激活素A在糖尿病肾病小管间质纤维化中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     随着世界范围内糖尿病患者的迅速增加,糖尿病并发症对患者生存质量和死亡率的影响也越来越重要。糖尿病肾病(diabetic nephropathy,DN)是糖尿病最常见的慢性并发症之一,也是导致终末期肾病(end-stage renal disease,ESRD)的主要原因。DN过去一直被认为是一种肾小球疾病,而新近的研究表明,小管损伤和进行性间质纤维化与DN的预后关系更为密切。为此,研究DN小管间质病变发生、发展的机制,对于寻找更加有效的治疗措施具有重要意义。
     DN小管间质病变的核心是细胞外基质(extracellular matrix,ECM)在损伤区的过量堆积。研究表明,由小管上皮细胞和间质成纤维细胞转分化而来的α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)阳性的肌成纤维母细胞是ECM的主要来源。多种细胞因子和生长因子参与了ECM的生成和降解,其中转化生长因子-β(transforming growth factor-beta,TGF-β)超家族成员发挥了重要作用。根据结构和和分子生物学差异,TGF-β超家族可以细分为三个主要家族:TGF-β、骨形成蛋白(bone morphogenetic protein,BMP)和激活素(activin,ACT)。研究表明,在实验性DN早期,TGF-β在小管上皮表达即明显上调,并可促进小管上皮细胞向肌成纤维母细胞转分化。体外培养的小管上皮细胞,高糖和糖基化终末期产物(advanced glycation end products,AGEs)均可通过TGF-β依赖的方式促进ECM成分的产生。BMP-7与TGF-β作用正好相反,内源性BMP-7可阻止小管上皮细胞ECM的产生。在实验性DN模型中,BMP-7及其受体表达均明显下调。
     ACT最早是在性腺发现的糖蛋白,因特异性促进垂体细胞合成及分泌卵泡刺激素(FSH)而得名。ACT是由两个β亚单位借二硫键构成的二聚体蛋白,按照β亚基构成的不同,ACT分为三种形式:ACTA(βAβA)、ACT B(βBβB)、ACTAB(βAβB),目前研究最多的是ACTA。类似于TGF-β超家族其它成员,ACT A主要通过Smad信号途径介导其生物学效应。卵泡抑素(follistatin,Fs)是由性腺分泌的单链多肽,可抑制垂体FSH的分泌。FS与ACT有很强的亲和力,并阻断其生物学效应;二者共同构成一个维持组织器官正常生长和代谢的自动平衡系统。目前对于ACT A在肾小管间质病变中的作用机制研究甚少,ACT与DN小管间质纤维化之间的潜在联系尚待进一步研究。
     目的
     本研究通过体内链脲佐菌素(STZ)诱导的糖尿病动物模型及体外高糖刺激的人近端肾小管上皮细胞株(HK-2),探讨ACT A/Smad信号在糖尿病肾脏的表达及其与转分化标志物α-SMA和ECM成分纤维连接蛋白(FN)变化的关系。
     方法
     1.动物实验
     雄性Wistar大鼠,随机分成糖尿病组(DM)和对照组(NC)。DM组在禁食12小时后一次性腹腔注射STZ(60mg/kg),NC组给予相同剂量的溶媒。给药72h后尾静脉采血测随机血糖(BG)>16.7mmol/L为糖尿病大鼠。所有大鼠标准饲料饲养,自由饮水。各组分别于造模后4、8、12、16周处死大鼠6只。处死前1天,大鼠称重后单只置于代谢笼中,准确收集24h尿液。腹主动脉取血后分离左肾,部分肾组织固定于10%多聚甲醛供病理及免疫组化检查,另一部分置液氮待做PCR检测。肾脏肥大指数用左肾重/体重(KW/BW)表示;放免法测定尿白蛋白排泄率(AER);BG、血肌酐(Scr)及尿肌酐(Ucr)用HITACHI-7150自动生化分析仪检测,肌酐清除率(Ccr)按公式:Ucr×每分钟尿量(ml)/Scr计算,并以体重校正。光镜观察肾组织形态学变化;免疫组化检测肾组织中ACTβA、FS、P-Smad2/3、α-SMA和FN蛋白表达;real time-PCR检测肾组织中ACTβA、FS、α-SMA和FNmRNA的表达。
     2.细胞培养
     HK-2细胞生长于含10%胎牛血清、100U/ml青霉素、100μg/ml链霉素的DMEM培养基,置37℃含5%CO_2的培养箱中孵育。待细胞生长至亚融合状态时,更换为无血清DMEM培养基使细胞生长同步化24h,然后将细胞分为以下5组:正常对照组(NG,5.5mmol/L葡萄糖)、甘露醇对照组(MG,5.5mmol/L葡萄糖+25mmol/L甘露醇)、高糖组(HG,25mmol/L葡萄糖)、HG+FS100组(25mmol/L葡萄糖+100ng/mlFS)、HG+FS500组(25mmol/L葡萄糖+500ng/mlFS)。12、24、48h后收集各组细胞及细胞上清液。Western blot检测各组细胞ACTβA和P-Smad2/3的表达;ELISA检测各组细胞上清液TGF-β、α-SMA和FN的含量。
     结果
     1.动物实验
     1.1一般生化指标的变化
     在各时间点,DM组大鼠血糖明显高于NC组。DM组大鼠KW/BW、AER及Ccr从第8周开始升高,并呈逐渐增高趋势,与NC组相比差异有统计学意义(P<0.01);DM组内16周末与8周末比较有统计学差别(P<0.01)。
     1.2肾小管间质组织病理改变
     PAS染色结果显示,各时间点NC组肾小管结构正常,没有间质水肿和纤维化。DM组大鼠自实验第8周起可见部分肾小管上皮细胞空泡变性,肾小管肥大、扩张和萎缩,肾间质可见纤维化,随时间延长病变逐渐加重,肾小管间质损伤指数逐渐增加。
     1.3免疫组化检测肾小管间质ACTβA、FS、P-Smad2/3、α-SMA和FN的表达
     免疫组化结果显示,NC组大鼠在肾小球、肾小管及间质均未检测到ACTβA的表达;DM组大鼠肾小管上皮细胞ACTβA阳性表达自第4周起逐渐增加,并于12周时达峰值。与之相反,FS在NC组大鼠肾小管上皮细胞大量表达,在DM组其表达从第4周开始逐渐下降。P-Smad2/3和FN在NC组肾小管和间质有轻度表达,而在DM组大鼠从第8周起表达量逐渐增加,并一直持续到第16周。α-SMA在NC组仅表达于脉管系统,DM组除血管壁外,从第8周开始,肾小管和肾间质表达亦明显增加。
     1.4肾组织ACTβA、FS、α-SMA和FNmRNA的表达
     ACTβA mRNA在NC组只有极微量表达,而DM组大鼠肾组织ACTβAmRNA从第4周起即开始增加(NC组的3.3倍),于12周时达峰值(NC组的7.7倍),16周时表达量略有下降,但仍明显高于NC组(P<0.01);与之相反,FS在NC组大量表达,而DM组表达逐渐减少,实验第4周和12周时与NC组相比分别下降了32.5%和52.9%。与NC组相比,4周时DM组肾组织α-SMA和FN mRNA表达无明显改变,但从第8周起逐渐增加,并于第16周时达峰值。
     2.细胞培养
     2.1 ACTβA和P-Smad2/3在HK-2细胞的表达及FS的干预作用
     Western blot检测结果显示,ACTβA在NG组细胞有微量表达,而HG组ACTβA表达显著增加,呈时间依赖性。与HG组相比,FS干预组ACTβA表达显著减少,呈剂量依赖性;高糖培养48h后,HG+FS500组ACTβA表达与NG组相比无统计学差异(P>0.05)。与NG组相比,P-Smad2/3在HG组培养24h后表达明显增加;FS可抑制P-Smad2/3的高表达,高糖培养48h后,HG+FS100组和HG+FS500组与HG组相比,P-Smad2/3表达分别下降了26%和41%。MG组细胞中ACTβA和P-Smad2/3表达与NG组相比无统计学差异(P>0.05)。
     2.2 TGF-β、α-SMA和FN在HK-2细胞上清的表达及FS的干预作用
     ELISA检测结果显示,与NG组相比,HG组培养12h后TGF-β表达即显著增加,呈时间依赖性,FS干预对高糖诱导的TGF-β高表达没有影响。与NG组相比,HG组培养24h后α-SMA和FN表达显著增高(P<0.01),FS对此有明显抑制作用,呈剂量依赖性(P<0.01)。MG组TGF-β、α-SMA和FN的表达与NG组相比无统计学差异(P>0.05)。
     结论
     1.糖尿病大鼠肾小管间质存在ACT A/Smad信号蛋白的上调,同时转分化标志物α-SMA和ECM成分FN的合成增加。
     2.高糖能刺激HK-2细胞ACT A/Smad信号蛋白活化,并促进肾小管上皮细胞转分化标志物α-SMA和ECM成分FN的合成。
     3.FS可通过阻断高糖诱导的ACT A表达,从而阻抑高糖诱导的Smad信号活化,减轻肾小管上皮细胞转分化和FN的合成。
Background
     The population of diabetic patients is dramatically increasing in the world.The development of the various complications of diabetes contributes to the high morbidity and mortality.Diabetic nephropathy (DN) is one of the most common chronic complications of diabetes mellitus and the main cause of end-stage renal disease(ESRD).In the past,DN was chiefly recognized as a kind of glomerular disease. However,a recent study has indicated that tubular injury and progressive interstitial fibrosis are more closely related to DN prognosis.So the research on the mechanisms of the intiation and development of diabetic tubulointerstitial injuries will be benefit for development of an accurate treatment.
     The core of tubulointerstitial injuries in DN is the increased accumulation of extracellular matrix(ECM) in the injured region. Myofibroblasts are the main source of increased ECM deposition seen in tubulointerstitium.It has been demonstrated that not only interstitial fibroblasts,but also tubular epithelial cells can transform into myofibroblasts in the presense of high glucose levels. alpha-Smooth-muscle actin(α-SMA),absent in normal tubular epithelial and fibroblasts,is a common mark used to localize myofibroblasts in vivo and in vitro.
     A variety of cytokines and growth factors are involved in ECM production and degradation,among which transforming growth factor beta(TGF-β) superfamily members play an important role.According to the differences of molecular structure and biology,the TGF-βsuperfamily can be divided into three main families:TGF-β,bone morphogenetic protein(BMP) and activin.Some studies have discovered that,in the early phase of DN,TGF-βexhibits upregulation in tubular epithelia and facilitates the transdifferentiation of tubular epithelia cells into myofibroblasts.In vitro cultured tubular epithelial cells,both high glucose and advanced glycation endproducts (AGEs) may promote ECM formation through a TGF-βdependent way.The roles of BMP-7 and TGF-βare exactly opposite.Endogenous BMP-7 may keep tubular epithelial cells from producing ECM.In an experimental DN model,the expression of BMP-7 and its receptor is obviously downregulated.
     Activin,a kind of glycoprotein,was first discovered in the gonads and named for its specifically facilitating anterior pituitary gland to synthesize and release follicle stimulating hormone(FSH).Activin consists of twoβ-subunits which are combined by disulfide bond to form a dimeric protein.Based on the constructive differences ofβ-subunit, activin is divided into three forms:activin A(βAβA), activin B(βBβB) and activin AB(βAβB).Among them,the studies on activin A are the most.Similar to other members of the TGF-βsuperfamily,activin A mediates its biological effects mainly through the Smad signal pathway.Follistatin is a single-chain polypeptide isolated from ovarian fluid,which inhibits pituitary FSH secretion. This protein binds to activin with high affinity and blocks its actions.Follistatin and activin together compose a balanced system of automatic control to maintain the normal growth and metabolism of tissues and organs.The underlying pathogenic link between activin A and the development of tubulointerstitial injury has not widely been investigated yet and the effect of activin A on tubulointerstitial fibrosis in DN is still waiting for elucidation.
     Objective
     The purpose of this study is to investigated the expression of activin A /Smad signal on tubulointerstitium of streptozotocin(STZ)-induced diabetic rats and high glucose-cultured HK-2 ceils and its relation withα-SMA and fibronectin.
     Methods
     1.Animal experiment
     Male Wistar rats were randomized into a normal control group(NC) and diabetes mellitus group(DM).After fasting for 12 h,DM rats received an i.p.injection of STZ(60 mg/kg),and NC rats received a corresponding amount of citrate buffer.Blood samples were collected from the tail vein 72 h after administration to determine random blood glucose(BG).The rats with random BG more than 16.7 mmol/L were regarded as DM rats.The rats were given free access to tap water and standard chow.Six rats were respectively sacrificed 4,8,12 and 16 weeks after model establishment in each group.One day before execution,rats were weighed,and then put in individual metabolic cages for the exact collection of 24h urine samples.Blood samples were withdrawn from the abdominal aorta and the left kidneys were removed and dissected into two parts.One part was fixed in 10% paraformaldehyde for pathological and immunohistochemical detection, and another part was reserved in liquid nitrogen for polymerase chain reaction(PCR) assay.Renal hypertrophy index was monitored by left kidney weight/body weight(KW/BW,mg/g).The urine albumin excretion rate(AER) was measured by radioimmunoassay according to the manufacturer' s suggestions.BG,Urine and serum creatinine concentration were measured with a multiparametric analyzer(model 7150;HITACHI).Creatinine clearance rate(Ccr) was calculated as urinary creatinine×urine volume/serum creatinine,and was expressed as mL/min·per kg.The morphology of tubulointerstitium was observed by light microscopy.Immunohistochemistry was applied to analyze the protein expression of activinβA,follistatin,P-Smad2/3,α-SMA and fibronectin and real-time PCR was used to detect the mRNA expression of activinβA,follistatin,α-SMA and fibronectin in renal tissue.
     2.Cell culture
     HK-2 cells,were maintained in Dulbecco' s modified Eagle' s medium(DMEM) which was supplemented with 10%fetal bovine serum(FBS), penicillin(100 U/mL) and streptomycin(100μg/mL) and cultured in an atmosphere of 5%CO_2 and 95%air at 37℃.When 80%confluent,the cells were incubated in a serum-free medium for 24 h and then exposed to the following experimental conditions for different time periods (12,24 and 48 h):5 mmol/L glucose(normal glucose group,NG), 5 mmol/L glucose plus 25 mmol/L mannitol(osmotic control,mannitol group,MG),25 mmol/L glucose(high glucose group,HG),25 mmol/L glucose plus 100 ng/mL rh-follistatin(100 ng/mL rh-follistatin intervention group,HG + FS100) or 25 mmol/L glucose plus 500 ng/mL rh-follistatin(500 ng/mL rh-follistatin intervention group, HG + FS500).Then,the cells and cellular supernatant were collected for further detection.ActivinβA and P-Smad2/3 expression were determined by Western blotting analysis.TGF-β,α-SMA and fibronectin released into media were quantitatively analyzed by enzyme-linked immunosorbent assay(ELISA).
     Results
     1.Animal experiment
     1.1 General biochemical parameters
     At each time point,BG in the DM group rats was higher than that in the NC group.In the DM group,KW/BW,AER,and Ccr began to rise from 8 weeks and showed a gradually increasing trend.There were statistically significant differences between DM and NC groups and between 8 and 16 weeks in the DM group(P<0.01,respectively).
     1.2 Pathological changes of tubulointerstitium
     The PAS stain showed that at each time point,the renal tubular epithelial cells in the NC group rats were intact,and there were neither interstitial oedema nor interstitial fibrosis.Vacuolar degeneration in tubular epithelial cells,tubular hypertrophy, dilation and atrophy,inflammatory cell infiltration and renal interstitial fibrosis occurred from 8 weeks and worsened over time in the DM group rats.By semiquantitative analysis,the tubulointerstitial injury index was gradually elevated in the DM group from 8 to 16 weeks.
     1.3 Immunohistochemistry staining for activinβA,follistatin,P-Smad2/3,α-SMA and fibronectin in tubulointerstitium
     The immunohistochemical results demonstrated that activinβA staining was prominent in tubular epithelial cells in the DM group rats,but no staining was detected in the NC group rats.By semiquantitative analysis,significantly elevated activinβA staining was observed in the DM group rats at 4 weeks and reached peak values at 12 weeks.By contrast,follistatin staining was abundant in tubular epithelial cells in the NC group rats.However,in the DM group rats, its staining began to decrease gradually from 4 weeks to 16 weeks.P-Smad2/3 and fibronectin showed slight staining in tubulointerstitium in the NC group rats.But in the DM group rats,an abruptly increased staining could be detected at 8 weeks and lasted until 16 weeks.In the NC group rats,immunostaining forα-SMA was essentially confined to the media of arteries and arterioles.By contrast,in the DM group rats,besides the vascular wall,the expression ofα-SMA was detected in the tubular epitheliar cells and interstitium from 8 weeks.
     1.4 6ene expression of activinβA,follistatin,α-SMA and fibronectin in renal tissue
     Compared with NC group rats,ActivinβA mRNA was markedly elevated to 3.3-fold higher at 4 weeks and 7.7-fold at 12 weeks,and then decreased slightly at 16 weeks in the DM group rats.On the contrary, follistatin mRNA was decreased 32.5%at 4 weeks and 52.9%at 12 weeks in the DM group rats.No significant change inα-SMA and fibronectin mRNA was detected at 4 weeks in the DM group rats,but a gradually increase was found at 8 weeks and lasted until the end of the study.
     2.Cell culture
     2.1 ActivinβA and P-Smad2/3 expression in HK-2 cells and the intervention of follistatin
     Western blotting results demonstrated that ActivinβA exhibited very slight activation in the NG group,but its production was enhanced in the HG group after 12 h culture and increased gradually until study completion.Follistatin blocked its production in a dosedependent fashion.Treatment with 500 ng/mh rh-follistatin reduced activinβA production to NG group levels after 48 h culture(P>0.05). P-Smad2/3 was significantly increased after 24 h culture in the HG group compared with the NG group and follistatin treatment decreased its overexpression in the HG group.The fall averaged 26%in the HG + FSIO0 group and 41%in the HG + FS500 group after 48 h culture. There were no statistical differences in the expression of activinβA and P-Smad2/3 between the MG and NG groups(p>0.05).
     2.2 TGF-β,α-SMA and fibronectin protein in cellular supernatant and the intervention of follistatin
     Results of ELISA disclosed that TGF-βwas markedly higher in the HG group than that in the NG group throughout the 48 h experimental periods and both doses of follistatin failed to modify the overexpression of TGF-βin HG.Compared with the NG group,α-SMA and fibronectin in the HG group were obviously upregulated after 24h culture(p<0.01).Follistatin reduced their overexpression in a dosedependent manner(p<0.01).There were no statistical differences in the expression of TGFβ,α-SMA and fibronectin between the MG and NG groups(p>0.05).
     Conclusion
     1.Activin A/Smad pathway activation,transdifferentiation and fibronectin production are involved in renal tubulointerstitial injuries of STZ-induced diabetic rats.
     2.High glucose can activate Activin A/Smad pathway,induce tubular epithelial cells-myofibroblast transdiffrentiation and promote fibronectin production in HK-2 cells.
     3.Inhibition of high glucose stimulated transdifferentiation and fibronectin production in HK-2 cells by follistatin is associated with blocking of Activin A/Smad pathway.
引文
[1]Martinez Castelao A.Advances in diabetes mellitus,diabetic nephropathy,metabolic syndrome and cardio-vascular-renal risk.Nefrologia,2008;28:79-84.
    [2]McCarty D,Zimmet P.Diabetes 1994 to 2010:global estimates and projections.Leverkusen:Bayer AG,1994;1-46.
    [3]Brownlee M.Biochemistry and molecular cell biology of diabetic complications.Nature,2001;414:813-820.
    [4]Locatelli F,Canaud B,Eckardt KU,et al.The importance of diabetic nephropathy in current nephrological practice.Nephrol Dial Transplant,2003;18:1716-1725.
    [5]Ritz E,Rychlik I,Locatelli F,et al.End-stage renal failure in type 2 diabetes:a medical catastrophe of worldwide dimensions.Am J Kidney Dis,1999;34:795-808.
    [6]Remuzzi G,Schieppati A,Ruggenenti P.Nephropathy in patients with type 2diabetes.N Engl J Med,2002;346:1145-1151.
    [7]上海市透析移植登记小组.1999年度上海市透析移植登记报告.中华肾脏病杂志,2001;17(2):83-85.
    [8]Rapits AE,Viberti G.Pathogenesis of diabetic nephropathy.Exp Clin Endocrinol Diabetes,2001;109(2):424-437.
    [9]Schrijvers BF,De Vriese AS,Flyvbjerg A.From hyperglycemia to diabetic kidney disease:the role of metabolic,hemodynamic,intracellular factors and growth factors/cytokines.Endocrine,2004;25:971-1010.
    [10]Fukami K,Yamagishi S,Ueda S,et al.Role of AGEs in diabetic nephropathy.Curr Pharm Des,2008;14(10):946-952.
    [11]Sourris KC,Forbes JM.Interactions between advanced glycation end-products (AGEs) and their receptors in the development and progression of diabetic nephropathy - are these receptors valid therapeutic targets.Curr Drug Targets,2009;10:42-50.
    [12]Dunlop M.Aldose reductase and the role of the polyol pathway in diabetic nephropathy.Kidney Int Suppl,2000;77:S3-12.
    [13]Mason RM,Wahab NA.Extracellular matrix metabolism in diabetic nephropathy.J Am Soc Nephrol,2003;14:1358-1373.
    [14]Lagranha CJ,Fiorino P,Casarini DE,et al.Molecular bases of diabetic nephropathy. Arq Bras Endocrinol Metabol, 2007;51(6):901-912.
    [15]Bilous RW, Fioretto P, Czernichow P, et al. Growth factors and diabetic nephropathy: kidney structure and therapeutic interventions. Diabetologia, 1997; 40: B68-73.
    [16] Paueksakon P, Revelo MP, Ma LJ, et al. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int,2002;61(6):2142-2148.
    [17]Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis,2005; 12: 177-186.
    [18]Grcevska L. Polenakovic M. Early histopathological changes in diabetic nephropathy. Nephrol Dial Transplant,2001; 16: 88 - 89.
    [19] Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia, 1996;39:1569-1576.
    [20]Eddy AA. Molecular insights into renal interstitial fibrosis.J Am Soc Nephrol,1996;7:2495-2508.
    [21]Simonson, M.S. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int.,2007; 71: 846-854.
    [22] Essawy M, Soylemezoglu O, Muchaneta-Kubara E, et al. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant, 1997; 12:43-50.
    [23]Ina K, Kitamura, H, Tatsukawa S, et al. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc ,2002; 35: 87-95.
    [24] Sanai T, Sobka T, Johnson T, et al. Expression of cytoskeletal proteins during the course of experimental diabetic nephropathy.Diabetologia,2000;43:91-100.
    [25] Coimbra TM, Janssen U, Grone TO, et al. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int ,2000; 57:167-182.
    [26]Young BA, Johnson RJ, Alpers CE, et al. Cellular events in the evolution of experimental diabetic nephropathy. Kindey int,1995;47:935-944.
    [27] Iwano M, Plieth D, Danoff TM. Evidence that fibroblasts derive from epithelium during renal interstitial fibrosis. J Clin Invest,2002;110:341-347.
    [28]Lan HY. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens,2003;12:25-29.
    [29] Fan JM, Ng YY, Hill PA, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kindey Int,1999; 56: 1455-1467.
    
    [30] Li Y, Yang J, Dai C, Wu C, et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogensis. J Clin Invest 2003; 112:503-516.
    
    [31] Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest ,2001; 108:1853-1863.
    
    [32] Peng C. The TGF-beta superfamily and its roles in the human ovary and placenta. J Obstet Gynaecol Can, 2003; 25: 834-44.
    
    [33] Hong SW, Isono M, Chen S.Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol,2001; 158(5): 1653-1663.
    
    [34]Hoffman B, Sharma K, Zhu Y, et al. Transcriptional activation of transforming growth factor beta1 in mesangial cell culture by high glucose concentration. Kidney Int, 1998; 54:1107-1116.
    
    [35]Wolf G, Ziyadeh FN. Link between angiotensin II and TGF beta1 in the kidney.Miner Elect Meatab, 1998; 24:174-181.
    
    [36] Xiang G, Schinzel R, Simm A, et al. Advanced glycation end products (AGEs)- induced expression of TGF-beta 1 is suppressed by a protease in the tubule cell line LLC-PK1. Nephrol Dial Transplant,2001; 16(8): 1562-1569.
    
    [37] Russo LM, del Re E, Brown D, et al. Evidence for a role of transforming growth factor (TGF)-beta1 in the induction of postglomerular albuminuria in diabetic nephropathy: amelioration by soluble TGF-beta type II receptor. Diabetes ,2007; 56:380 -388.
    
    [38] Gilbert RE, Cox A, Wu LL, et al. Expression of transforming growth factor-beta1 and type IV collagen in the renal tubulointerstitium in experimental diabetes: effects of ACE inhibition. Diabetes. 1998; 47:414-22.
    
    [39] Sebe A, Leivonen SK, Fintha A, et al. Transforming growth factor-beta-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38beta mitogen-activated protein kinase, extracellular signal- regulated protein kinasel,2 and the Smad signalling during epithelial-myofibroblast transdifferentiation.Nephrol Dial Transplant,2008;23(5):1537-1545.
    [40]Lund R J,Davies MR,Hruska KA.Bone morphogenetic protein-7:an anti-fibrotic morphogenetic protein with therapeutic importance in renal disease.Curr Opin Nephrol Hypertens,2002;11(1):31-36.
    [41]Wang SN,Lapage J,Hirschberg R.Loss of tubular bone morphogenetic protein-7in diabetic nephropathy.J Am Soc Nephrol,2001;12:2392-2399.
    [42]刘红,程丽静,常明,等.骨形成蛋白7在糖尿病大鼠肾组织中的表达及意义.中华肾脏病杂志,2006;22(9):549-553.
    [43]Ling N,Ying SY,Ueno N,et al.Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin.Nature,1986;321:779-782.
    [44]Welt C,Sidis Y,Keutmann H,Schneyer A.Activins,inhibins,and follistatins:from endocrinology to signaling.A paradigm for the new millennium.Exp Biol Med (Maywood),2002;227:724-752.
    [45]Jones KL,de Kretser DM,Patella S,et al.Activin A and follistatin in systemic inflammation.Mol Cell Endocrinol,2004;225:119-125.
    [46]Phillips DJ.Activins,inhibins and follistatins in the large domestic species.Domest Anim Endocrinol,2005;28:1-16.
    [47]Vale W,Wiater E,Gray P,et al.Activins and inhibins and their signaling.Ann N Y Acad Sci,2004;1038:142-147.
    [48]Hashimoto O,Nakamura T,Shoji H,et al.A novel role of follistatin,an activinbinding protein,in the inhibition of activin action in rat pituitary cells.J Biol Chem,1997;272:13835-13842.
    [49]Yamashita S,Maeshima A,Kojima I,et al.Activin A is a potent activator of renal interstitial fibroblasts.J Am Soc Nephrol,2004;15:91-101.
    [50]Gilbert RE,Cooper ME.The tubulointerstitium in progressive diabetic kidney disease:more than an aftermath of glomerular injury? Kidney Int,1999;56:1627-1637.
    [51]方喜业.医学实验动物学[M].北京:人民卫生出版社,1996:186.
    [52]Muller AS,Most E,Pallauf J.Effects of a supranutritional dose of selenate compared with selenite on insulin sensitivity in type II diabetic dbdb mice.J Anim Physiol Anim Nutr(Berl),2005;89:94-104.
    [53] Pettpher CC, Ledoux SP. Pepair of Alkaliabile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Bio Chem, 1991 ;266(5):3113-3117.
    
    [54] Maeshima A, Nojima Y, Kojima I. The role of the activin-follistatin system in the developmental and regeneration processes of the kidney. Cytokine Growth Factor Rev,2001; 12: 289-298.
    
    [55] Kojima I, Maeshima A, Zhang YQ. Role of the activin-follistatin system in the morphogenesis and regeneration of the renal tubules. Mol Cell Endocrinol,2001; 180: 179-182.
    
    [56] Ball EM, Risbridger GP. Activins as regulators of branching morphogenesis. Dev Biol,2001;238: 1-12.
    
    [57] Maeshima A, Zhang YQ, Nojima Y, et al. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol,2001;12(8):1685-1695.
    
    [58] Munz B, Smola H, Engelhardt F, et al. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J,1999; 18: 5205-5215.
    
    [59] Date M, Matsuzaki K, Matsushita M, et al.. Differential regulation of activin A for hepatocyte growth and fibronectin synthesis in rat liver injury. J Hepatol,2000; 32: 251- 260.
    
    [60] Ohga E, Matsuse T, Teramoto S, et al. Effects of activin A on proliferation and differentiation of human lung fibroblasts. Biochem Biophys Res Commun, 1996; 228: 391-396.
    
    [61] Heldin CH, Miyazono K, Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature,1997; 390:465-71.
    
    [62] Li JH, Huang XR, Zhu HJ, et al. Role of TGF-beta signaling in extracellular matrix production under high glucose conductions. Kidney Int,2003;63:2010-2019.
    
    [63] Abe Y, Minegishi T, Leung PC. Activin receptor signalling. Growth Factors,2004; 22: 105-110.
    
    [64] Isono M, Chen S, Hong SW, et al. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells.Biochem Biophys Res Commun,2002;296:1356-1365.
    [65]Furuse Y,Hashimoto N,Maekawa M,et al.Activation of the Smad pathway in glomeruli from a spontaneously diabetic rat model,OLETF rats.Nephron Exp Nephrol,2004;98:e 100-108.
    [66]Fujimoto M,Maezawa Y,Yokote K,et a/.Mice lacking Smad3 are protected against streptozocin-induced diabetic glomerulopathy.Biophys Res Commun,2003;305:1002-1007.
    [67]Pedagogos E,Hewitson T,Fraser I,et a/.Myofibroblasts and arteriolar sclerosis in human diabetic nephropathy.Am J Kidney Dis,1997;29:912-918.
    [68]Rastaldi MP,Ferrario F,Giardino L,et a/.Epithelial-mesenchymal transition of tubular epithelial ceils in human renal biopsies.Kidney Int,2002;62:137-146.
    [69]李芙蓉,袁发焕,程悦,等.激活素A刺激大鼠肾成纤维细胞增殖和活化.重庆医学,2006;35(2):131-134.
    [70]Panchapakesan U,Pollock CA,Chen XM.The effect of high glucose and PPAR-γagonists on PPAR-γ expression and function in HK-2 cells.Am J Physiol Renal Physiol,2004;287:F528 - F534.
    [71]Nangaku M.Mechanisms of tubulointerstitial injury in the kidney:final common pathways to end-stage renal failure.Intern Med,2004;43:9-17.
    [72]Razzaque MS,Taguchi T.Cellular and molecular events leading to renal tubulointerstitial fibrosis.Med Electron Microsc,2002;35(2):68-80.
    [73]Karamessinis PM,Tzinia AK,Kitsiou PV,et al.Proximal tubular epithelial cell integrins respond to high glucose by altered cell-matrix interactions and differentially regulate matrixin expression.Lab Invest.2002;82(8):1081-1093.
    [74]Kanwar YS,Wada J,Sun L,et al.Diabetic nephropathy:mechanisms of renal disease progression.Exp Biol Med(Maywood),2008;233(1):4-11.
    [75]Yu MA,Shin KS,Kim JH,et al.HGF and BMP-7 ameliorate high glucose induced epithelial-to-mesenchymal transition of peritoneal mesothelium.J Am Soc Nephrol.2009;20(3):567-81.
    [76]Border WA,Yamamoto T,Noble NA.Transforming growth factor beta in diabetic nephropathy.Diabetes Metab Rev,1996;12:303-339.
    [77]Penttinen RP,Kobayashi S,Bornstein ETransforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability.Proc Natl Acad Sci U S A,1988;85(4):1105-1108.
    [78]Han SY,Jee YH,Han KH,et al.An imbalance between matrix metalloproteinase 2and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy.Nephrol Dial Transplant,2006;21(9):2406-2416.
    [79]Foumier PG,Guise TA.BMP7:a new bone metastases prevention? Am J Pathol,2007;171(3):1047-1057.
    [80]Wang S,de Caestecker M,Kopp J,et al.Renal bone morphogenetic protein-7protects against diabetic nephropathy.J Am Soc Nephrol,2006;17(9):2504-2512.
    [81]Zeisberg M,Hanai J,Sugimoto H,et al.BMP-7 counteracts TGF-betal induced epithelial-to-mesenchymal transition and reverses chronic renal injury.Nat Med.2003;9(7):964-968.
    [82]Kanzaki M,Nobusawa R,Mogami H,et al.Production of activin A and follistatin in cultured rat vascular smooth muscle cells.Mol Cell Endocrinol,1995;108:11-16.
    [83]Ohga E,Matsuse T,Teramoto S,et al.Effects of activin A on proliferation and differentiation of human lung fibroblasts.Biochem Biophys Res Commun,1996;228(2):391-396.
    [84]黄新,李定国.激活素A对肝星状细胞系L190细胞增殖的影响.上海医学杂志,2002;11:699-701.
    [85]Guo H,Zou WZ.Transdifferentiation of tubular epithelial cells in tubulointerstitial fibrosis.Zhonghua Bing Li Xue Za Zhi,2003;32(4):364-367.
    [86]Iwano M,Plieth D,Danoff TM.Evidence that fibroblasts derive from epithelium during renal interstitial fibrosis.J Clin Invest,2002;110:341-350.
    [87]StrutzfO,Kada H,Cecilia WL,et al.Identification and characterization of a fibroblast marker;FSPI.J Cell,1995;1320:393-405.
    [88]Phanish MK,Wahab NA,Colville NP,et al.The differential role of Smad2 and Smad3 in regulation of pro-fibrotic TGF-betal response in human proximal tubule epithelial cells.Biochem J,2006;393:601-607.
    [89]Zavadil J,Bottinger EP.Transforming growth factor-beta and epithelial- myofibroblast transdifferentiation. Oncogen,2005;24(37):5764-5774.
    
    [90] Liu YH. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15(1):1-12.
    [1]Ling N,Ying SY,Ueno N,et al.Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin.Nature,1986;321:779-782.
    [2]Welt C,Sidis Y,Keutmann H,et al.Activins,inhibins,and follistatins:from endocrinology to signaling.A paradigm for the new millennium.Exp Biol Med (Maywood),2002;227:724-752.
    [3]Jones KL,de Kretser DM,Patella S,et al.Activin A and follistatin in systemic inflammation.Mol Cell Endocrinol,2004;225:119-125.
    [4]Phillips DJ.Activins,inhibins and follistatins in the large domestic species.Domest Anim Endocrinol,2005;28:1-16.
    [5]Vale W,Wiater E,Gray P,et al.Activins and inhibins and their signaling.Ann N Y Acad Sci,2004;1038:142-147.
    [6]Hashimoto O,Nakamura T,Shoji H,et al.A novel role of follistatin,an activinbinding protein,in the inhibition of activin action in rat pituitary cells.J Biol Chem,1997;272:13835-13842.
    [7]Phillips D J,de Kretser DM.Follistatin:a multifunctional regulatory protein.Front Neuroendocrinol,1998;19(4):287-322.
    [8] Sugino H, Sugino K, Hashimoto O, et al. Follistatin and its role as an activin binding protein. J Med Invest, 1997; 44:1-14.
    [9] Ying SY, Zhang Z, Furst B, et al. Activins and activin receptors in cell growth. Proc Soc Exp Biol Med,1997;214(2): 114-122.
    [10]Willis SA, Zimmerman CM, Li LI, et al. Formation and activation by phosphorylation of activin receptor complexes. Mol Endocrinol, 1996;10(4):367-379.
    [11] Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997; 390: 465-71.
    [12] Abe Y, Minegishi T, Leung PC. Activin receptor signalling. Growth Factors, 2004; 22:105-110.
    [13] Kanamaru C, Yasuda H,Fujita T. Involvement of Smad proteins in TGF-beta and activin A-induced apoptosis and growth inhibition of liver cells. Hepatol Res,2002; 23:211-219.
    [14] Chen W, Woodruff TK, Mayo KE. Activin A-induced HepG2 liver cell apoptosis: involvement of activin receptors and smad proteins.Endocrinology,2000. 141:1263-1272.
    [15] Valderrama-Carvajal H, Cocolakis E, Lacerte A, et al. Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol,2002.4: 963-969.
    [16] Zhang L,Deng M, Parthasarathy R, et al.MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration.Mol. Cell Biol,2005; 25: 60-65.
    [17]Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press, 1987.
    [18] Kuure S, Vuolteenaho R, Vainio S. Kidney morphogenesis Cellular and molecular regulation. Mech Dev,2000;92:31-45.
    [19] Maeshima A, Nojima Y, Kojima I. The role of the activin-follistatin system in the developmental and regeneration processes of the kidney. Cytokine Growth Factor Rev,2001; 12: 289-298.
    [20] Kojima I, Maeshima A, Zhang YQ. Role of the activin-follistatin system in the morphogenesis and regeneration of the renal tubules. Mol Cell Endocrinol,2001; 180: 179-182.
    
    [21] Ball EM, Risbridger GP. Activins as regulators of branching morphogenesis. Dev Biol,2001; 238: 1-12.
    
    [22]Maeshima A, Shiozaki S,Tajima T, et al.Number of glomeruli is increased in the kidney of transgenic mice expressing truncated type II activin receptor. Biochem Biophys Commun,2000. 268:445-449.
    
    [23] Maeshima A, Zhang YQ, Naruse T, et al. Hepatocyte growth factor induces branching tubulogenesis in MDCK cells by modulating the activin-follistatin system. Kid Int,2000. 58:1511-1522.
    
    [24] Bonventre JV, Weinberg,JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Nephrol,2003; 14(8):2199-2210.
    
    [25] Sheridan AM, Bonventre JV. Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens, 2000; 9:427-434.
    
    [26] Maeshima A, Zhang YQ, Nojima Y, et al. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol,2001;12(8):1685-1695.
    
    [27] Maeshima A, Maeshima K, Nojima Y, et al.Involvement of Pax-2 in the action of activin A on tubular cell regeneration.J Am Soc Nephrol,2002; 13:2850-2859.
    
    [28] Munz B, Smola H, Engelhardt F, et al. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J,1999; 18: 5205-5215.
    
    [29] Date M, Matsuzaki K, Matsushita M, et al. Differential regulation of activin A for hepatocyte growth and fibronectin synthesis in rat liver injury. J Hepatol,2000; 32: 251- 260.
    
    [30] Ohga E, Matsuse T, Teramoto S, et al. Effects of activin A on proliferation and differentiation of human lung fibroblasts. Biochem Biophys Res Commun, 1996; 228: 391-396.
    
    [31] Razzaque MS, Taguchi T. Cellular and molecular events leading to renal tubulointerstitial fibrosis. Med Electron Microsc,2002;35(2):68-80.
    
    [32] Eddy AA.Molecular basis of renal fibrosis. Pediatr Nephrol,2000;15:290-301.
    [33] Phillips A. The role of proximal tubular cells in interstitial fibrosis: understanding TGF-beta1. Chang Gung Med J. 2007;30(1):2-6.
    [34] Li T, Surendran K, Zawaideh MA, et al.Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens. 2004; 13(4):417-422.
    [35] Yamashita S, Maeshima A, Kojima I, et al. Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol, 2004; 15: 91-101.
    [1] Locatelli F, Canaud B, Eckardt KU, et al. The importance of diabetic nephropathy in current nephrological practice. Nephrol Dial Transplant, 2003; 18:1716-1725.
    
    [2] Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis,2005; 12: 177-186.
    
    [3] Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol, 2003;14:1358-1373.
    
    [4] Essawy M, Soylemezoglu O, Muchaneta-Kubara E, et al. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant, 1997; 12:43-50.
    
    [5] Simonson, M.S. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int.,2007; 71: 846-854.
    
    [6] Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker:FSP-l. J Cell Biol, 1995;130:393-405.
    
    [7] Lan HY. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens,2003; 12:25-29.
    
    [8] Liu YH. Epithelial to Mesenchymal Transition in Renal Fibrogenesis: Pathologic Significance, Molecular Mechanism, and Therapeutic Intervention. J Am Soc Nephrol, 2004;15(1):1-12.
    [9] Yang JW, Liu YH. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 2001; 159: 1465-1475.
    [10] Sanai T, Sobka T, Johnson T, et al.Expression of cytoskeletal proteins during the course of experimental diabetic nephropathy.Diabetologia,2000;43:91-100.
    
    [11] Yang J, Shultz RW, Mars WM, et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest, 2002,110:1525-1538.
    [12] Ng YY, Huang TP, Lan HY, et al. Tubular epithelial myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int, 1998; 54:864-876.
    [13] Yang JW, Liu YH. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis.J Am Soc Nephrol,2002;13(1):96-107.
    [14]Nadasdy T,Laszik Z,Blick KE,et al.Tubular atrophy in the end-stage kidney:A lectin and immunohistochemical study.Hum Pathol,1994;25:22-28.
    [15]Rastaldi MP,Ferrario F,Giardino L,et al.Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies.Kidney Int,2002;62:137-146.
    [16]Li Y,Yang J,Dai C,Wu C,et al.Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogensis.J Clin Invest 2003;112:503-516.
    [17]Oldfield MD,Bach LA,Forbes JM,et al.Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products(RAGE).J Clin Invest,2001;108:1853-1863.
    [18]Ren XJ,Guan GJ,Liu G,et a/.Irbesartan ameliorates diabetic nephropathy by reducing the expression of connective tissue growth factor and alpha-smooth muscle actin in tubulointerstitium of diabetic rats.Pharmacology,2009;83:80-87.
    [19]王瑞英,姚敏,王绵等.2型糖尿病大鼠肾小管上皮细胞转分化过程中相关蛋白及转化生长因子-β的变化.中国临床康复,2006;10(16):57-60.
    [20]Pedagogos E,Hewitson T,Fraser I,et al.Myofibroblasts and arteriolar sclerosis in human diabetic nephropathy.Am J Kidney Dis,1997;29(6):912-918.
    [21]Li JH,Wang W,Huang XR,et al.Advance dglycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signalling pathway.Am J Pathol,2004;164:1389-1397.
    [22]Rapits AE,Viberti G.Pathogenesis of diabetic nephropathy.Exp Clin Endocrinol Diabetes,2001;109(2):424-437.
    [23]Bilous RW.Role of angiotensin Ⅱ in diabetic nephropathy.The British Journal of Diabetes & Vascular Disease,2002;2:101-105.
    [24]Zhang L,Ma J,Gu Y,et al.Effects of blocking the renin-angiotensin system on expression and translocation of protein kinase C isoforms in the kidney of diabetic rats.Nephron Exp Nephrol,2006;104(3):e 103-111.
    [25]Zimpelmann J,Kumar D,Levine DZ,et al.Early diabetes mellitus stimulates proximal tubule rennin mRNA expression in the rat.Kidney Int,2000;58:2320-2330.
    [26]Isono M,Mogyorosi A,Han DC,et al.Stimulation of TGF-beta type Ⅱ receptor by high glucose in mouse mesangial cells and in diabetic kidney.Am J Physiol Renal Physiol,2000;278:830.
    [27]Leehey D J,Singh AK,Alavi N,et al.Angiotensin Ⅱ receptor blockade and type 2diabetic nephropathy Kidney Int Suppl,2000;77:S93-98.
    [28]刘伦志,宁建平.氯沙坦对糖尿病大鼠肾小管上皮细胞转分化的影响.湖北民族学院学报·医学版,2006;23(2):24-27.
    [29]Bottinger EP,Bitzer M.TGF-beta signaling in renal disease.J Am Soc Nephrol,2002;13:2600-2610.
    [30]Russo LM,del Re E,Brown D,et al.Evidence for a role of transforming growth factor(TGF)-betal in the induction of postglomerular albuminuria in diabetic nephropathy:amelioration by soluble TGF-beta type II receptor.Diabetes,2007;56:380- 388.
    [31]Fan JM,Ng YY,Hill PA,et al.Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro.Kindey Int,1999;56:1455-1467.
    [32]Fan JM,Huang XR,Ng YY,et al.Interleukin-1 induces tubular epithelial -myofibroblast transdifferentiation through a transforming growth factor-betal dependent mechanism in vitro.Am J Kidney Dis,2001.37:820-831.
    [33]Ha H,Lee HB.Reactive oxygen species and matrix remodeling in diabetic kidney.J Am Soc Nephro,2003.114:S246-249.
    [34]Strutz F,Zeisberg M,Ziyadeh FN,et al.Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation.Kidney Int,2002;61:1714-1728.
    [35]Okada H,Danoff TM,Kalluri R,et al.Early role of Fspl in epithelial -mesenchymal transformation.Am J Physiol,1997.273:F563-574.
    [36]Twigg SM,Cooper ME.The time has come to target connective tissue growth factor in diabetic complications.Diabetologia,2004;47:965-968.
    [37]Yokoi H,Mukoyama M,Nagae T,et al.Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis.J Am Soc Nephro1,2004;15:1430-1440.
    [38]Zhang C,Meng X,Zhu Z,et al.Connective tissue growth factor regulates the key events in tubular epithelial to myofibroblast transition in vitro.Cell Biol Int,2004;28:863-873.
    [39]Buros WC,Twigg SM,Forbes J.M.Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition:implications for diabetic renal disease.J Am Soc Nephrol,2006;17:2484-2494.
    [40]Zhou G,Li C,Cai L.Advanced glycation end-products induce connective tissue growth factor-mediated renal fibrosis predominantly through transforming growth factor beta-independent pathway.Am J Pathol,2004;165:2033-2043.
    [41]Grotendorst GR,Duncan MR.Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation.FASEB J,2005;19:729-738.
    [42]Wang W,Koka V,Lan HY.Transforming growth factor-β and Smad signaling in kidney diseases.Nephrology,2005;10:48-56.
    [43]Jin H,Zhu HJ,Xiao R,et al.Smad7 inhibits fibrotic effect of TGF-beta on renal tubular epithelial ceils by blocking Smad2 activation.J Am Soc Nephrol,2002;13:1464-1472.
    [44]Wu C,Dedhar S.Integrin-linked kinase(ILK) and its interactors:a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes.J Cell Biol,2001;155:505-510.
    [45]Patel S,Takagi KI,Suzuki J,et al.RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation.J Am Soc Nephrol,2005;16:1977-1984.
    [46]Derynck R,Zbang YE.Smad-dependent and Smad-independent pathways in TGF-beta family signalling.Nature,2003;425(6958):577-582.
    [47]Nieto MA.The Snail superfamily of zinc-finger transcription factors.Nat Rev Mol Cell Biol,2002;3(3):156-166.
    [48]Zhou BP,Deng J,Xia W,et al.Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition.Nat Cell Biol,2004;6(10):931-940.
    [49]方开云,娄晶磊,肖瑛.锌指转录因子Snail在糖尿病大鼠肾组织中的表达中国病理生理杂志,2008:24(4):737-742.
    [50] Liu YH. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol, 2004;287: F7 - F16.
    
    [51]Liu Y, Rajur K, Tolbert E, et al.Endogenous hepatocyte growth factor ameliorates chronic renal injury by activating matrix degradation pathways. Kidney Int,2000;58:2028 -2043.
    
    [52]Yang JW, Dai CS, Liu YH. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction.Am J Pathol,2003; 163: 621-632.
    
    [53]Cruzado J M, Lloberas N, Torras J, et al.Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats. Diabetes, 2004; 53: 1119-1127.
    
    [54]MassagueJ.The transforming growth factor-beta family. Annu Rev Cell Biol,1990. 6:597-641.
    
    [55]Zeisberg M, Bottiglio C, Kumar N, et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol,2003.285:F1060-F1067.
    
    [56]Kawabata M, Imamura T,Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Fact Rev,1998;9:49-61.
    [57]Wang SW, Caestecker M,Kopp J, et al. Renal Bone Morphogenetic Protein-7 Protects against Diabetic Nephropathy. J Am Soc Nephrol,2006; 17(9): 2504 - 2512.
    [58]Wang SN, Lapage J, Hirschberg R.Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy.J Am Soc Nephrol,2001; 12:2392-2399.
    [59]Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med ,2001; 345:851-860.
    [60]Nagatoya K, Moriyama T, Kawada N, et al. Y-27632 prevents tubulo-interstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int,2002;61: 1684-1695.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.