008年12月至2009年6月在大庆某牧场共收集117份新生牛腹泻标本,其中10份标本(8.5%)经A群轮状病毒抗原检测试剂盒确认为阳性。应用RT-PCR方法对阳性标本进行分型鉴定,得知10份标本均为G10P[11]型轮状病毒。应用MA104细胞成功的从编号为75的阳性标本中分离出一株轮状病毒,命名为DQ-75。分析分离株DQ-75的全序列:根据以轮状病毒11节段基因编码区核苷酸同源性为基础的分类原则,我们发现G10P[11]型牛轮状病毒基因节段VP7、VP4、VP1、VP2、VP3、VP6、NSP1、NSP2、NSP3、NSP4和NSP5的基因型分别为G10、P[11]、R2、C2、M2、I2、A3、N2、T6、E2和H3。分离株DQ-75 11段基因编码区氨基酸的进化树分析发现:分离株DQ-75为重配株,其中基因节段NSP2来源于G6P[5]型牛轮状病毒株,基因节段NSP1和NSP5来源于G6P[1]型牛轮状病毒,基因节段VP1、VP2、VP3和VP6分别来源于G8P[14]型羊轮状病毒株OVR762,基因节段NSP3来源于G10P[14]型人轮状病毒株A64,基因节段VP7、VP4和NSP4在分离株DQ-75中稳定进化。
     分离株DQ-75与同为G10P[11]型07年大庆分离株DQ-07,08年安达分离株AD-08以及我国分离株HM26的VP7核苷酸和氨基酸同源性分别为96.5%、96.5%、96.8%和97.5%、97.5%、98.5%。分析4株轮状病毒的5个主要抗原表位,我们推测近期G10型牛轮状病毒通过抗原表位氨基酸的突变来逃避宿主的免疫压力。
     本研究在大庆发现了G10P[11]型牛轮状病毒,应用MA104细胞进行成功分离。首次对G10P[11]型牛轮状病毒进行了全序列分析。为大庆地区牛轮状病毒的研究奠定理论基础。
Group A rotavirus are one of the most frequently detected viral agents associated with the acute diarrhea in neonatal calves. Bovine rotavirus belongs to a genus rotavirus in the Reoviridea family. A complete viral particle contains a segments of 11 double-stranded RNA (dsRNA) that encode 6 structural (VP1-4, 6 and 7) and 6 nonstructural (NSP1-6) protein. Neonatal calves are susceptible to rotavirus, rotavirus cause disease including asymptomatic, mild , severe or fatal infection with excessive fluid loss and severe electrolyte imbalance. In order to investigate the situation of rotavirus strains circulating and popular strain in diary farm, Daqing region.
     A total of 117 fecal specimens were collected from diarrhea calves under 4 weeks-age on diary farm in Daqing region in China from 2008 to 2009. Ten specimens were detected to be positive by a Rotavirus Group A Diagnose Kit, which confirm that the rotavirus was important viral agent associated with diarrhea in this farm. According to RT-PCR, only G10P[11] rotavirus were found in positive samples. A G10P[11] rotavirus, designed as the DQ-75 strain, was isolated successfully from a positive specimen numbered 75. Full genomic analysis of DQ-75 strain based on nucleotide percentage identity cut-off values defining genotypes for 11 rotavirus gene segments was proposed, we found that genotypes of gene segments of VP7、VP4、VP1、VP2、VP3、VP6、NSP1、NSP2、NSP3、NSP4 and NSP5 of DQ-75 strain were G10、P[11]、R2、C2、M2、I2、A3、N2、T6、E2 and H3, respectively. Phylogenetic analyzing found that DQ-75 strain was a reassortment strain including intraspecies and interspecies, gene segments of NSP1 and NSP5 could originate from genotype G6P[1] bovine rotavirus; gene segment of NSP2 could originate from genotype G6P[5] bovine rotavirus; gene segment of NSP3 could originate from genotype G10P[14] bovine rotavirus A64 strain; gene segments of VP1、VP2、VP3 and VP6 could originate from lamb, gene segments of VP7、VP4 and NSP4 are evoluting among genotype G10 bovine rotavirus.
     Homology of the nucleotide and deduced amino acid sequences of the genome segments encoding VP7 of DQ-75 strain, DQ-07 strain isolated in Daqing 2007, AD-08 strain isolated in Anda 2008 and HM26 strain were 96.5%、96.5%、96.8% and 97.5%、97.5%、98.5%, respectively. Analysis of antigen sites of four G10P[11] bovine rotavirus above, we proposed that G10 bovine rotavirus strain protected themselves by amino mutation of 5 main antigenic regions.
     In this study we detected G10P[11] bovine rotavirus in a diary farm, Daqing region and isolated a strain DQ-75. Analysis of the first full genomic sequence of G10P[11] bovine rotavirus. and understood molecular characteristic of G10P[11] bovine rotavirus. Giving some theoretical background about reseaching G10P[11] bovine rotavirus.
引文
[1] Cheever, F.S., Mueller, J.H. Epidemic diarrheal disease of suckling mice; the effect of strain, litter, and season upon the incidence of the disease[J]. J Exp Med, 1948 Sep 1, 88(3): 309-316.
    [2] Pappenheimer, A.M., Enders, J.F. An epidemic diarrheal disease of sucking mice: II. Inclusions in the intestinal epithelial cells[J]. J Exp Med, 1947 Mar 31, 85(4): 417-422.
    [3] Adams, W. R., Kraft, L.M. Epidemic diarrhea of infant mice. Identification of the etiologic agent. Science, 1963, 141: 359-360.
    [4] Mebus, C.A., Underdahl, N.R., Rhodes, M.B. and Twiehaus, M.J. Calf diarrhea (scours): reproduced with a virus from a field outbreak[J]. U of Neb Ag Exp Station Res Bull, 1969, 233: 1-16.
    [5] Bishop, R.F., Davidson, G.P., Holmes, I.H., Ruck, B.J. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis[J]. Lancet, 1973 Dec 8, 2(7841): 1281-1283.
    [6]庞其芳,福禧,愈富荣,等。婴幼儿秋季急性胃肠炎病原的轮状病毒的研究[J]。中华医学杂志,1979,59:589~597。
    [7]福建省农科院畜牧兽医研究所,等。“牛流行性腹泻”(暂名)的初步研究[J]。中国兽医杂志,1981,4 (7):2~4。
    [8]崔尚金,王云峰,邓国华,等。禽轮状病毒的分离鉴定及部分特性研究[J]。中国预防兽医学报,2000,22:24~26。
    [9]倪亚炜。猪和牛轮状病毒的分离和鉴定[J]。病毒学报,1986,2(1):36-40。
    [10]刁有祥,冯涛,崔治中,陈庆普,刘悦竹。鸡轮状病毒的分离鉴定及特性研究[J]。兽医学报,2004年04期。
    [11]李六金。犬轮状病毒分离成功[J]。中国兽医学报,1983年04期。
    [12]韦剑珊,俞乃胜,龙沛然,曾子安,李卫东。兔轮状病毒致病性研究[J]。中国兽医科技,1993年03期。
    [13] Bern, C., Martines, J., de Zoysa, I., Glass, R.I. The magnitude of the global problem of diarrhoeal disease: a ten-year update[J]. Bull World Health Organ, 1992, 70(6): 705-714.
    [14] Parashar, U.D., Bresee, J.S., Gentsch, J.R. and Glass, R.I. Rotavirus. Emerg Infect Dis, 1998, 4(4): 561-570.
    [15] Estes, M.K., 2001. Rotaviruses and their replication[M], In: Knipe, D.M., PHowley, P.M., Griffin, D.E, et al. (Eds.), Fields Virology, 4th ed. Lippincott Williams & Wilkins, Philadelphia, PA, pp. 1747–1785.
    [16] Ciarlet, M., F. Liprandi, M. E. Conner, and M. K. Estes. Species specificity and inter- species relatedness of NSP4 genetic groups by comparative NSP4 analyses of animal rotaviruses[J]. Arch. Virol, 2000, 145: 371–383.
    [17] Horie, Y., O. Masamune, and O. Nakagomi. Three major alleles of rotavirus NSP4 proteins identified by sequence analysis[J]. J Gen Virol, 1997, 78: 2341–2346.
    [18] Ito, H., M. Sugiyama, Y. Masubuchi, Y. Mori, and N. Minamoto[J]. Complete nucleotide sequence of a group A avian rotavirus genome and a comparison with counterparts of mammalian rotaviruses. Virus Res, 2001, 75: 123–138.
    [19] Mori, Y., M. A. Borgan, N. Ito, M. Sugiyama, and N. Minamoto. Diarrhea-inducing activity of avian rotavirus NSP4 glycoproteins, which differ greatly from mammalian rotavirus NSP4 glycoproteins in deduced amino acid sequence, in suckling mice[J]. J Virol, 2002, 76: 5829–5834.
    [20] Graham, K.L., Halasz, P., Tan, Y., Hewish, M.J., Takada, Y., Mackow, E.R., Robinson, M.K, and Coulson, B.S. Integrin-using rotaviruses bind a2β1 integrin a2I domain via VP4 DGE sequence and recognize aXβ2 and aVβ3 by using VP7 during cell entry[J]. J Virol, 2003 Sep, 77(18): 9969-9978.
    [21] Aoki, S.T., Settembre, E.C., Trask, S.D., Greenberg, H.B., Harrison, S.C., Dormitzer, P.R. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab[J]. Science, 2009 Jun 12, 324(5933): 1444 -1447.
    [22] Chen, J.Z., Settembre, E.C., Aoki, S.T., Zhang, X., Bellamy, A.R., Dormitzer, P.R., Harrison, S.C., Grigorieff, N. Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM[J]. Proc Natl Acad Sci USA. 2009 Jun 30, 106(26): 10644-10648.
    [23] Nakagomi, O., Nakagomi, T., Akatani, K., Ikegami, N. Identification of rotavirus genogroups by RNA-RNA hybridization[J]. Molecular and cellular probes, 1989, 3: 251–261.
    [24] Matthijnssens, J., Ciarlet, M., Heiman, E., Arijs, I., Delbeke, T., McDonald, SM., Palombo, A.E., Iturriza-Gómara, M., Maes, P., Patton, J.T., Rahman, M., Van Ranst, M. Full genome-based classification of rotaviruses reveals common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains[J]. J Virol, 2008, 82: 3204–3219.
    [25] Matthijnssens, J., Ciarlet, M., Rahman, M., Attoui, H., Banyai, K., Estes, M.K., Gentsch, J.R., Iturriza-Gùomara, M., Kirkwood, C.D., Martella, V., Mertens, P.P., Nakagomi, O., Patton, J.T., Ruggeri, F.M., Saif, L.J., Santos, N., Steyer, A., Taniguchi, K., Desselberger, I., Van Ranst, M. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments[J]. Arch Virol, 2008b, 153: 1621–1629.
    [26] Maes, P., Matthijnssens, J., Rahman, M., Van Ranst, M. RotaC: a web-based tool for the complete genome classification of group A rotaviruses[J]. BMC Microbiol, 2009 Nov 23, 9: 238.
    [27] Midthun, K., Kapikian, A.Z. Rotavirus vaccines: an overview[J]. Clin Microbiol Rev, 1996 Jul, 9(3): 423-434.
    [28] Knipe, D.M., Holley Peter, M. Fields Virology[M]. 4th Edition ed, Lippincott, Willians & Wilkins, 2001. 2664-2789.
    [29] Chen, D., Zeng, C.Q., Wentz, M.J., Gorziglia, M., Estes, M.K., Ramig, R.F. Template- dependent, in vitro replication of rotavirus RNA[J]. J Virol, 1994, 68(11): 7030-7039.
    [30] Desselberger, U., McCrae, M.A. The rotavirus genome[J]. Curr Top Microbiol Immunol, 1994, 185: 31-66.
    [31] Dubois, E., Le Guyader, F., Haugarreau, L., Kopecka, H., Cormier, M., Pommepuy, M. Molecular epidemiological survey of rotaviruses in sewage by reverse transcriptase seminested PCR and restriction fragment length polymorphism assay[J]. Appl Environ Microbiol, 1997, 63(5): 1794-1800.
    [32] Patton, J.T. Structure and function of the rotavirus RNA-binding proteins[J]. J Gen Virol, 1995, 76 (Pt11): 2633-2644.
    [33] Estes, M., Kapikian, A. Rotaviruses. In: Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, RA., Martin, M.A., Roizman, B., Straus, S.E. editors. Fields Virology[M]. 5th Edition ed, Kluwer Health/ Lippincott, Williams and Wilkins, Philadelphia, 2007, p, 1917-1974.
    [34] Bastardo, J.W., McKimm-Breschkin, J.L., Sonza, S., Mercer, L.D., Holmes, I.H. Preparation and characterization of antisera to electrophoretically purified SA11 virus polypeptides[J]. Infect Immun, 1981, 34(3): 641-647.
    [35] Estes, M.K., Graham, D.Y. Rotavirus antigens[J]. Adv Exp Med Biol, 1985, 185: 201-214.
    [36] Sabara, M., Gilchrist, J.E., Hudson, G.R., Babiuk, L.A. Preliminary characterization of an epitope involved in neutralization and cell attachment that is located on the major bovine rotavirus glycoprotein[J]. J Virol, 1985, 53(1): 58-66.
    [37] Coulson, B.S., Fowler, K.J., Bishop, R.F., Cotton, R.G. Neutralizing monoclonal antibodies to human rotavirus and indications of antigenic drift among strains from neonates[J]. J Virol, 1985, 54(1): 14-20.
    [38] Gerna, G., Sarasini, A., di Matteo, A., Passarani, N., Gagliardi, V., Milanesi, G., Astaldi Ricotti, G.C., Battaglia, M. The outer capsid glycoprotein VP7 of simian rotavirus SA11 contains two distinct neutralization epitopes[J]. J Gen Virol, 1988, 69 (Pt 4): 937-944.
    [39] Heath, R., Birch, C., Gust, I. Antigenic analysis of rotavirus isolates using monoclonal antibodies specific for human serotypes 1, 2, 3 and 4, and SA11[J]. J Gen Virol, 1986, 67(Pt11): 2455-2466.
    [40] Taniguchi, K., Urasawa, S., Urasawa, T. Preparation and characterization of neutralizing monoclonal antibodies with different reactivity patterns to human rotaviruses[J]. J Gen Virol, 1985, 66 (Pt5): 1045-1053.
    [41] Taniguchi, K., Urasawa, T., Morita, Y., Greenberg, H.B., Urasawa, S. Direct serotyping of human rotavirus in stools by an enzyme-linked immunosorbent assay using serotype 1-, 2-, 3-, and 4-specific monoclonal antibodies to VP7[J]. J Infect Dis, 1987, 155(6): 1159-1166.
    [42] Gunn, P.R., Sato, F., Powell, K.F., Bellamy, A.R., Napier, J.R., Harding, D.R., Hancock, W.S., Siegman, L.J., Both, G.W. Rotavirus neutralizing protein VP7: antigenic determinants investigated by sequence analysis and peptide synthesis[J]. J Virol, 1985, 54(3): 791-797.
    [43] Rao, C.D., Gowda, K., Reddy, B.S. Sequence analysis of VP4 and VP7 genes of nontypeable strains identifies a new pair of outer capsid proteins representing novel P and G genotypes in bovine rotaviruses[J]. Virology, 2000, 276(1): 104-113.
    [44] Gorziglia, M., Green, K., Nishikawa, K., Taniguchi, K., Jones, R., Kapikian, A.Z., Chanock, R.M. Sequence of the fourth gene of human rotaviruses recovered from asymptomatic or symptomatic infections[J]. J Virol, 1988, 62 (8): 2978-2984.
    [45] Kantharidis, P., Dyall Smith, M.L., Holmes, I.H. Marked sequence variation between segment 4 genes of human RV-5 and simian SA11 rotaviruses[J]. Arch Virol, 1987, 93(1-2): 111-121.
    [46] Dormitzer, PR., Nason, E.B., Prasad, B.V., Harrison, S.C. Structural rearrangements in the membrane penetration protein of a non-enveloped virus[J]. Nature, 2004 Aug 26, 430(7003): 1053-1058.
    [47] Esquivel, F.R., Lopez, S., Guitierrez, X.L., Arias, C. The internal rotavirus protein VP6 primes for an enhanced neutralizing antibody response[J]. Arch Virol, 2000, 145(4): 813-825.
    [48] Hsu, G.G., Bellamy, A.R., Yeager, M. Projection structure of VP6, the rotavirus inner capsid protein,and comparison with bluetongue VP7[J]. J Mol Biol, 1997, 272(3): 362-368.
    [49] Sandino, A.M., Jashes, M., Faundez, G., Spencer, E. Role of the inner protein capsid on in vitro human rotavirus transcription[J]. J Virol, 1986, 60(2): 797-802.
    [50] Sabara, M., Ready, K.F., Frenchick, P.J., Babiuk, L.A. Biochemical evidence for the oligomeric arrangement of bovine rotavirus nucleocapsid protein and its possible significance in the immunogenicity of this protein[J]. J Gen Virol, 1987, 68(Pt1): 123-133.
    [51] Garaicoechea, L., Olichon, A., Marcoppido, G., Wigdorovitz, A., Mozgovoj, M., Saif, L., Surrey, T., Parreno, V. Llama-derived single-chain antibody fragments directed to rotavirus VP6 protein possess broad neutralizing activity in vitro and confer protection against diarrhea in mice[J]. J Virol, 2008, 82(19): 9753-9764.
    [52] Frenchick, P., Sabara, M.I., Ijaz, M.K., Babiuk, L.A. Immune responses to synthetic peptide vaccines of veterinary importance[J]. Applied virology research, New vaccines and chemotherapy, Plenum Publishing Corp, New York, 1988, 1: 141-151.
    [53] Estes, M.K., Crawford, S.E., Penaranda, M.E., Petrie, B.L., Burns, J.W., Chan, W.K., Ericson, B., Smith, G.E., Summers, M.D. Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system[J]. J Virol, 1987, 61(5): 1488-1494.
    [54] Hoshino, Y., Gorziglia, M., Valdesuso, J., Askaa, J., Glass, R.I., Kapikian, A.Z. An equine rotavirus (FI-14 strain) which bears both subgroup I and subgroup II specificities on its VP6[J]. Virology, 1987, 157(2): 488-496.
    [55] Gorziglia, M., Hoshino, Y., Nishikawa, K., Maloy, W.L., Jones, R.W., Kapikian, A.Z., Chanock, R.M. Comparative sequence analysis of the genomic segment 6 of four rotaviruses each with a different subgroup specificity[J]. J Gen Virology, 1988b, 69 (Pt 7): 1659-1669.
    [56] Cohen, J., Charpilienne, A., Chilmonczyk, S., Estes, M.K. Nucleotide sequence of bovine rotavirus gene 1 and expression of the gene product in baculovirus[J]. Virol, 1989, 171(1): 131-140.
    [57] Valenzuela, S., Pizarro, J., Sandino, A.M., Vasquez, M., Fernandez, J., Hernandez, O., Patton, J., Spencer, E. Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP:identification of the viral RNA polymerase[J]. J Virol, 1991, 65(7): 3964-3967.
    [58] Velazquez, F.R., Matson, D.O., Guerrero, M.L., Shults, J., Calva, J.J., Morrow, A.L., Glass, R.I., Pickering, L.K., Ruiz-Palacios, G.M. Serum antibody as a marker of protection against natural rotavirus infection and disease[J]. J Infect Dis, 2000, 182(6): 1602-1609.
    [59] Svensson, L., Sheshberadaran, H., Vene, S., Norrby, E., Grandien, M., Wadell, G. Serum antibody responses to individual viral polypeptides in human rotavirus infections[J]. J Gen Virol, 1987, 68(Pt3): 643-651.
    [60] Conner, M.E., Estes, M.K., Graham, D.Y. Rabbit model of rotavirus infection[J]. J Virol, 1988, 62(5): 1625-1633.
    [61] Liu, M., Offit, P.A., Estes, M.K. Identification of the simian rotavirus SA11 genome segment 3 product[J]. Virology, 1988, 163(1): 26-32.
    [62] Bass, D.M., Mackow, E.R., Greenberg, H.B. NS35 and not VP7 is the soluble rotavirus proteinwhich binds to target cells[J]. J Virol, 1990, 64(1): 322-330.
    [63] Janice, C., Bridger, Winnie Dhaliwal, Michael, J., Adamson, V., Colin, R. Howard. Determinants of Rotavirus Host Range Restriction—A Heterologous Bovine NSP1 Gene Does Not Affect Replication Kinetics in the Pig[J]. Virology, 1998, 245: 47–52.
    [64] Johansen, K., Svensson, L. Neutralization of rotavirus and recognition of immunologically important epitopes on VP4 and VP7 by human IgA[J]. Arch Virol, 1997, 142(7): 1491-1498.
    [65] Kirkwood, C.D., Boniface, K., Richardson, S., Taraporewala, Z.F., Patton, J.T., Bishop, R.F., Non-structural protein NSP2 induces heterotypic antibody responses during primary rotavirus infection and reinfection in children[J]. J Med Virol, 2008 Jun, 80(6): 1090-1098.
    [66] Blackhall, J., Munoz, M., Fuentes, A., Magnusson, G. Analysis protein NSP5 phosphorylation[J]. J Virol, 1998, 72(8): 6398-6405.
    [67] Ruiz, M.C., Leon, T., Diaz, Y., Michelangeli, F. Molecular biology of rotavirus entry and replication[J]. Scientific World Journal, 2009 Dec, 9: 1476-1497.
    [68] Ludert, J.E., Michelangeli, F., Gil, F., Liprandi, F., Esparza, J. Penetration and uncoating of rotaviruses in cultured cells[J]. Intervirology, 1987, 27: 95–101.
    [69] Ruiz, M.C., Abad, M.J., Charpilienne, A., Cohen, J., Michelangeli, F. Cell lines susceptible to infection are permeabilized by cleaved and solubilized outer layer proteins of rotavirus[J]. J Gen Virol, 1997, 78: 2883–2893.
    [70] Quan, C.M., Doane, F.W. Ultrastructural evidence for the cellular uptake of rotavirus by endocytosis[J]. Intervirology, 1983, 20: 223–231.
    [71] Suzuki, H., Kitaoka, S., Konno, T., Sato, T., Ishida, N. Two modes of human rotavirus entry into MA 104 cells[J]. J Virol, 1985, 85: 25–34.
    [72] Csencsits, K.L., Walters, N., Pascual, D.W. Cutting edge: dichotomy of homing receptor dependence by mucosal effector B cells: alpha(E) versus L-selectin[J]. J Immunol, 2001, 167: 2441- 2445.
    [73] Eriksson, K., Holmgren, J. Recent advances in mucosal vaccines and adjuvants[J]. Curr Opin Immunol, 2002, 14: 666-672.
    [74] Hein, W.R., Griebel, P.J. A road less travelled: large animal models in immunological research[J]. Nat Rev Immunol, 2003, 3: 79-84.
    [75] Ramig, R.F. Pathogenesis of intestinal and systemic rotavirus infection[J]. J Virol, 2004, 78: 10213-10220.
    [76] Yuan, L., Iosef, C., Azevedo, M.S., Kim, Y., Qian, Y., Geyer, A., Nguyen, T.V., Chang, K.O., Saif, L.J. Protective immunity and antibody-secreting cell responses elicited by combined oral attenuated Wa human rotavirus and intranasal Wa 2/6-VLPs with mutant Escherichia coli heat-labile toxin in gnotobiotic pigs[J]. J Virol, 2001, 75: 9229-9238.
    [77] Masako, Abe., Naoto, Ito., Shigki Morikawa, et al. Molecular epidemiology of rotaviruses among healthy calves in Japan: isolation of a novel bovine rotavirus bearing new P and G genotypes[J]. Virus Res, 2009 Sep, 144(1-2): 250-257.
    [78] Fukai, K., Saito, T., Inoue, K., et al. Molecular characterization of novel P[14],G8 bovine group Arotavirus, Sun9, isolated in Japan[J]. Virus Res, 2004, 105: 101–106.
    [79] Fukai, K., Takahashi, T., Tajima, K., et al. Molecular characterization of a novel bovine group A rotavirus[J]. Vet Microbiol, 2007, 123: 217–224.
    [80] Fukai, K., Sakai, T., Kamata, H. Distribution of G serotypes and P genotypes of bovine group A rotavirus isolated in Japan[J]. Vet J, 1998 Aust, 76: 418–422.
    [81] Park, S.H., Saif, L.J., Jeong, C., et al. Molecular Characterization of Novel G5 Bovine Rotavirus Strains[J]. J Clin Microbiol, 2006, 16: 473-477.
    [82] Garaicoechea. L., Bok, K., Garaicoechea, L., Bok, K., Jones, LR., Combessies, G., Odeón, A., Fernandez, F., Parre?o, V. Molecular characterization of bovine rotavirus circulating in beef and dairy herds in Argentina during a 10-year period(1994-2003)[J]. Vet Microbiol, 2006 Nov 26, 118(1-2): 1-11.
    [83] Giuseppe. Pisanelli., Martella, Vito., Pagnini, Ugo., De Martino, Luisa., Eleonora, Lorusso., Giuseppe, Iovane., Canio, Buonavoglia. Distribution of G (VP7) and P (VP4) genotypes in buffalo group A rotaviruses isolated in Southern Italy[J]. Vet Microbiol, 2005 Sep 30, 110(1-2): 1-6.
    [84] Nobutaka, Okada., Yuichi, Matsumoto. Bovine rotavirus G and P types and sequence analysis of the VP7 gene of two G8 bovine rotaviruses from Japan[J]. Vet Microbiol, 2002 Feb 4, 84(4): 297-305.
    [85] Reidy. N., Lennon, G., Fanning, S., Power, E., O'Shea, H. Molecular characterisation and analysis of bovine rotavirus strains circulating in Ireland 2002-2004[J]. Vet Microbiol, 2006 Oct 31, 117(2-4): 242-247.
    [86] William, A., Rodríguez-Limasa., Beatriz Flores-Samaniegob, Germán de la Morab., Octavio T. Ramíreza., Laura A, Palomaresa. Genotypification of bovine group A rotavirus in México[J]. Vaccine, 2009 Oct 30, 27(46): 6411-6414.
    [87]栾婧婧,杨少华,马广强,等。新分离牛轮状病毒及其血清型的研究[J]。家畜生态学报,2006,27(6):141~144。
    [88]常继涛,崔久辉,李建军,等。我国部分地区牛轮状病毒的病原学调查及一株G10P[11]型牛轮状病毒的分离鉴定[J]。中国预防兽医学报,2008,30(10):755~759。
    [89]何孔旺,林继煌,江杰元,等。河南部分地区黄牛犊轮状病毒的分离培养及其血凝特性的研究[J]。畜牧与兽医,1989,21:64~65。
    [90] Gouvea, V., Glass, R.I., Woods, P., Taniguchi, K., Clark, H.F., Forrester, B., Fang, Z.Y. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens[J]. J Clin Microbiol, 1990, 28: 276–282.
    [91]方肇寅,晋圣瑾,秦树民,等。PCR方法用于我国A组轮状病毒的分型研究[J]。病毒学报,1994,10:136-144。
    [92] Das, M., Dunn, S.J., Woode, G.N., Greenberg, H.B., Rao, C.D. Both surface proteins (VP4 and VP7) of an asymptomatic neonatal rotavirus strain (I321) have high levels of sequence identity with the homologous proteins of a serotype 10 bovine rotavirus. Virology, 1993 May, 194 (1): 374-37
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.