亚硒酸钠诱导NB4细胞凋亡过程中MnSOD上调机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒是具有抗癌作用的人体必需微量元素之一,大量证据表明,超营养剂量的硒能够诱导前列腺癌、肝癌、结直肠癌、肺癌、乳腺癌、白血病等多种肿瘤细胞的凋亡。在本实验室的前期工作中已经发现,20μM亚硒酸钠(sodium selenite)能够诱导人急性早幼粒细胞白血病(acute promyelocytic leukemia, APL)细胞株NB4发生显著凋亡,活性氧(active oxygen species, ROS)是关键的上游调控因素。亚硒酸钠刺激NB4细胞迅速产生大量活性氧,通过活性氧启动线粒体凋亡通路与内质网应激(endoplasmic reticulum stress, ER stress)凋亡通路。为了详细阐明NB4细胞在亚硒酸钠诱导凋亡的过程中发生的分子生物学变化,我们仍然需要进行更深入的探索。
     本研究在前期工作的基础上,进一步探讨了在亚硒酸钠诱导NB4细胞凋亡过程中,一些受到活性氧调节的重要分子的变化情况、调节通路及其对凋亡的意义,重点对关键抗氧化酶MnSOD(manganese superoxide dismutase)进行了研究。经Western bolt发现,亚硒酸钠在诱导NB4细胞凋亡的同时引起了MnSOD的显著上调,活性氧清除剂MnTMPyP完全阻断该上调效应,提示活性氧是其上游调控因素。经不同活性氧探针检测发现,亚硒酸钠作用后诱导两种细胞内活性氧超氧自由基(superoxide radical)与过氧化氢(hydrogen peroxide)迅速而显著的升高,其中超氧自由基可能对于MnSOD的上调起主要作用。就具体通路而言,蛋白激酶ERK(extracellular signal-regulated kinase)与转录因子p53是活性氧介导MnSOD上调的关键因素。cDNA测序结果证明本研究使用的NB4细胞表达野生型的p53。经Western blot检测核蛋白提取物和免疫荧光染色发现,亚硒酸钠诱导细胞产生活性氧后,活性氧促使ERK2从胞质转位至核内,磷酸化p53的关键位点Ser15。免疫共沉淀结果显示,ERK2在核内通过直接作用的方式磷酸化p53。采用该方法还发现,在未经亚硒酸钠作用的NB4细胞的核内,p53与其抑制性蛋白MDM2(mouse double minute 2)处于结合状态,而经亚硒酸钠处理后,核内p53被ERK磷酸化,从而与MDM2解离而被激活。采取p53选择性抑制剂Pifithrin-α(PFT)抑制其转录活性,或通过siRNA干扰降低其表达,均能显著抑制亚硒酸钠诱导的MnSOD上调,提示p53作为MnSOD的上游转录因子诱导了其表达。对于p53缺失或突变的白血病细胞株HL-60或U937,亚硒酸钠不能诱导MnSOD上调,进一步证明了p53的重要作用。通过上述研究阐明了亚硒酸钠诱导NB4细胞凋亡过程中,细胞内存在一条ROS-ERK-p53-MnSOD信号通路,该通路可能是NB4细胞在面临氧化应激时启动的重要抗氧化机制。
     前期研究已经发现,在未经亚硒酸钠处理的NB4细胞中存在活跃的自噬作用,亚硒酸钠处理后,在诱导凋亡的同时伴有自噬的减弱。本研究在此基础上进行了进一步探讨,发现p53的激活除了诱导MnSOD上调,还是亚硒酸钠促进NB4细胞由自噬转向凋亡的关键因素。Western blot和免疫共沉淀结果显示,亚硒酸钠通过蛋白激酶ERK和p38MAPK引起p53关键位点Ser15的磷酸化,进而导致p53与其抑制性蛋白MDM2解离并被激活。借助免疫荧光染色与免疫共沉淀发现,在此过程中核仁蛋白B23从核仁转位至核质,与MDM2共定位并发生相互作用,从而起到稳定p53的作用。采用p53抑制剂PFT抑制其活性或通过siRNA干扰降低其表达,均能显著逆转亚硒酸钠诱导的凋亡、caspases激活以及自噬标志分子Beclin-1和LC-3的表达下调,表明激活后的p53一方面促进凋亡的进行,另一方面抑制自噬,从而在NB4细胞由自噬转向凋亡的过程中扮演关键角色。
     本研究还发现,在亚硒酸钠诱导NB4细胞凋亡后期,蛋白激酶PKCalpha(protein kinase Calpha)在蛋白水平与磷酸化水平均显著下调,其下调同样由活性氧所介导。采用PKCalpha抑制剂与siRNA干扰发现,PKCalpha在NB4细胞中发挥抗凋亡作用,并且该作用建立在其对蛋白激酶ERK与Akt调节的基础之上,活性氧探针检测发现,PKCalpha还具有抑制活性氧产生的作用。此外,活性氧还激活了蛋白水解酶caspase-3,诱导磷酸酶PP2Ac的表达,在凋亡后期,活性氧通过caspase-3与PP2Ac分别在蛋白水平与磷酸化水平下调PKCalpha,从而加速了凋亡的进行。因此,下调抗凋亡激酶PKCalpha可能是亚硒酸钠在凋亡后期维持并促进凋亡的重要机制之一。
     细胞色素C氧化酶亚基IV(cytochrome c oxidase subunit IV, COX IV)是线粒体呼吸链的重要组分,在亚硒酸钠诱导NB4细胞凋亡后期,该蛋白同样受到活性氧的显著下调,RT-PCR显示其mRNA水平没有明显变化,提示非转录机制参与其下调。进一步研究发现,活性氧通过激活caspase-3介导COX IV的下调。采用shRNA表达载体抑制COX IV的表达,能够显著增强亚硒酸钠诱导的NB4细胞凋亡,表明亚硒酸钠可能通过ROS-caspase-3-COX IV这一途径损伤线粒体呼吸链,加速凋亡的进行。
Selenium is one of the essential trace elements with anti-tumor properties. Large amount of evidence indicates that supranutritional selenium is able to induce apoptosis in diverse tumor cell lines, including prostatic cancer, hepatoma, colorectal cancer, lung cancer, breast cancer and leukemia. In the previous study of our group, we found 20μM of sodium selenite induced pronounced apoptosis in NB4 cells derived from human acute promyelocytic leukemia (APL), while reactive oxygen species (ROS) played an upstream and critical role. Under selenite exposure, NB4 cells produced considerable ROS, by which mitochondrial apoptosis pathway and endoplasmic reticulum stress (ER stress) pathway were initiated. However, the detailed molecular alterations in selenite-induced apoptosis still require further investigations.
     Based on our previous work, we further explored the alterations of some ROS-regulated important molecules, as well as their regulation pathways and the influences on selenite-induced apoptosis. Here we discovered by Western blot that the expression of manganese superoxide dismutase (MnSOD) was dramatically elevated in selenite-induced apoptosis of NB4 cells. ROS scavagener MnTMPyP completely abrogated such upregulation, suggesting ROS acted as the upstream regulator. ROS detection revealed that two intracelluler ROS, superoxide radicals and hydrogen peroxide were immediately generated after selenite exposure, in which superoxide radicals might be critical for elevation of MnSOD. As to the detailed mechanisms, we elucidated that ERK and p53 were closely involved. cDNA sequencing validated that NB4 cells used in the present study expressed wild-type p53. Western blot of the nuclear fractions and immunofluorescence staining indicated that after production of ROS induced by selenite, ERK2 was driven by ROS to be translocated from the cytoplasm into the nucleus, and subsequently phosphorylated p53 at the vital site Ser15. Immunoprecipitation results demonstrated ERK2 phosphorylated p53 by a direct bingding, leading to activation of p53 by dissociation from its inhibitory protein mouse double minute 2 (MDM2). Inhibition of p53 transactivation ability by its selective inhibitor Pifithrin-a (PFT) or suppression of its expression by siRNA abolished selenite-induced upregulation of MnSOD, indicating p53 mediated elevated expression of MnSOD as its upstream transcription factor. Additionally, in leukemia cell lines with null or mutant p53 such as HL-60 and U937, selenite could not induce upregulation of MnSOD, further corroborating the critical role of p53 in this modulation. We speculate a ROS-ERK-p53-MnSOD pathway exists in NB4 cells when apoptosis is induced by selenite. This is probably an important mechanism by which NB4 cells counteract oxidative stress induced by selenite.
     It was revealed by our previous research that selenite repressed autophagy accompanied by the induction of apoptosis in NB4 cells. In the present study, we further explored the mechanisms underlying the switch of NB4 cells from autophagy to apoptosis, and elucidated p53 played a key role. Western blot indicated selenite induced phosphorylation of p53 at the vital site ser15 via ERK and p38MAPK. Immunofluorescence staining and immunoprecipitation showed p53 dissociated with MDM2, while the nucleolar protein B23 transferred from the nucleolus to the nucleoplasm and associated with MDM2, probably stabilizing p53. p53 inhibitor PFT and siRNA interference notably reversed selenite-induced apoptosis, caspases activation, and decrease of autophagic protein Beclin-1 and LC-3, manifesting that active p53 mediated induction of apoptosis and inhibition of autophagy, thus switching NB4 cells from autophagy to apoptosis.
     We also revealed that protein kinase Calpha (PKCalpha) was dramatically reduced at later stage of selenite-induced apoptosis, which was mediated by ROS. Besides, by means of PKCalpha inhibitor and siRNA interference, we confirmed that PKCalpha played an anti-apoptotic role through its effects on ERK 1/2 and Akt. ROS detection indicated PKCalpha also inhibited generation of intracellular ROS. At later stage, PKCalpha was downregulated at protein level and phosphorylation level by caspase-3 and PP2Ac respectively under the regulation of ROS. In summary, we speculate that PKCalpha functions to counteract apoptosis in NB4 cells, and its downregulation seems an important mechanism maintaining and promoting apoptosis induced be selenite, especially at later stage.
     COX IV (cytochrome c oxidase subunit IV) is an essential component of mitochondrial respiratory chain. At later stage of selenite-induced apoptosis of NB4 cells, COX IV was remarkably downregulated at protein level without evident alteration in mRNA level, suggesting this downregulation was independent of transcriptional regulation. Further investigation illuminated that ROS mediated COX IV downregulation through caspase-3 activation. COX IV inhibition by shRNA expression vectors markedly enhanced selenite-induced apoptosis of NB4 cells, indicating selenite probably damaged the integrity and function of mitochondrial respiratory chain through the ROS-caspase-3-COX IV pathway, thus accelerating the proceeding of apoptosis.
引文
[1]Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group [J]. Br. J. Haematol.,1976,33(4):451-458.
    [2]Jones ME and Saleem A. Acute promyelocytic leukemia. A review of literature [J]. Am. J. Med.,1978,65(4):673-677.
    [3]De The H, Chomienne C, Lanotte M, Degos L and Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus [J]. Nature,1990,347(6293):558-561.
    [4]Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV, Dmitrovsky E and Evans RM. Chromosomal translocation t(15; 17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML [J]. Cell,1991,66(4):663-674.
    [5]Breitman TR, Selonick SE and Collins SJ. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid [J]. Proc. Natl. Acad. Sci. U. S. A.,1980,77(5):2936-2940.
    [6]Gallagher RE. Retinoic acid resistance in acute promyelocytic leukemia [J]. Leukemia,2002,16(10):1940-1958.
    [7]Warrell RP. Retinoid resistance in acute promyelocytic leukemia:new mechanisms, strategies and implications [J]. Blood,1993,82 (7):1949-1953.
    [8]Frankel SR, Eardley A, Heller G, Berman E, Miller WH Jr, Dmitrovsky E and Warrell RP Jr. All-trans retinoic acid for acute promyelocytic leukemia [J]. Results of the New York Study. Ann. Intern. Med.,1994,120(4):278-286.
    [9]Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z and Wang ZY. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL):Ⅱ. Clinical efficacy and pharmacokinetics in relapsed patients [J]. Blood,1997,89(9):3354-3360.
    [10]Behne D and Kyriakopoulos A. Mammalian selenium-containing proteins [J]. Annu.
    Rev. Nutr.,2001,21:453-473.
    [11]Sinha R and El-Bayoumy K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds [J]. Curr. Cancer Drug Targets.,2004,4(1):13-28.
    [12]Klein EA. Selenium:epidemiology and basic science [J]. J. Urol.,2004,171(2 Pt 2): S50-53; discussion S53.
    [13]Nelson MA, Reid M, Duffield-Lillico AJ and Marshall JR. Prostate cancer and selenium [J]. Urol. Clin. North. Am.,2002,29(1):67-70.
    [14]Rayman MP. Selenium in cancer prevention:a review of the evidence and mechanism of action [J]. Proc. Natl. Acad. Sci. U. S. A.,2005,64(4):527-542.
    [15]Asfour IA, El Shazly S, Fayek MH, Hegab HM, Raouf S and Moussa MA. Effect of high-dose sodium selenite therapy on polymorphonuclear leukocyte apoptosis in non-Hodgkin's lymphoma patients [J]. Biol. Trace Elem. Res.,2006,110(1):19-32.
    [16]Jiang W, Zhu Z, Ganther HE, Ip C and Thompson HJ. Molecular mechanisms associated with Se-allylselenocysteine regulation of cell proliferation and apoptosis [J]. Cancer Lett.,2001,162(2):167-173.
    [17]Zhu Z, Jiang W, Ganther HE and Thompson HJ. Mechanisms of cell cycle arrest by methylseleninic acid [J]. Cancer Res.,2002,62(1):156-164.
    [18]El-Bayoumy K, Narayanan BA and Desai DH. Elucidation of molecular targets of mammary cancer chemoprevention in the rat by organoselenium compounds using cDNA microarray [J]. Carcinogenesis,2003,24(9):1505-1514.
    [19]Li J, Zuo L, Shen T, Xu CM and Zhang ZN. Induction of apoptosis by sodium selenite in human acute promyelocytic leukemia NB4 cells:involvement of oxidative stress and mitochondria [J]. J. Trace Elem. Med. Biol.,2003,17(1):19-26.
    [20]Zuo L, Li J, Yang Y, Wang X, Shen T, Xu CM and Zhang ZN. Sodium selenite induces apoptosis in acute promyelocytic leukemia-derived NB4 cells by a caspase-3-dependent mechanism and a redox pathway different from that of arsenic trioxide [J]. Ann. Hematol.,2004,83(12):751-758.
    [21]Wei Y, Cao X, Ou Y, Lu J, Xing C and Zheng R. SeO(2) induces apoptosis with down-regulation of Bcl-2 and up-regulation of P53 expression in both immortal human hepatic cell line and hepatoma cell line [J]. Mutat. Res.,2001,490(2): 113-121.
    [22]Unni E, Koul D, Yung WK and Sinha R. Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro [J]. Breast Cancer Res.,2005,7(5):R699-707.
    [23]Sinha R, Kiley SC, Lu JX, Thompson HJ, Moraes R, Jaken S and Medina D. Effects of methylselenocysteine on PKC activity, cdk2 phosphorylation and gadd gene expression in synchronized mouse mammary epithelial tumor cells [J]. Cancer Lett., 1999,146(2):135-145.
    [24]Unni E, Singh U, Ganther HE and Sinha R. Se-methylselenocysteine activates caspase-3 in mouse mammary epithelial tumor cells in vitro [J]. Biofactors,2001, 14(1-4):169-177.
    [25]Gasparian AV, Yao YJ, Lu J, Yemelyanov AY, Lyakh LA, Slaga TJ and Budunova IV. Selenium compounds Inhibit I kappa B Kinase (IKK) and Nuclear Factor-kappa B (NF-kappa B) in prostate cancer cells [J]. Mol. Cancer Ther.,2002,1(12): 1059-1066.
    [26]Youn BW, Fiala ES and Sohn OS. Mechanisms of organoselenium compounds in chemoprevention:Effects of transcription factor-DNA binding [J]. Nutr. Cancer, 2000,40(1):28-33.
    [27]Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J, Krammer PH and Walczak H. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2 [J]. Immunity,2000, 12(6):599-609.
    [28]Wang X. The expanding role of mitochontria in apoptosis [J]. Genes Dev.,2001, 15(22):2922-2933.
    [29]Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K and Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death [J]. Mol. Cell,2001,8(3):613-621.
    [30]Zu k, Bihani T and Lin A. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells [J]. Oncogene,2006,25(4):
    546-554.
    [31]Wu Y, Zhang H and Dong Y. Endoplasmic reticulum stress signal mediators are targets of selenium action [J]. Cancer Res.,2005,65(19):9073-9079.
    [32]Tan ML, Ooi JP, Ismail N, Moad AI and Muhammad TS, Programmed cell death pathways and current antitumor targets [J]. Pharm. Res.,2009,26(7):1547-1560.
    [33]Sun Y and Peng ZL. Programmed cell death and cancer [J]. Postgrad. Med. J.,2009, 85(1001):134-140.
    [34]Sinha S and Levine B. The autophagy effector Beclin 1:a novel BH3-only protein [J]. Oncogene,2008,27 Suppl:S137-148.
    [35]Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okariioto S, Ohsumi Y and Yoshimori T. LC3, GABARAP and GATE 16 localize to autophagosomal membrane depending on form-Ⅱ formation [J]. J. Cell. Sci.,2004,117(Pt 13):2805-2812.
    [36]Cao TM, Hua FY, Xu CM, Han BS, Dong H, Zuo L, Wang X, Yang Y, Pan HZ and Zhang ZN. Distinct effects of different concentrations of sodium selenite on apoptosis, cell cycle, and gene expression profile in acute promyeloytic leukemia-derived NB4 cells [J]. Ann. Hematol.,2006,85(7):434-442.
    [37]Dong H, Ying T, Li T, Cao T, Wang J, Yuan J, Feng E, Han B, Hua F, Yang Y, Yuan J, Wang H, and Xu C. Comparative proteomic analysis of apoptosis induced by sodium selenite in human acute promyelocytic leukemia NB4 cells [J]. J. Cell. Biochem., 2006,98(6):1495-1506.
    [38]Han B, Ren Y, Guan L, Wei W, Hua F, Yang Y, Yang T, Cao T, Dong H, Pan H and Xu C. Sodium selenite induces apoptosis in acute promyelocytic leukemia-derived NB4 cells through mitochondria-dependent pathway [J]. Oncol. Res.,2009,17(8): 373-381.
    [39]Guan L, Han B, Li Z, Hua F, Huang F, Wei W, Yang Y and Xu C. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells [J]. Apoptosis,2009, 14(2):218-225.
    [40]Guan L, Han B, Li J, Li Z, Huang F, Yang Y and Xu C. Exposure of human leukemia NB4 cells to increasing concentrations of selenite switches the signaling from
    pro-survival to pro-apoptos [J]. Ann. Hematol.,2009,88(8):733-742.
    [41]Ren Y, Huang F, Liu Y, Yang Y, Jiang Q and Xu C. Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells [J]. BMB Rep.,2009, 42(9):599-604.
    [42]Culotta VC, Yang M and O'Halloran TV. Activation of superoxide dismutases: putting the metal to the pedal [J]. Biochim. Biophys.,2006,1763(7):747-758.
    [43]Giovambattista P, Renata C, Barbara B, Salvatore F, Daniela F, Silvia B and Tommaso G. Mitochondrial superoxide dismutase:a promising target for new anticancer therapies [J]. Curr. Med. Chem.,2004,11(10):1299-1308.
    [44]Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells [J]. Int. J. Biochem. Cell Biol.,2008,40(12):2707-2719.
    [45]Baccarini M. Second nature:biological functions of the Raf-1 "kinase" [J]. FEBS Lett.,2005,579(15):3271-3277.
    [46]Ma C, Bower KA, Chen G, Shi X, Ke ZJ and Luo J. Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells [J]. J. Biol. Chem.,2008,283(14):9248-9256.
    [47]Brunet A, Roux D, Lenormand P, Dowd S, Keyse S and Pouyssegur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry [J]. EMBO J.,1999,18(3): 664-674.
    [48]Ranganathan A, Yazicioglu MN. and Cobb MH. The nuclear localization of ERK2 occurs by mechanisms both independent of and dependent on energy [J]. J. Biol. Chem.,2006,281(23):15645-15652.
    [49]Yazicioglu MN, Goad DL, Ranganathan A, Whitehurst AW, Goldsmith EJ and Cobb MH. Mutations in ERK2 binding sites affect nuclear entry [J]. J. Biol. Chem.,2007, 282(39):28759-28767.
    [50]Fridman JS and Lowe SW. Control of apoptosis by p53 [J]. Oncogene,2003,22(56): 9030-9040.
    [51]O'Connor JC, Wallace DM, O'Brien CJ and Cotter TG. A novel antioxidant function for the tumor-suppressor gene p53 in the retinal ganglion cell [J]. Invest. Ophthalmol.
    Vis. Sci.,2008,49(10):4237-4244.
    [52]Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS and Harris CC. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis [J]. Cancer Res.,2004,64(7):2350-2356.
    [53]Pivoriunas A, Savickiene J, Treigyte G, Tunaitis V, Navakauskiene R and Magnusson KE. PI 3-K signaling pathway suppresses PMA-induced expression of p21WAF1/Cip1 in human leukemia cells [J]. Mol. Cell. Biochem.,2007,302(1-2): 9-18.
    [54]Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N, Segawa K, Ikeda Y and Kizaki M. Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress:implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species [J]. Cancer Res.,2004,64(3): 1071-1078.
    [55]Ito K, Nakazato T, Miyakawa Y, Yamato K, Ikeda Y and Kizaki M. Caffeine induces G2/M arrest and apoptosis via a novel p53-dependent pathway in NB4 promyelocytic leukemia cells [J]. J. Cell. Physiol.,2003,196(2):276-283.
    [56]Mata-Greenwood E, Cuendet M, Sher D, Gustin D, Stock W and Pezzuto JM. Brusatol-mediated induction of leukemic cell differentiation and G(1) arrest is associated with down-regulation of c-myc [J]. Leukemia,2002,16(11):2275-2284.
    [57]Fleckenstein DS, Uphoff CC, Drexler HG and Quentmeier H. Detection of p53 gene mutations by single strand conformational polymorphism; (SSCP) in human acute myeloid leukemia-derived cell lines [J]. Leuk. Res.,2002,26(2):207-214.
    [58]Rizzo MG, Zepparoni A, Cristofanelli B, Scardigli R, Crescenzi M, Blandino G, Giuliacci S, Ferrari S, Soddu S, Sacchi A. Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation [J]. Br. J. Cancer.,1998, 77(9):1429-1438.
    [59]Dias SS, Hogan C, Ochocka AM and Meek DW. Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover [J]. FEBS Lett., 2009,583(22):3543-3548.
    [60]Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C and Abraham RT. A role for ATR in the DNA damage-induced phosphorylation of p53 [J]. Genes Dev.,1999,13(2):152-157.
    [61]Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E and Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53 [J]. Genes Dev.,1997, 11(24):3471-3481.
    [62]Jaiswal AS and Narayan S. SN2 DNA-alkylating agent-induced phosphorylation of p53 and activation of p21 gene expression [J]. Mutat. Res.,2002,500(1-2):17-30.
    [63]Komarov R G, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV and Gudkov AV. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy [J]. Science,1999,285(5434):1733-1737.
    [64]Garcia-Cazarin ML, Smith JL, Clair DK and Piascik MT. The alpha1 D-adrenergic receptor induces vascular smooth muscle apoptosis via a p53-dependent mechanism [J]. Mol. Pharmacol.,2008,74(4):1000-1007.
    [65]Wolf D and Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells [J]. Proc. Natl. Acad. Sci. U. S. A.,1985, 82(3):790-794.
    [66]Banerjee D, Lenz HJ, Schnieders B, Manno DJ, Ju JF, Spears CP, Hochhauser D, Danenberg K, Danenberg P, Bertino JR. Transfection of wild-type but not mutant p53 induces early monocytic differentiation in HL60 cells and increases their sensitivity to stress [J]. Cell Growth Differ.,1995,6(11):1405-1413.
    [67]Soddu S, Blandino G, Citro G, Scardigli R, Piaggio G, Ferber A, Calabretta B, Sacchi A. Wild-type p53 gene expression induces granulocytic differentiation of HL-60 cells [J]. Blood,1994,83(8):2230-2237.
    [68]Sugimoto K, Toyoshima H, Sakai R, Miyagawa K, Hagiwara K, Ishikawa F, Takaku F, Yazaki Y, Hirai H. Frequent mutations in the p53 gene in human myeloid leukemia cell lines [J]. Blood,1992,79(9):2378-2383.
    [69]Kastan MB, Radin AI, Kuerbitz SJ, Onyekwere O, Wolkow CA, Civin CI, Stone KD, Woo T, Ravindranath Y and Craig RW. Levels of p53 protein increase with maturation in human hematopoietic cells [J]. Cancer Res.,1991,51(16):4279-4286.
    [70]Husbeck B, Nonn L, Peehl DM and Knox SJ. Tumor-selective killing by selenite in patient-matched pairs of normal and malignant prostate cells [J]. Prostate,2006, 66(2):218-225.
    [71]Nilsonne G, Sun X, Nystrom C, Rundlof AK, Potamitou Fernandes A, Bjornstedt M and Dobra K. Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress [J]. Free Radic. Biol. Med.,2006,41(6):874-885.
    [72]Huang F, Nie C, Yang Y, Yue W, Ren Y, Shang Y, Wang X, Jin H, Xu C and Chen Q. Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells [J]. Free Radic. Biol. Med.,2009,46(8):1186-1196.
    [73]Strassburger M, Bloch W, Sulyok S, Schuller J, Keist AF, Schmidt A, Wenk J, Peters T, Wlaschek M, Lenart J, Krieg T, Hafner M, Kiimin A, Werner S, Miiller W and Scharffetter-Kochanek K. Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo [J]. Free Radic. Biol. Med.,2005,38(11):1458-1470.
    [74]Kirby K, Hu J, Hilliker AJ and Phillips JP. RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress [J]. Proc. Natl. Acad. Sci. U. S. A.,2002,99(25):16162-16167.
    [75]Epperly MW, Sikora CA, DeFilippi SJ, Gretton JA, Zhan Q and Kufe DW. Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane [J]. Radiat. Res.,2002,157(5): 568-577.
    [76]Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert J, Oberley LW and Phang JM. MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells [J]. Carcinogenesis,2005,26(8):1335-1342.
    [77]Fisher CJ and Goswami PC. Mitochondria-targeted antioxidant enzyme activity regulates radioresistance in human pancreatic cancer cells [J]. Cancer Biol. Ther., 2008,7(8):1271-1279.
    [78]Kanwar M, Chan PS, Kern TS and Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice:possible protection by superoxide dismutase [J]. Invest. Ophthalmol. Vis. Sci.,2007,48(8):3805-3811.
    [79]Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P and Moll UM. P53 has a direct apoptogenic role at the mitochondria [J]. Mol. Cell.,2003,11(3): 577-590.
    [80]Endo H, Kamada H, Nito C, Nishi T and Chan PH. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats [J]. J. Neurosci.,2006,26(30):7974-7983.
    [81]Xu Y, Kim SO, Li Y and Han J. Autophagy contributes to caspase-independent macrophage cell death [J]. J. Biol. Chem.,2006,281(28):19179-19187.
    [82]Tan YK, Kusuma CM, St John LJ, Vu HA, Alibek K and Wu A. Induction of autophagy by anthrax lethal toxin [J]. Biochem. Biophys. Res. Commun.,2009, 379(2):293-297.
    [83]Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D and Laiho M. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation [J]. Cancer Cell,2004,5(5):465-475.
    [84]Kurki S, Peltonen K and Laiho M. Nucleophosmin, HDM2 and p53:players in UV damage incited nucleolar stress response [J]. Cell Cycle,2004,3(8):976-979.
    [85]Yu Y, Maggi LBJR, Brady SN, Apicelli AJ, Dai MS, Lu H and Weber JD. Nucleophosmin is essential for ribosomal protein L5 nuclear export [J]. Mol. Cell Biol.,2006,26(10):3798-3809.
    [86]Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE and Fukasawa K. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication [J]. Cell,2000,103(1):127-140.
    [87]Cheng Y, Qiu F, Tashiro S, Onodera S and Ikejima T. ERK and JNK mediate TNFalpha-induced p53 activation in apoptotic and autophagic L929 cell death [J]. Biochem. Biophys. Res. Commun.,2008,376(3):483-488.
    [88]Zhang Y, Wu Y, Wu D, Tashiro S, Onodera S and Ikejima T. NF-kappab facilitates oridonin-induced apoptosis and autophagy in HT1080 cells through a p53-mediated pathway [J]. Arch. Biochem. Biophys.,2009,489(1-2):25-33.
    [89]Tasdemir E, Maiuri MC, Orhon I, Kepp O, Morselli E, Criollo A and Kroemer G. p53 represses autophagy in a cell cycle-dependent fashion [J]. Cell Cycle,2008,
    7(19):3006-3011.
    [90]Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P,Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F and Kroemer G. Regulation of autophagy by cytoplasmic p53 [J]. Nat. Cell Biol.,2008,10(6): 676-687.
    [91]Mackay HJ and Twelves CJ. Targeting the protein kinase C family:are we there yet [J]? Nat. Rev. Cancer,2007,7(7):554-562.
    [92]Redig AJ and Platanias LC. Protein kinase C signalling in leukemia [J]. Leuk. Lymphoma,2008,49(7):1255-1262.
    [93]Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D and Kirilovsky J. The bisindolylmaleide GF 109203X is a potent and selective inhibitor of protein kinase C [J]. J.Biol.Chem.,1991,266(24):15771-15781.
    [94]Wilkinson SE, Parker PJ and Nixon JS. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C [J]. Biochem. J.,1993, 294(Pt 2):335-337.
    [95]Han B, Wei W, Hua F, Cao T, Dong H, Yang T, Yang Y, Pan H and Xu C. Requirement for ERK activity in sodium selenite-induced apoptosis of acute promyelocytic leukemia-derived NB4 cells [J]. J. Biochem. Mol. Biol,2007,40(2): 196-204.
    [96]Boudreau RT, Garduno R and Lin TJ. Protein phosphatase 2A and protein kinase Calpha are physically associated and are involved in Pseudomonas aeruginosa-induced interleukin 6 production by mast cells [J]. J. Biol. Chem.,2002, 277(7):5322-5329.
    [97]Shirai Y and Saito N. Activation mechanisms of protein kinase C:maturation, catalytic activation, and targeting [J]. J. Biochem.,2002,132(5):663-668.
    [98]Wu TT, Hsieh YH, Hsieh YS and Liu JY. Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma [J]. J. Cell. Biochem.,2007,103(1):9-20.
    [99]Castro-Galache MD, Menendez-Gutierrez MP, Carrasco GE, Garcia-Morales P, Martinez-Lacaci I, Saceda M and Ferragut JA. Protein kinase C-alpha antagonizes apoptosis induction by histone deacetylase inhibitors in multidrug resistant leukaemia cells [J]. Int. J. Biochem. Cell Biol.,2007,39(10):1877-1885.
    [100]Tomiyama T, Kang JH, Toita R, Niidome T and Katayama Y. Protein kinase Calpha-responsive polymeric carrier:its application for gene delivery into human cancers [J]. Cancer Sci.,2009,100(8):1532-1536.
    [101]Keranen LM, Dutil EM and Newton AC. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations [J]. Curr. Biol.,1995,5(12): 1394-1403.
    [102]Abdala-Valencia H and Cook-Mills JM. VCAM-1 signals activate endothelial cell protein kinase Calpha via oxidation [J]. J. Immunol.,2006,177(9):6379-6387.
    [103]Nakashima S. Protein kinase C alpha (PKC alpha):regulation and biological function [J]. J. Biochem.,2002,132(5):669-675.
    [104]Gonzalez-Guerrico AM, Meshki J, Xiao L, Benavides F, Conti CJ and Kazanietz MG. Molecular mechanisms of protein kinase C-induced apoptosis in prostate cancer cells [J]. J. Biochem. Mol. Biol.,2005,38(6):639-645.
    [105]Haughian JM, Jackson TA, Koterwas DM and Bradford AP. Endometrial cancer cell survival and apoptosis is regulated by protein kinase C alpha and delta [J]. Endocr. Relat. Cancer,2006,13(4):1251-1267.
    [106]Guan L, Huang F, Li Z, Hua F, Huang F, Wei W, Yang Y and Xu C. P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis [J]. BMB. Rep.,2008,41(10):745-750.
    [107]Belevich I and Verkhovsky MI. Molecular mechanism of proton translocation by cytochrome c oxidase [J]. Antioxid. Redox. Signal,2008,10(1):1-29.
    [108]Li Y, Park JS, Deng JH and Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex [J]. J. Bioenerg. Biomembr.,2006,38(5-6):283-290.
    [109]Nijtmans LG, Taanman JW, Muijsers AO, Speijer D, Van den Bogert C.
    Assembly of cytochrome-c oxidase in cultured human cells [J]. Eur. J. Biochem., 1998,254(2):389-394.
    [110]Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV and Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells [J]. Cell,2007,129(1):111-122.
    [111]Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1 [J]. Biochem. J.,2007,405(1):1-9.
    [112]Ogbi M, Chew CS, Pohl J, Stuchlik O, Ogbi S and Johnson JA. Cytochrome c oxidase subunit IV as a marker of protein kinase Cepsilon function in neonatal cardiac myocytes:implications for cytochrome c oxidase activity [J]. Biochem. J., 2004,382(Pt 3):923-932.
    [113]Kadenbach B, Huttemann M, Arnold S, Lee I and Bender E. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase [J]. Free Radic. Biol. Med.,2000,29(3-4):211-221.
    [114]Sanchez-Alcazar JA, Ault JG, Khodjakov A and Schneider E. Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells [J]. Cell Death Differ.,2000,7(11): 1090-1100.
    [115]Shirafuji N, Takahashi S, Matsuda S and Asano S. Mitochondrial antisense RNA for cytochrome C oxidase (MARCO) can induce morphologic changes and cell death in human hematopoietic cell lines [J]. Blood,1997,90(11):4567-4577.
    [116]Moncada S and Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis [J]? Nat. Rev. Mol. Cell Biol.,2002,3(3):214-220.
    [117]Yoon YS, Lee JH, Hwang SC, Choi KS and Yoon G. TGF betal induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells [J]. Oncogene,2005,24(11):1895-1903.
    [118]Zhang J, Jin B, Li L, Block ER and Patel JM. Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells [J]. Am. J. Physiol. Cell Physiol., 2005,288(4):C840-849.
    [119]Yuyama K, Yamamoto H, Nishizaki I, Kato T, Sora I and Yamamoto T. Caspase-independent cell death by low concentrations of nitric oxide in PC 12 cells: involvement of cytochrome C oxidase inhibition and the production of reactive oxygen species in mitochondria [J]. J. Neurosci. Res.,2003,73(3):351-363.
    [1]Chiantore MV, Vannucchi S, Mangino G, Percario ZA, Affabris E, Fiorucci G and Romeo G. Senescence and cell death pathways and their role in cancer therapeutic outcome [J]. Curr. Med. Chem.,2009,16(3):287-300.
    [2]Grote P, Schaeuble K and Ferrando-May. Commuting (to) suicide:an update on nucleocytoplasmic transport in apoptosis [J]. Earch. Biochem. Biophys.,2007, 462(2):156-161.
    [3]Ferrando-May E. Nucleocytoplasmic transport in apoptosis [J]. Cell Death Differ., 2005,12(10):1263-1276.
    [4]周鸣,李小玲,李桂源.蛋白质入核转运的机制和研究进展[J].中国生物化学与分子生物学报(Zhou Ming,Li Xiao-Ling,Li Gui-Yuan.Molecular mechanism and progress of protein transport from cytoplasm to nucleus [J]. Chin. J. Biochem. Mol. Biol.),2006,22(10):780-786.
    [5]Sorokin AV, Kim ER and Ovchinnikov LP. Nucleocytoplasmic transport of proteins [J]. Biochemistry (Mosc),2007,72(13):1439-1457.
    [6]Beck M and Medalia O. Structural and functional insights into nucleocytoplasmic transport [J]. Histol. Histopathol.,2008,23(8):1025-1033.
    [7]Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E, Kouranti I, Spahr C, Pance A, Kroemer G and Garrido C. Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor [J]. Oncogene,2003, 22(43):6669-6678.
    [8]Chang NS, Doherty J and Ensign A. JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis [J]. J. Biol. Chem.,2003,278(11):9195-9202.
    [9]Li LY, Luo X and Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria [J]. Nature,2002,412(6842):95-99.
    [10]Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK and Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span [J]. Cell,2006, 125(5):987-1001.
    [11]Zihni C, Mitsopoulos C, Tavares IA, Baum B, Ridley AJ and Morris JD. Prostate-derived sterile 20-like kinase 1-alpha induces apoptosis.JNK-and caspase-dependent nuclear localization is a requirement for membrane blebbing [J]. J. Biol. Chem.,2007,282(9):6484-6493.
    [12]Nogueira E, Fidalgo M, Molnar A, Kyriakis J, Force T, Zalvide J and Pombo CM. SOK1 translocates from the Golgi to the nucleus upon chemical anoxia and induces apoptotic cell death [J]. J. Biol. Chem.,2008,283(23):16248-16258.
    [13]Srinivasan B, Wang Z, Brun-Zinkernagel AM, Collier RJ, Black RA, Frank SJ, Barker PA and Roque RS. Photic injury promotes cleavage of p75NTR by TACE and nuclear trafficking of the p75 intracellular domain [J]. Mol. Cell Neurosci., 2007,36(4):449-461.
    [14]Nakaya T, Kawai T and Suzuki T. Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells [J]. J. Biol. Chem.,2008,283(27):19119-19131.
    [15]Iosef C, Gkourasas T, Jia CY, Li SS and Han VK. A functional nuclear localization signal in insulin-like growth factor binding protein-6 mediates its nuclear import [J]. Endocrinology,2008,149(3):1214-1226.
    [16]Mukherjee S and Shields D. Nuclear import is required for the pro-apoptotic function of the Golgi protein p115 [J]. J. Biol. Chem.,2009,284(3):1709-1717.
    [17]Kuramori C, Azuma M, Kume K, Kaneko Y, Inoue A, Yamaguchi Y, Kabe Y, Hosoya T, Kizaki M, Suematsu M and Handa H. Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus [J]. Biochem. Biophys. Res. Commun.,2009,379(2):519-525.
    [18]Herrmann A, Vogt M, Monnigmann M, Clahsen T, Sommer U, Haan S, Poli V, Heinrich PC and Muller-Newen G. Nucleocytoplasmic shuttling of persistently activated STAT3 [J]. J. Cell. Sci.,2007,120(18):3249-3261.
    [19]Parra M, Mahmoudi T and Verdin E. Myosin phosphatase dephosphorylates HDAC7,controls its nucleocytoplasmic shuttling,and inhibits apoptosis in thymocytes [J]. Genes Dev.,2007,21(6):638-643.
    [20]Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC and
    Zhang XK. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3 [J]. Cell,2004,116(4):527-540.
    [21]Knauer SK, Bier C, Habtemichael N and Stauber RH. The Survivin-Crm1 interaction is essential for chromosomal passenger complex localization and function [J]. EMBO Rep.,2006,7(12):1259-1265.
    [22]Rodriguez JA, Lens SM, Span SW, Vader G, Medema RH, Kruyt FA and Giaccone G. Subcellular localization and nucleocytoplasmic transport of the chromosomal passenger proteins before nuclear envelope breakdown [J]. Oncogene,2006,25(35):4867-4879.
    [23]Hong SJ, Dawson TM and Dawson VL. Nuclear and mitochondrial conversations in cell death:PARP-1 and AIF signaling [J]. Trends Pharmacol. Sci.,2004,25(5): 259-264.
    [24]Petrs-Silva H, Chiarini LB and Linden R. Nuclear proteasomal degradation and cytoplasmic retention underlie early nuclear exclusion of transcription factor Max upon axon damage [J]. Exp. Neurol.,2008,213(1):202-209.
    [25]Takahashi Y, Lallemand-Breitenbach V, Zhu J and de The H. PML nuclear bodies and apoptosis [J]. Oncogene,2004,23(16):2819-2824.
    [26]Chipuk JE and Green DR. Cytoplasmic p53:bax and forward [J]. Cell Cycle,2004, 3(4):429-431.
    [27]Leu JI, Dumont P, Hafey M, Murphy ME and George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcll complex [J]. Nat. Cell Biol., 2004,6(5):443-450.
    [28]Guan L, Huang F, Li Z, Han B, Jiang Q, Ren Y, Yang Y and Xu C. P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis [J]. BMB Rep.,2008,41(10):745-750.
    [29]Guan L, Han B, Li Z, Hua F, Huang F, Wei W, Yang Y and Xu C. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells [J]. Apoptosis,2009,14(2):218-25.
    [30]Sakai T, Liu L, Teng X, Mukai-Sakai R, Shimada H, Kaji R, Mitani T, Matsumoto M, Toida K, Ishimura K, Shishido Y, Mak TW and Fukui K. Nucling recruits Apaf-1/pro-caspase-9 complex for the induction of stress-induced apoptosis [J]. J. Biol. Chem.,2004,279(39):41131-41140.
    [31]White-Gilbertson S, Mullen T, Senkal C, Lu P, Ogretmen B, Obeid L and Voelkel-Johnson C. Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells [J]. Oncogene,2009,28(8): 1132-1141.
    [32]Ma C, Bower KA, Chen G, Shi X, Ke ZJ and Luo J. Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells [J]. J. Biol. Chem.,2008,283(14):9248-9256.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.