Pt-Sn/MWCNTs复合材料结构表征与电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)由于具有优异的导电性能、极高的比表面积及良好的热稳定性等特点,因而它是一种理想的直接甲醇燃料电池(DMFC)催化剂载体材料。现今用于直接甲醇燃料电池的催化剂以铂金为主(platinum, Pt)为主,但铂金属会在甲醇的氧化过程中会伴随着中问产物一氧化碳(CO)的生成,造成铂金属中毒。为了解决这个问题,目前主要以添加其他金属来加以改善,在进一步降低贵金属Pt的用量的基础上提高其催化活性。例如,Sn由于成本较低,且实验表明PtSn二元复合催化活性明显提高,因此受到广泛关注。目前,二元复合催化效果的最佳原子比例范围却鲜有报道。
     本研究将采用Sn作为第二种金属来添加,以多壁碳纳米管(MWCNTs)为载体,考察不同原子比例的Pt-Sn/MWCNTs催化剂的催化活性,确定最佳催化活性下的PtSn比例范围,并结合微观结构信息探索催化活性与结构的内在关联。采用浸渍还原法制备了八种不同铂锡比例的担载在多壁碳纳米管上的Pt-Sn/MWCNTs催化剂,利用场发射扫描电子显微镜(Field Emission Scanning Electron Microscope,FESEM)、X-射线衍射(X-ray Diffraction,XRD)、能谱仪(Energy Dispersive Spectrometer,EDS)等对不同比例催化剂的结构和形貌进行了表征;采用循环伏安法和交流阻抗法对八种样品进行电化学测试,通过比较不同比例的催化剂对甲醇的电催化性能,了解PtSn原子比例和催化活性之间的联系。
     结果表明:
     (1)采用浸渍还原法制成的Pt-Sn/MWCNTs复合材料,担载的金属颗粒平均粒径范围约在3.5-6.5nm,基本符合最佳催化粒径范围。
     (2)XRD和EDS测试结果表明,Pt-Sn/MWCNTs存在Pt-Sn合金和SnO2。Pt-Sn合金能够降低了CO的吸附能力,而Sn02能够在低电位下提供OHads在二者同时作用下,能有效地抑制催化剂CO中毒,进而提高其对甲醇的氧化活性。
     (3)循环伏安和交流阻抗测得,当PtSn原子比为3:1时,Pt-Sn/MWCNTs的催化剂的电化学活性表现为最好。即当Sn载量在3.5:1(Pt:Sn)~2.5:1(Pt:Sn)的范围内时,由于粒子粒径能达到最佳尺寸,且催化剂的电荷传质阻力最小而活性物质扩散速度最大,因而呈现相对较好的催化活性状态。
Carbon nanotubes become an expected candidate of the catalyst carrier in Direct Methanol Fuel Cell(DMFC) in recent years owe to their excellent conductivity, high specific surface area and good thermal stability and so on. The common catalyst for DMFC is platinum, Pt, which is easily poisoned with carbon monoxide generated in the oxidation process of Methanol. In order to solve this problem, other metals are added to improve the catalytic activity and further reduce the usage amount of Pt. Sn has been widely concerned because its cost is low and Pt-Sn binary catalyst can improve the catalytic activity. At present, the best atomic ratio of binary catalyst is the focus of inner depth research.
     In this paper we chose Sn as the second metal and used Multi-walled carbon nanotubes(MWCNTs) as the vector, to study the catalytic activities of Pt-Sn/MWCNTs catalysts with different atomic ratios and confirm the optimum atom ratio of Pt-Sn/MWCNTs with the best catalytic activity. Also we explore the internal relationship of the catalytic activity and microstructure. Eight kinds of PtSn with different atomic ratios were on the MWNTs by the impregnation reduction method to form Pt-Sn/MWCNTs catalysts. Field Emission Scanning Electron Microscope(FESEM), X-ray Diffraction(XRD), Energy Dispersive Spectrometer(EDS) spectrum were used to reveal the structures and morphology of the catalysts of different atom ratios, Cyclic voltammetry and AC impedance electrochemical were used to test the electrocatalytic properties of the eight samples. The relation between the catalytic activity and the atomic ratio of PtSn was confirmed by studying the effect of atomic ratios of catalysts on the electrocatalytic performance of methanol.
     The following results were obtained:
     (1)The complex catalyst Pt-Sn/MWCNTs was prepared by impregnation reduction method, in which the metal particle size was about 3.5-6.5nm and it was in the range of the best particle size.
     (2)XRD and EDS results showed that A highly dispersed fabric with PtSn alloy and SnO2 on MWCNTs could be seen. Pt-Sn alloy could reduce the adsorption capacity of CO, and SnO2 could provide OHads in low electric potential, both could effectively inhibit CO poisoning of the catalyst, and improve its activity for methanol oxidation.
     (3)Cyclic voltammetry and AC impedance reflected that when the atomic ratio of Pt&Sn was 3:1, the Pt-Sn/MWCNTs catalyst performed the best electrochemical activity.That is to say, when the atomic ratio of Pt/Sn was in the 2.5:1 (Pt:Sn)~3.5:1 (Pt:Sn) range, the particle size was optimal size, charge resistance of the catalyst was minimum, and the spread speed of the active substance was maximum, which led to the best catalytic activity relative to the state.
引文
[1]许宁逸,颜溪成.由碳能朝向氢能的燃料电池[J].科学发展,2003,367:6-12.
    [2]Nakagawa N, Xiu Y. Performance of direct methanol fuel cell operated at atmospheric pressure[J].J.Power Sources,2003,118(2):248-256.
    [3]Lu G Q, Wang C Y, Yen T J, etc. Development and characterization of a silicon-based micro direct methanol fuel cell[J]. Electrochimica Acta,2004,49(6):821-829,
    [4]林异佃,余子隆,张幼珍等.燃料电池-新世纪能源[M].北京:化学工业出版社2004:70-76.
    [5]Zhou W J, Li W Z, Song S Q, etc. Bi-and tri-metallic Pt-based anode catalysts for direct ethanol fuel cell[J]. Journal of Power Sources,2004,131:217-229.
    [6]Zhou W J, Li W Z, Song S Q, etc. Direct ethanol fuel based on PtSn anodes:the effect of Sn content on the fuel cell performances [J]. Journal of Power Sources,2005,140:50-61.
    [7]Zhou W, Zhou Z, Song S, etc. Pt Based anode catalysts for direct ethano fuel cell[J]. Applied Catalysis,2003,46:273-287.
    [8]Ticianelli E A, Beery J G.. Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphologic characteristics of the electrodes [J]. Journal of Applied Electrochemistry,1991,7:597-605.
    [9]Wilson M S, Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes [J]. Journal of Applied Electrochemistry,1992,22:1-7.
    [10]Cha S Y, Lee W M. Performance of Proton Exchange Membrance Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrance Surface[J]. J. Electrochemical Soc.,1999,146:4055-4060.
    [11]Gloaguen, Leger J M, Lamy C. Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates [J]. Journal of Applied Electro-chemistry,1997,27:1052-1061.
    [12]CHEN W X, ZHAO J, LEE J Y, etc. Microwave heated polyolthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation[J]. Mater Chem Phys,2005,91: 124-129.
    [13]Mukerjee S, Breen J M. Particle size and structural effects in platinum electrocatalysis[J]. Journal of Electroanalytical Chemistry,1998,448:163-170.
    [14]Liu R, Iddir H, Fan Q, etc. Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-Ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtRuOs, and Ru Electrodes [J]. J. Phys. Chem. B,2000,104:3518-3526.
    [15]Lin W F, Zei M S, Eiswirth M, etc. Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidatin[J]. J. Phys. Chem. B,1999,103:6968-6976.
    [16]Shukla A K, Raman R K, Choudhury N A, etc. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells[J]. J. Electroanal. Chem.,2004,563:181-189.
    [17]Costamagna P,Srinivasan S. Trading Portfolios Electronically-An Experimental Approach [J]. J. Power Sources,2001,102:242-249.
    [18]Linda C, Andreas Friedrich K, Ulrich S. Fuel cells:Principles, Types, Fuels, and Applications [J]. Chemphyschem,2000,1:162-171.
    [19]Ledjeff-Hey K, Heinzel A. Critial issues and future prospects for solid polymer fuel cells[J]. J. Power Sources,1996,61:125-134.
    [20]Watanabe M, Furuuchi Y, Motto S. Electrocatalysis by Ad-atoms Part ⅩⅢ.Preparation of Ad-electrodes with Tin Ad-atoms for Methanol, Formaldehyde and Formic Acid Fuel Cells[J]. J. Electrochem. Chem.,1985,191:367-376.
    [21]Behm R J, Jusys Z, Kaiser J. Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation-A DEMS study[J]. Electrochimica Acta,2002,47:3693-3706.
    [22]Lasch K, Hayn G, Jorissen L, etc. Mixed conducting catalyst support materials for the direct methanol fuel cell[J], J. Power Sources,2002,105:305-314.
    [23]McBreen J, Mukerjee S. In situ X-ray Absorption Stiudies of a Pt-Ru Electrocatalyst[J]. J. Electrochemical Soc.,1995,142:3399-3407.
    [24]Hubert Gasteiger A, Nenad Markovic M, Ross P N. H2 and CO Electrooxidation on Well-Characterized Pt,Ru,and Pt-Ru.2. Rotating Disk Eletrode Studies of CO/H2 Mixture at 62℃[J]. J.Phys.Chem.,1995,99:16757-16767.
    [25]Lin S D, Hsiao T C. Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells[J]. J.Phys.Chem.,1999,103:97-103.
    [26]Shubina T E, Koper M T M. Quantum-Chemical Calculation of CO and OH Interacting with Bimetallic surfaces[J]. Electrochima Acta,2002,47:3621-3628.
    [27]Liao M S, Cabrera C R, Ishikawa Y. A Theoretical Study of CO Adsorption on Pt, Ru and Pt-M(M=Ru,Sn,Ge) Cluster[J]. Surface Science,2000,445:267-282.
    [28]Gasteiger H A, Markovic N M, Ross P N, etc. CO Electrooxidation on Well-Characterized Pt-Ru Alloys[J]. J.Phys.Chem.,1994,98:617-625.
    [29]Ianniello R, Schmidt V M, Stimming U, etc. CO Adsorption and Oxidation on Pt and Pt-Ru Alloys:Dependence on Substrate Composition[J]. Electrochima Acta,1994,39: 1863-1869.
    [30]Lin W F, Iwasita T, Vielstich W. Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study[J]. J.Phys.Chem.,1999,103:3250-3257.
    [31]Jiang L, Sun G, Sun S, etc. Stucture and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation[J]. J. Electrochem. Soc.,1995,132(4):2601-2621.
    [32]Gotz M, Wendt H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas[J]. Electrochimica Acta.,1998,43(5):3637-3658.
    [33]Iijima S. Helical microtube of graphitic carbon[J]. Nature,1991,354:56-58.
    [34]Yang L X, Allen R G, Scott K, etc. A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation[J]. J. Power Sources,2004, 137(3):257-270.
    [35]Zhou W J, Zhou B, Li W Z, etc. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts[J]. J. Power Sources,2004, 126(2):16-33.
    [36]Gasteiger H A, Marvokic N M, Ross P N. Electrooxidation of CO and H2/CO mixtures on a well-characterized PtSn electrode surface [J]. J. Phys. Chem. B,1995,99: 8945-8952.
    [37]McBreen J, Mukerjee S. An In Situ X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts[J]. J. Electrochemical Soc.,1999,146:600-606.
    [38]Myoung K M, Jihoon C, Kyuwoong C, etc. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications[J].Electrochima Acta,2000,45:4211-4221.
    [39]Oliveira N A, Giz M J. The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon[J]. J. Electrochem. Soc.,2002,149(3): A272-A279.
    [40]Grgur B N, Markovic N M, Ross P N. The Electro-oxidation of H2 and H2/CO Mixtures on Carbon-Supported PtxMoy Alloy Catalysts [J]. J. Electochem Soc.,1999,146:1613-1619.
    [41]Venkataraman R, Kunz H R, Fentonb J M. Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel cells[J]. J. Electrochem. Soc., 2003,150(3):A278-A284.
    [42]Gurau B, Viswanathan R, Liu R, etc. Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation[J]. J.Phys.Chem.,1998,102:9997-10004.
    [43]Arico A S, Poltarzewski Z, Kim H. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells[J]. J. Power Sources,1995, 55(2):159-168.
    [44]Park K W, Choi J H, Kwon B K, etc. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation[J]. J. Phys, Chem. B,2002, 106:1869-1877.
    [45]Liu Z, Gan L M, Hong L, etc. Carbon-supported Pt nanoparticles as catalysts for proton exchange membrance fuel cells[J]. J. Power Sources,2005,139(6):73-86.
    [46]Steigerwalt E S, Deluga G A, Lukehart C M, Pt-Ru/Carbon fiber nanocomposites:synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance.[J]. J. Phys. Chem. B, 2002,106(6):760-778.
    [47]Tang H, Chen J, Yao S, etc. Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube(CNT) arrays for methanol oxidation[J]. Materials Chemistry and Physics,2005,92(9):548-560.
    [48]Matsumoto T, Komatsu T, Nakano H, etc. Effcient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrode fuel cells[J].Catalysis Today,2004,90(2):277-293.
    [49]Roth C, Goetz M, Fuess H. Synthesis and characterization of carbon-supported Pt-Ru-WOX catalysts by spectroscopic and diffraction method[J]. J.Appl. Electrochemistry.,1998,31(8):793-808.
    [50]Joo S H, Choi S J, Oh I, etc. Correction:Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412,169-172.
    [51]Ryoo R, Joo S H, Jun S, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J Phys Chem B,1999,103(37): 7743-7746.
    [52]沈曾民.新型碳材料[M].北京:化学工业出版社,2003,241.
    [53]Yang R Z, Qiu X P, Zhang H R, etc. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol [J]. Carbon,2005,43(1):11-16.
    [54]Wu D C, Fu R W, D resselhaus M S, etc. Fabrication and nano-structure control of carbon aerogels via a m icroemulsion temp lated solgel polymerization method[J]. Carbon,2006,44(4):675-681.
    [55]Luo J Z, Gao L Z, Leung Y L, etc. The decomposition of NO on CNTs and 1 wt% Rh/CNTs[J]. Catal Lett,2000,66:91-97.
    [56]Ci L J, Li B Q, Liang J, etc. Preparation of carbon nanofibers by the floating catalyst method[J]. Carbon,2000,38(8):1933-1953.
    [57]Biro L P, Bernardo C A, Tibbetts G G, etc. Carbon filaments and nanotubes:common origins, differing applications[M]. Kluwer academic publishers, Dordrecht/Boston/ London,2001,51-62.
    [58]Lee C L, Wan C C, Wang Y Y. Synthesis of Metal Nanoparticles via Self-Regulated Reduction by an Alcohol Surfactant [J]. Adv. Funct. Mater{J},2001,11(6):344-260
    [59]Lee C L, Ju Y C, Chou P T, etc. Preparation of nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical[J]. Electrochem.,2005,7(6):453-467.
    [60]成会明,张劲燕.碳纳米管[M].北京:化学工业出版社,2005:60.
    [61]Li W, Liang C, Zhou W, etc. Preparetion and characterzization of multiwalled carbon nanotube-supported platinum for cathode catalysts of methanol fuel cells[J]. J. Phys. Chem. B,2003,107(9):6292-6311.
    [62]Carmo M, Paganin V A, Rosolen J M, etc. Alternative supports for the preparation of catalysts for low-temperature fuel cells:the use of carbon nanotubes[J]. J. Power Sources.,2005,142:169-177.
    [63]Li W Z, Liang C H, Xin Q, etc. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells[J]. J. Phys. Chem. B,2003,107:6292-6299.
    [64]PrabhuramJ, Zhao T S, Tang Z K, etc. Multiwalled Carbon Nanotube Supported PtRu for the Anode of Direct Methanol Fuel Cells[J]. J. Phys. Chem. B,2006,110:5245-5252.
    [65]Liao S, Holmes K A, Birss V I, etc. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol [J]. J. Am. Chem. Soc.,2006, 128:3504-3505.
    [66]Lizcano-Valbuena W H, Azevedo D C, Gonzalez E R. Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells[J]. Electrochimica Acta.,2004,49: 1289-1301.
    [67]尾崎萃,田丸谦二等.催化剂手册[C].北京:化学工业出版社,1982:703.
    [68]Antolini E, Cardellini F. Formation of carbon supported PtRu alloys:an XRD analysis[J]. J. Alloys and Compounds,2001,315:118-126.
    [69]Takasu Y, Fujiwara T, Murakami Y, etc. Effect of structured of carbon-supported PtRu electrocatalysts on the elecrtochemical oxidation of methanol[J], J Electrochem.Soc., 2000,147(12):4421-4427.
    [70]Emmanuel Auer, Andreas Frend, Thomas Lehmann, etc. CO tolerant anode catalyst for PEM fuel cells and a process for its preparation[J]. US Pat,6007934.1999-12-28.
    [71]Hamnett A, Kennedy B J, Wagner F E. Pt-Ru anodes for methanol electrooxidation:A ruthenium-99 Mossbauer study [J]. J. Catalysis,1990,124:30-37.
    [72]Dickinson A J, Carrette L P L, Collins J A, etc. Performance of methanol oxidation catalysts with varying Pt:Ru ratio as a funtion of temperature [J]. J.Appl. Electrochemistry.,2004,34:975-989.
    [73]Takasu Y, Kawaguchi T, Sugimoto W, etc. Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation[J]. Electrochimica Acta,2003,48(4):3861-3876.
    [74]Watanabe M, Uchida M, Motoo S. Preparation of Highly Dispersed Pt+Ru Clusters and the Activity for the Electro-oxidation of Methanol[J]. J. Electrochem. Chem.,1987,229: 395-403.
    [75]Swathirajan S, Youssef M, Mikhail. Electrochemical Oxidation of Methanol at Chemically Prepared Platinum-Ruthenium Alloy Electrodes[J]. J. Electrochem. Soc., 1991,138:1321-1329.
    [76]Bonnemann, Vogel W, Rothe J, etc. Structure and Chemical Composition of Surfactant-Stabilized PtRu Alloy Colloids[J]. J. Phys. Chem. B,1997,101: 11029-11036.
    [77]He Z, Chen J, Liu D, etc. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation[J]. Diamond and Related Materials,2004,13(7):1764-1778.
    [78]Philippe Serp. Novel carbon supported material:highly dispersed platinum particles on carbon nanospheres[J]. J. Mater. Chem.,2001,11:1980-1981.
    [79]He Z, Chen J, Liu D, etc. Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation. Mater[J].Chem.phys., 2004,85(2-3):396-401.
    [80]Liu Z, Gan M, Hong L, etc. Carbon-supported Pt nanoparticles as catalysts for proton exchange membrance fuel cells[J]. Journal of Power Sources,2005,139(4):73-88.
    [81]Liu Z L, Lee J Y, Chen W X, etc. Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles [J]. Langmuir,2004,20:181-187.
    [82]Hsing I M, Wang X. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells[J]. Electrochimica Acta,2002,47:2981-2990.
    [83]Zhang X, Chan K Y. Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties [J]. Chem.Mater., 2003,15(3):451-467.
    [84]Liu Z L, Lee J Y, Han M, etc. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions[J]. J. Mater. Chem.,2002,12:2453-2458.
    [85]Yang H, Alonso-Vante N, Lamy C, etc. Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes [J]. J.Phys.Chem.B,2004,108:1938-1947.
    [86]Lin H Y, Cui X L, Yen C, etc. Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells[J]. J. Phys. Chem. B,2005,109:14410-14415.
    [87]Huang J C, Liu Z L, He C B, etc. Synthesis of PtRu Nanoparticles from the Hydrosilylation Reaction and Application as Catalyst for Direct Methanol Fuel Cell[J]. J. Phys. Chem. B,2005,109:16644-16649.
    [88]Deivaraj T C, Lee J Y. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications-a comparative study[J]. J. Power Sources.,2005, 142(4):43-56.
    [89]姜鲁华,臧海霞,孙公权等.制备方法对直接乙醇燃料电池阳极PtSn/C催化剂性能的影响[J].催化学报,2006,27(1):15-19.
    [90]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis[J]. Applied Catalysis,2003,253(9):337-350.
    [91]Han K I, Lee J S, Park S O, etc. Studies on the anode catalysts of carbon nanotube for DMFC[J]. Electrochimica Acta,2004,50(8):791-804.
    [92]Liu Z, Lin X, Lee J Y, etc. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fule cells[J]. Langmuir,2002,18(9):4054-4068.
    [93]Sarma L S, Lin T D, Tsai Y W, etc. Carbon-supported Pt-Ru catalysts prepared by he Nafion stabilized alcohol-reduction mechod for application in direct methanol fuel cells[J]. J. Power Sources,2005,139(2):44-57.
    [94]Passalacqua E, Lufrano F, Squadrito G, etc. Nafion content in the catalyst layer of polymer electrolyte fuel cells:effects on structure and performance [J]. Electrochimica Acta,2001,46(7):779-787.
    [95]Frelink T, Visscher W, Veen J A R. Particles size effect of carbon-supported platinum catalysts for the electrooxidation of methanol[J]. J.Electroanal. Chem.,1995,382(4):
    [96]Runyan W R. Semiconductor Measurements & Instrumentation,2nd.,McGRAW-HALL ,1997.
    [97]Vielstich W, Gasteiger H A, Lamm A. Handbook of Fuel Cells-Fundamentals,Techn-ology and Applications[J]. J. Power Sources.,2003,2(6):78-86.
    [98]Sivakumar P, Ishak R, Tricoli V. Novel Pt-Ru nanoparticles formed by vapour deposition as efficient electrocatalyst for methanol oxidation Part Ⅰ. Preparation and physical characterization[J]. Electrochimica Acta.,2005,50:3312-3319.
    [99]Qin K, Songfei L, Zhaoxiong X, etc. Controllable fabrication of SnO2-coated multiwalled carbonnanotubes by chemical vapor deposition[J]. Carbon,2006, 44:1166-1172.
    [100]Kuang Q, Li S F, Xie Z X, etc. Controllable fabrication of SnO2-coated multiwalled carbonnanotubes by chemical vapor deposition[J]. Carbon,2006,44:1166-1172.
    [101]Flavio C, Ermete A, Ermesto R G. Pt-Sn/C elect rocatalysts for methanol oxidation synthesized by reduction with formic acid [J]. Electrochimica Acta,2005,50:5496-5503.
    [102]Radmilovic V, Richardson T J, Chen S J, etc. Carbon-supported Pt-Sn electrocatalysts for the anodic oxidation of H2,CO, and H2/CO mixtures. Part I. Microstructural characterization[J]. J. Catal.,2005,232:199-206.
    [103]Radmilovic V, Gasteiger H A, Ross P N, etc. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation[J]. J. Catal.,1995,154:98-106.
    [104]Xu B S, Yang X W, Wang X M, etc. A novel catalyst support for DMFC:Onion-like fullerenes[J]. Journal of Power Sources,2006,162(1):160-164.
    [105]Guo J W, Zhao T S, Prabhuram J, etc. Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells[J]. Electrochimica Acta,2005,50:1973-1983.
    [106]赵新生,孙公权,姜鲁华,等.碳纳米管担载PtSn日极催化剂对乙醇的电催化氧化性能研究[J].高等学校化学学报,2005,26(7):1304-1308.
    [107]Jae H K, Sung M C, Sang H N, etc. Influence of Sn content on PtSn/Ccatalysts for electrooxidation of C1-C3 alcohols:Synthesis, characterization and electrocatalytic activity[J]. Applied Catalysis B:Environmental,2008,82:89-102.
    [108]Cho, Ko E, Ha J J, etc. Effect of Water Removal on the Performance Degradation of PEMFCs Repetitively Brought to <0℃[J]. J. Electrochem. Soc.,2004,151(6): A661-A665.
    [109]Sasikumar G, Ihm J W, Ryu H. Depedance of optimum Nafion content in catalyst layer on platinum loading[J]. J. Power Source,2004,132:11-17.
    [110]Bard A J, Faulkner L R. Electrochemical method fundamentals and applications[J]. J.Electroanal. Chem.,2001,6(2):131-139.
    [111]Su F B, Zeng J H, Yu Y S, etc. Template synthesis of microporous carbon for direct methanol fuel cell application[J]. Carbon,2005,43:2366-2369.
    [112]Tripkovic A V, Popovic K D, Lovic J D, etc. Promotional effect of Snad on the ethanol oxidation at Pt3Sn/C catalyst[J]. Electrochemistry Communications,2009,11:1030-1033.
    [113]Cui X Z, Cui F M, He Q J, etc. Graphitized mesoporous carbon supported Pt-SnO2 nanoparticles as a catalyst for methanol oxidation[J]. Fuel,2009,10:1016.
    [114]林才顺,荣洁鹏,王同涛等.直接甲醇燃料电池Pt/C催化剂对甲醇的电催化氧化研究[J].有色金属(冶炼部分),2008,4:41-43.
    [115]Wilde C P, Zhang M.Chemisorption and oxidation of methanol at Polycrystalline Pt in acid solutions[J]. Eletrochimica Acta,1994,39:347-354.
    [116]廖世军,叶立炎.促进型Pt/C类催化剂对甲醇的电氧化作用[J].华南理工大学学报,2005,33(7):1-5.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.