水稻U-box基因家族的特征及转录表达模式分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物基因组中尤其是植物中广泛存在着U-Box结构。U-Box结构高度保守,其构象与RING-finger极其相似,这两者都能发挥泛素连接酶E3的作用,促进底物蛋白质泛素化降解,对细胞内异常蛋白质的降解及质量控制方面发挥着重要的作用。本文通过全面的计算分析从水稻中确定了77个U-box基因,并对这类基因家族进行了一个完整的概述,包括基因结构,染色体定位和保守序列。此外,还通过对EST数据库的搜索分析了U-box的转录水平。用计算机软件预测抗原决定簇来设计多肽,通过合成多肽免疫动物制备抗体,检测水稻在不同发育时期的表达谱,对U-box蛋白质的表达水平进行分析。
     通过分析,发现水稻U-box基因可分为7类结构,其中含U-box和Arm结构的家族成员最多,为31个。对水稻的U-box保守结构域的内含子分布分析发现有一半的基因U-box结构域内都没有内含子。通过染色体定位发现2号,4号,6号染色体上U-box基因为37个,约占水稻整个U-box基因家族的50%。通过对NCBI的EST数据库中274个文库中超过100万条的水稻EST分析,发现在U-box和Arm结构基因中呈现部分富集现象,而只含有U-box结构的基因,检测到EST的数目并不多。整体来说水稻U-box基因家族的转录水平明显低于水稻平均转录水平。和其他16个水稻基因家族的EST比较表明基因家族的转录水平与家族成员的数目并不成正比,基因家族成员数目多的,转录平均水平较低。通过合成多肽制备的抗体有特异性,Western blotting检测可见U-box家族的蛋白质表达谱具有两种模式,一种为组成型表达,另一种为组织特异性表达。根据分析结果及已发表文献,讨论了U-box蛋白质家族的结构与功能的关系。并得出结论,该U-box家族在水稻中的扩增可能是由于染色体/段复制和串联复制。这些结果将有助于对U-box家族基因的进一步功能分析。
U-box domain was a high conserved motif existing in eukaryotes, especially in plants. The domain of U-box was similar to that of the RING-finger. Both of them could function as E3 ubiquitin ligase which play a key role in the recognition and selection of abnormal proteins targeted for ubiquitination and subsequent degradation, a process for the maintenances and quality control of proteins exist in living cells. In this study, a comprehensive computational analysis identified 77 U-box family genes in rice. A complete overview of this gene family in rice is presented, including the gene structures, chromosome locations, and conserved motifs. In addition, the analysis with its transcription pattern was performed by searching EST database. Epitope prediction were carried out by computer software to synthesize polypeptides. Polyclonal antibodies were generated by rabbit immunization. Western blotting analysis were carried out for rice material collected at different developmental stages to detect expression pattern. As a result of these analyses, we found U-box gene family could be divided in to 7 groups, including the group with U-box and Arm domain representing the largest class.
     Analysis of U-box family conserved domain in Rice found that half of the members have no introns. There are 37 members located on the 2, 4, 6 chromosome, represented 50% percent of the rice U-box family. EST analysis based on 1 million ESTs derived from 274 libraries from NCBI EST database revealed that enrichment of ESTs were found in the U-box gene with Arm domain, while not many ESTs were found in the class with only U-box domain. After all, the transcription of U-box gene in rice was significantly lower than the average of all genes. The comparison with other 16 gene families shows that the transcription level of gene family is not directly proportional to the number of family members. The family with large members has a lower transcription level. Western blotting detection of U-box protein family has two profiles, one for the constitutive expression, and the other for the tissue-specific expression. We discuss the relationship between the structure and function of the U-box family proteins based on these results and published information. It was further concluded that the expansion of the U-box family in rice might have been due to chromosomal/segmental duplication and tandem duplication. These results will be useful for future functional analyses of the U-box family genes.
引文
[1]Sasaki T, Burr B. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome[J]. Curr Opin Plant Biol, 2000, 3(2): 138-141.
    [2]Koegl M, Hoppe T, Schlenker S, et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly[J]. Cell, 1999, 96(5): 635-644.
    [3]Aravind L, Koonin E V. The U box is a modified RING finger - a common domain in ubiquitination[J]. Curr Biol, 2000, 10(4): R132-134.
    [4]Stone S L, Hauksdottir H, Troy A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiol, 2005, 137(1): 13-30.
    [5]Tu D, Li W, Ye Y, et al. Inaugural Article: Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p[J]. Proc Natl Acad Sci U S A, 2007, 104(40): 15599-15606.
    [6]Jiang J, Ballinger C A, Wu Y, et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation[J]. J Biol Chem, 2001, 276(46): 42938-42944.
    [7]Murata S, Minami Y, Minami M, et al. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein[J]. EMBO Rep, 2001, 2(12): 1133-1138.
    [8]McDonough H, Patterson C. CHIP: a link between the chaperone and proteasome systems[J]. Cell Stress Chaperones, 2003, 8(4): 303-308.
    [9]Hatakeyama S, Matsumoto M, Yada M, et al. Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones[J]. Genes Cells, 2004, 9(6): 533-548.
    [10]Kinyamu H K, Chen J, Archer T K. Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors[J]. J Mol Endocrinol, 2005, 34(2): 281-297.
    [11]Li L, Xin H, Xu X, et al. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription[J]. Mol Cell Biol, 2004, 24(2): 856-864.
    [12]Vander Kooi C W, Ohi M D, Rosenberg J A, et al. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases[J]. Biochemistry, 2006, 45(1): 121-130.
    [13]Xu Z, Devlin K I, Ford M G, et al. Structure and interactions of the helical and U-box domains of CHIP, the C terminus of HSP70 interacting protein[J]. Biochemistry, 2006, 45(15): 4749-4759.
    [14]Hatakeyama S, Yada M, Matsumoto M, et al. U box proteins as a new family of ubiquitin-protein ligases[J]. J Biol Chem, 2001, 276(35): 33111-33120.
    [15]Hatakeyama S, Nakayama K I. U-box proteins as a new family of ubiquitin ligases[J]. Biochem Biophys Res Commun, 2003, 302(4): 635-645.
    [16]Yang C W, Gonzalez-Lamothe R, Ewan R A, et al. The E3 ubiquitin ligase activity of arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense[J]. Plant Cell, 2006, 18(4): 1084-1098.
    [17]靳苗静. U-box蛋白质的结构及其功能研究进展[J].中国农学通报, 2007, 23(4): 119-124.
    [18]Samuel M A, Mudgil Y, Salt J N, et al. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis[J]. Plant Physiol, 2008, 147(4): 2084-2095.
    [19]Gonzalez-Lamothe R, Tsitsigiannis D I, Ludwig A A, et al. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato[J]. Plant Cell, 2006, 18(4): 1067-1083.
    [20]Cho S K, Ryu M Y, Song C, et al. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress[J]. Plant Cell, 2008, 20(7): 1899-1914.
    [21]Cho S K, Chung H S, Ryu M Y, et al. Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog[J]. Plant Physiol, 2006, 142(4): 1664-1682.
    [22]Yan J, Wang J, Li Q, et al. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis[J]. Plant Physiol, 2003, 132(2): 861-869.
    [23]Stone S L, Anderson E M, Mullen R T, et al. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen[J]. Plant Cell, 2003, 15(4): 885-898.
    [24]Hershko A, Ciechanover A. The ubiquitin system[J]. Annu Rev Biochem, 1998, 67(425-479.
    [25]VanDemark A P, Hill C P. Structural basis of ubiquitylation[J]. Curr Opin Struct Biol, 2002, 12(6): 822-830.
    [26]Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annu Rev Plant Biol, 2004, 55(555-590.
    [27]Kowalczyk S, Hadowska E, Piekarska A. [Plant ubiquitylation and proteolytic systems, the key elements in hormonal signaling pathways][J]. Postepy Biochem, 2005, 51(2): 171-187.
    [28]Schwartz D C, Hochstrasser M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers[J]. Trends Biochem Sci, 2003, 28(6): 321-328.
    [29]Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development[J]. Plant Cell, 2004, 16(12): 3181-3195.
    [30]Hare P D, Seo H S, Yang J Y, et al. Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization[J]. Curr Opin Plant Biol, 2003, 6(5): 453-462.
    [31]Callis J, Vierstra R D. Protein degradation in signaling[J]. Curr Opin Plant Biol, 2000, 3(5): 381-386.
    [32]Patterson C. A new gun in town: the U box is a ubiquitin ligase domain[J]. Sci STKE, 2002, 2002(116): PE4.
    [33]Ohi M D, Vander Kooi C W, Rosenberg J A, et al. Structural insights into the U-box, a domain associated with multi-ubiquitination[J]. Nat Struct Biol, 2003, 10(4): 250-255.
    [34]Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants[J]. Trends Plant Sci, 2001, 6(8): 354-358.
    [35]Wiborg J, O'Shea C, Skriver K. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases[J]. Biochem J, 2008, 413(3): 447-457.
    [36]Zeng L R, Park C H, Venu R C, et al. Classification, expression pattern, and e3 ligase activity assay of rice u-box-containing proteins[J]. Mol Plant, 2008, 1(5): 800-815.
    [37]Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates[J]. J Exp Bot, 2009, 60(4): 1109-1121.
    [38]Ballinger C A, Connell P, Wu Y, et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions[J]. Mol Cell Biol, 1999, 19(6): 4535-4545.
    [39]Guyot R, Keller B. Ancestral genome duplication in rice[J]. Genome, 2004, 47(3): 610-614.
    [40]Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402.
    [41]Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res, 1997, 25(24): 4876-4882.
    [42]Shih A C, Lee D T, Peng C L, et al. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences[J]. BMC Bioinformatics, 2007, 8(63.
    [43]Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol, 2007, 24(8): 1596-1599.
    [44]Mudgil Y, Shiu S H, Stone S L, et al. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family[J]. Plant Physiol, 2004, 134(1): 59-66.
    [45]Odorico M, Pellequer J L. BEPITOPE: predicting the location of continuous epitopes and patterns in proteins[J]. J Mol Recognit, 2003, 16(1): 20-22.
    [46]Andersen P, Kragelund B B, Olsen A N, et al. Structure and biochemical function of a prototypical Arabidopsis U-box domain[J]. J Biol Chem, 2004, 279(38): 40053-40061.
    [47]Zeng L R, Qu S, Bordeos A, et al. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. Plant Cell, 2004, 16(10): 2795-2808.
    [48]陈浩.水稻U-Box蛋白质在不同发育时期的表达分析[J].生物化学与生物物理进展, 2009, 36(9): 1208-1214.
    [49]Yang X, Yu X. An introduction to epitope prediction methods and software[J]. Rev Med Virol, 2009, 19(2): 77-96.
    [50]Amador V, Monte E, Garcia-Martinez J L, et al. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo[J]. Cell, 2001, 106(3): 343-354.
    [51]Wang Y S, Pi L Y, Chen X, et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J]. Plant Cell, 2006, 18(12): 3635-3646.
    [52]Ciechanover A, Schwartz A L. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death[J]. Proc Natl Acad Sci U S A, 1998, 95(6): 2727-2730.
    [53]Peng J. Evaluation of proteomic strategies for analyzing ubiquitinated proteins[J]. BMB Rep, 2008, 41(3): 177-183.
    [54]Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase[J]. Science, 2005, 309(5731): 127-130.
    [55]Peng J, Schwartz D, Elias J E, et al. A proteomics approach to understanding protein ubiquitination[J]. Nat Biotechnol, 2003, 21(8): 921-926.
    [56]Wilkinson K D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome[J]. Semin Cell Dev Biol, 2000, 11(3): 141-148.
    [57]Nijman S M, Luna-Vargas M P, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes[J]. Cell, 2005, 123(5): 773-786.
    [58]Semple C A. The comparative proteomics of ubiquitination in mouse[J]. Genome Res, 2003, 13(6B): 1389-1394.
    [59]Shi G, Chen D, Zhai G, et al. The proteasome is a molecular target of environmental toxic organotins[J]. Environ Health Perspect, 2009, 117(3): 379-386.
    [60]Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life[J]. EMBO J, 1998, 17(24): 7151-7160.
    [61]Dou Q P, Li B. Proteasome inhibitors as potential novel anticancer agents[J]. Drug Resist Updat, 1999, 2(4): 215-223.
    [62]Shibahara T, Kawasaki H, Hirano H. Mass spectrometric analysis of expression of ATPase subunits encoded by duplicated genes in the 19S regulatory particle of rice 26S proteasome[J]. Arch Biochem Biophys, 2004, 421(1): 34-41.
    [63]Ferrell K, Wilkinson C R, Dubiel W, et al. Regulatory subunit interactions of the 26S proteasome, a complex problem[J]. Trends Biochem Sci, 2000, 25(2): 83-88.
    [64]Loscher M, Fortschegger K, Ritter G, et al. Interaction of U-box E3 ligase SNEV with PSMB4, the beta7 subunit of the 20 S proteasome[J]. Biochem J, 2005, 388(Pt 2): 593-603.
    [65]Weissman A M. Themes and variations on ubiquitylation[J]. Nat Rev Mol Cell Biol, 2001, 2(3): 169-178.
    [66]Ulrich H D. Natural substrates of the proteasome and their recognition by the ubiquitin system[J]. Curr Top Microbiol Immunol, 2002, 268(137-174.
    [67]Brooks L, 3rd, Heimsath E G, Jr., Loring G L, et al. FHA-RING ubiquitin ligases in cell division cycle control[J]. Cell Mol Life Sci, 2008, 65(21): 3458-3466.
    [68]Yamamoto T, Kimura S, Mori Y, et al. Degradation of proliferating cell nuclear antigen by 26S proteasome in rice (Oryza sativa L.)[J]. Planta, 2004, 218(4): 640-646.
    [69]Pandita T K, Richardson C. Chromatin remodeling finds its place in the DNA double-strand break response[J]. Nucleic Acids Res, 2009, 37(5): 1363-1377.
    [70]Pringa E, Martinez-Noel G, Muller U, et al. Interaction of the ring finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes[J]. J Biol Chem, 2001, 276(22): 19617-19623.
    [71]Ciechanover A, Orian A, Schwartz A L. The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications[J]. J Cell Biochem Suppl, 2000, 34(40-51.
    [72]Orlowski M, Wilk S. Ubiquitin-independent proteolytic functions of the proteasome[J]. Arch Biochem Biophys, 2003, 415(1): 1-5.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.