几类重要分子反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应的反应机理,进行了系统的理论研究。通过理论分析详细的给出了反应中间体和过渡态的几何结构和相对能量,以及反应势能面的信息,讨论了可能的反应通道和反应机理。本文结果可为环境和燃烧化学中重要的自由基—分子反应模型的建立奠定基础,并可为进一步实验研究提供有价值的理论信息。其次在B3LYP/genecp [C,H: 6-31G(d), 6-311G(d), Ir:Lanl2dz]理论水平下对Ir4 cluster催化的丙烯加氢反应进行了详尽的量子化学研究,推测了可能的反应机理。研究发现标题反应主要可以通过3条反应通道(c,d和e)进行,其中,通道c无论从动力学角度还是热力学角度都是最有利的反应通道。
Reactions of small radicals with neutral molecules play a significant role in diverse environments such as industrial applications, combustion flames, catalytical reactions,the interstellar medium (ISM), and so on. As a result, quantum chemical investigations on the potential energy surfaces of several important molecule reactions have been carried out in this thesis. These reactions include F + HONO, the Propene Hydrogenation Catalyzed by Metal Ir4 Cluster. Important information of potential energy surfaces such as structures and energies of intermediate isomers and transition states, possible reaction channels, reaction mechanisms and major products are obtained from the theoretical investigations. Some conclusions that are made in the present thesis may be helpful for further theoretical and experimental studies of this kind of reactions. The main results are summarized as follows:
     1. The reaction of F(2P) with nitrous acid has been studied theoretically using ab initio quantum chemistry methods and transition state theory. The potential energy surface was calculated at the CCSD(T)/cc-pVTZ and QCISD(T)/cc-pVTZ (single-point) levels using the UMP2/6-311++G(d,p) optimized structures. Various possible reaction pathways including the direct H-abstraction reaction and three kinds of addition reactions are considered. Among them, the most feasible pathway should be the F atom abstracting hydrogen of cis-HONO directly, leading to the products P1 HF + NO2. The other reaction pathways are less competitive due to thermodynamical or kinetic factors. Furthermore, our calculation results show that, in terms of potential energy surface, the title reaction involves all the main features of H + HONO reaction. However, the mechanisms of F with HONO are more complicated than those of H + HONO. The reaction heats of formation calculated are in good agreement with that obtained experimentally. It will provide useful information for understanding the mechanism of F atom reaction.
     2. Using density functional theory (DFT), the reaction mechanism of propene hydrogenated catalyzed by metalline Ir4 cluster were explored in detail theoretically. At B3LYP level of theory, the geometries of stationary points (reactions, intermediate isomers, transition states and product) were optimized and the ground state potential energy surface was ploted. The calculated results suggested that for the propene hydrogenation catalyzed by metal Ir4 cluster, the reaction may follow three reaction channels, which is c, d and e. In the major reaction channel c, the H-atom at Ir1 site first transforms to intermediate isomer 1 after surmounting TSR-1, followed by the addition of H-atom to the side C of propene, which leading to the forming of intermediate isomer 3. After that, the H-atom at Ir2 site can addition to the middle C, passing through transition state TS3-5, intermediate isomer 5 and transition state TS5-P respectively. Channel c is the most feasible reaction channel on the PES on both kinetic and thermodynamic considerations. As the highest transition states in channel d and e are a little higher than that of in channel c, they are less competitive and belong to minor channels.
引文
1. Ran, Q.; Yang, C. H.; Lee, Y. T.; Shen, G.; Wang, L.; Yang, X. Molecular beam studies of the F atom reaction with propyne: Site specific reactivity.J. Chem. Phys. 2005, 122, 044307(1-8).
    2. Ran, Q.; Yang, C. -H.; Lee, Y. T.; Shen, G.; Yang, X. J. Chem. Phys. 2004, 121, 6302.
    3. Boutlart, W.; Devriendt, K.; Borms, R.; Peeters, J. J. Chem. Phys. 1996, 100, 998.
    4. Kern, R. D.; Xie, K. Prog. Energy Combust. Sci. 1991, 17, 191.
    5. Kaiser, R. I.; Ochsenfeld, C.; Stranges, D.; Head-Gordon, M.; and Lee, Y.T. Farday Discuss. 1998, 109,183.
    6. Heikkila, A.; Johansson, L. E. B.; Olsfsson, H, Astron. Astrophys. 1999, 344, 817.
    7. Moortgat, G. K.; Barnes, A. J.; Le Bras, G.; Sodeau, J. R., Eds, Low-Tempetature Chemistry of the atmosphere; Springer-Verlag: New York, 1994
    8. Moses, J. I.; Bezard, B.; Lellouch, E.; Gladstone, G. R.; Feuchtgruber, H.;Allen, M. Icarus 2000, 143, 244.
    9. Raulin, F.; Coll, P.; Coscia, D.; Gazeau, M. C.; Sternberg, R.; Bruston, P.;Israel, G.; Gautier, D. Life Sciences: Exobiology 1998, 22, 353.
    10. Raulin, F.; Coll, P.; Smith, N.; Benilan, Y.; Bruston, P.; Gazeau, M. C. Life Sciences: New Insights into Complex Organics in Space 1999, 24, 453.
    11. Gladstone, G. R.; Allen, M.; Yung, Y. L. Icarus 1996, 119,1.
    12. K. H. Hay, W. A. Waters, Some Organic Reactions Involving the Occurence of Free Radicals in Solution, Chem. Review, 1937, 21, 169.
    13. M. S. Kharasch, J. V. Mansfield, F. R. Mayo,PHOTODECOMPOSITION OF CHLORINE DIOXIDE IN CARBON TETRACHLORIDE SOLUTION, J. Am. Chem. Soc., 1937, 59, 1155.
    14. P. Walden, L. F. Audrieth, Free Inorganic Radicals, Chem. Rev. 1928, 5, 339.
    15. N. Uri, Inorganic Free Radicals in Solution, Chem. Rev. 1952, 50, 375.
    16. L. J. Johnston, Photochemistry of radicals and biradicals, Chem. Rev., 1993, 93, 251.
    17. B. M. Monroe, G. C. Weed, Photoinitiators for free-radical-initiated photoimaging systems, Chem. Rev., 1993, 93, 435.
    18. M. Sablier, T. Fujii, Mass Spectrometry of Free Radicals, Chem. Rev., 2002, 102, 2855.
    19. R. Atkinson, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions,Chem. Rev., 1986, 86, 69.
    20. Y. Bedjanian, G. Poulet, Kinetics of Halogen Oxide Radicals in the Stratosphere ,Chem. Rev., 2003, 103, 4639.
    21. J. J. Orlando, G. S. Tyndall, T. J. Wallington, The Atmospheric Chemistry of Alkoxy Radicals, Chem. Rev., 2003, 103, 4657.
    22. M. J. Kurylo, V. L. Orkin, Determination of Atmospheric Lifetimes via the Measurement of OH Radical Kinetics, Chem. Rev., 2003, 103, 5049.
    23. H. Follmann Chem. Society Rev., 2004, 33, 225.
    24. F. Himo, P. E. M. Siegbahn, Quantum Chemical Studies of Radical-Containing Enzymes, Chem. Rev., 2003, 103, 2421.
    25. J. W. Whittaker, Free Radical Catalysis by Galactose Oxidase, Chem. Rev., 2003, 103, 2347.
    26. S. W. Ragsdale, Pyruvate Ferredoxin Oxidoreductase and Its RadicalIntermediate, Chem. Rev., 2003, 103, 2333。
    27. J. Stubbe, D. G. Nocera, C. S. Yee, M. C. Y. Chang, Radical Initiation in the Class I Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer? Chem. Rev., 2003, 103, 2167.
    28. M. Fontecave, S. Ollagnier-de-Choudens, E. Mulliez, Biological Radical Sulfur Insertion Reactions, Chem. Rev., 2003, 103, 2149.
    29. R. Banerjee, Introduction: Radical Enzymology, Chem. Rev., 2003, 103, 2081。
    30. R. C. Murphy, Chemical Research In Toxicology, 2001, 14, 463.
    31. J. Strbbe, W. A. van der Donk, Protein Radicals in Enzyme Catalysis, Chem. Rev., 1998, 98, 2661.
    32. J. Strbbe, W. A. van der Donk, Protein Radicals in Enzyme Catalysis, Chem. Rev., 1998, 98, 705.
    33. C. Hansch, H. Gao, Comparative QSAR: Radical Reactions of Benzene Derivatives in Chemistry and Biology, Chem. Rev., 1997, 97, 2995.
    34. C. J. Easton, Free-Radical Reactions in the Synthesis of -Amino Acids and Derivatives, Chem. Rev., 1997, 97, 53.
    35. Grissom B. Charles, Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination, Chem. Rev., 1995, 95, 3.
    36. P. A. Frey, Importance of organic radicals in enzymic cleavage of unactivated carbon-hydrogen bonds, Chem. Rev. 1990, 90, 1343.
    37. S. Wilson, Theoretical studies of interstellar radicals and ions, Chem. Rev. 1980, 80, 263.
    38. Y. Sonoda, S. Iwata, Y. Osamura, Chem. Soc. Jpn., 1993, 66, 3345.
    39. E. Herbst, Angew. Chem. Int. Ed. Engl., 1990, 29, 595.
    40. D. Smith, The ion chemistry of interstellar clouds, Chem. Rev., 1992, 92, 1473.
    41. E. Herbst, D. Smith, N.G. Adams, B.J. McIntosh, J. Chem. Soc. Fraday Trans. 2, 1989, 85(10), 1655.
    42. D. Smith, N.G. Adams, J. Chem. Soc., Fraday Trans. 2, 1989, 85, 1613.
    43. H.F. Calcote, R.J. Gill, Soot Formation in Combustion H. Bockhorn, Ed., Springer: Berlin, 1994; p471. (b) D.B. Olson, H.F. Calcote, Particulate Carbon: Formation During Combustion D.C. Siegla, G.W. Smith, Eds.; Plenum: New York, 1981, p177.
    44. J.A. Miller, R.J. Kee, C.K. Westbrook, Annu. Rev. Phys. Chem., 1990, 41, 345.
    45. P. J. Stang, Progress in Physical Organic Chemistry, A. Streitwieser, Jr., R.W. Taft, Wily: New York, 1973, 10, p 205.
    46. M., R. Born, Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927,84, 457.
    47. (a)唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社, 1982,(b)徐光宪,王德民,量子化学基本原理和从头算法,北京,科学出版社, 1985.
    48. 赵学庄,罗渝然,臧雅茹,万学适,化学反应动力学原理,下册,高等教育出版社,1990.
    49. J. B. Foresman and M. J. Frisch, Exploring Chemistry with Electronic Structure Methods, 1993, W. J. Hehre, L. Radom, P. V. R. Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory, 1986.
    50. Ignatyev, I. S.; Xie, Y.; Allen, W. D.; Schaefer, H. F. Mechanism of the C2H5 + O2 reaction. J. Chem. Phys. 1997, 107, 141-155.
    51. Schlegel, H. B.; Sosa, C. Ab initio molecular orbital calculations on F +H2 → HF + H and OH + H2 → H2O + H using unrestricted M?ller-Plesset perturbation theory with spin projection. Chem. Phys. Lett. 1988, 145, 329-333.
    52. Sekusak, S.; Liedl, K. R.; Sabljic, A. Reactivity and Regioselectivity of Hydroxyl Radical Addition to Halogenated Ethenes . J. Phys. Chem. A 1998, 102, 1583-1594.
    53. Schlegel, H. B. Potential energy curves using unrestricted M?ller–Plesset perturbation theory with spin annihilation. J. Chem. Phys. 1986, 84, 4530-4534.
    54. Stanton, J. F. On the extent of spin contamination in open-shell coupled-cluster wave functions. J. Chem. Phys. 1994, 101, 371-374.
    55. Sosa, C.; Schlegel, H. B. Calculated barrier heights for OH + C2H2 and OH + C2H4 using unrestricted Moeller-Plesset perturbation theory with spin annihilation . J. Am. Chem. Soc. 1987, 109, 4193-4198.
    56. Malick, D. K.; Petersson, G. A.; Montgomery, J. A. Jr. Transition states for chemical reactions I. Geometry and classical barrier height. J. Chem. Phys. 1998, 108, 5704-5713.
    1. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    2. W. J. Hehre, L. Radom, P. v. R. Schleyer, et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986. (b) D.A. McQuarrie, Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    3. 唐敖庆, 杨忠志, 李前树, 量子化学, 北京, 科学出版社, 1982. (b) 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京, 科学出版社, 1985.
    4. P. O. Lowdin, Adv. Chem. Phys.,1959, 2, 207.
    5. J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp., 1977, 11, 149.
    6. J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., 1992, 96, 135.
    7. R. Krishnan, H. B. Schlegel and J. A. Pople, Thermodynamics of ionization of deuterium oxide, J. Chem. Phys., 1980, 72, 4654.
    8. B.R. Brooks, W.D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H.F. Schaefer, J. Chem. Phys., 1980, 72, 4652.
    9. E. A. Salter, G. W. Trucks and R. J. Bartlett, J. Chem. Phys., 1989, 90, 1752.
    10. K. Raghavachari and J. A. Pople, Int. J. Quant. Chem., 1981, 20, 167.
    11. J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys., 1987, 87, 5968.
    12. J. Cioslowski, Chem. Phys. Lett., 1994, 219, 151.
    13. H. B. Schlegel, M. A. Robb, Chem. Phys. Lett., 1982, 93, 43.
    14. R. H. E. Eade, M. A. Robb, Chem. Phys. Lett., 1981, 83, 362.
    15. D. Hegarty and M. A. Robb, Mol. Phys. 1979, 38, 1795.
    16. J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Int. J. Quant. Chem. XIV, 1978, 545.
    17. R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem., 1978, 14, 516.
    18. G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys., 1989, 90, 3700.
    19. G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
    20. G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys., 1988, 89, 7382.
    21. C. M?ller, M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Phys. Rev. 1934, 46, 618.
    22. J.A. Pople, J.S. Binkley, R. Seeger, Theoretical Models Incorporating Electron Correlation, Int. J. Quant. Chem. Symp. 1976, 10, 1.
    23. M. Head-Gordon, J.A. Pople, M. J. Frisch, A Direct MP2 Gradient Method, Chem. Phys. Lett. 1988, 153, 503.
    24. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, B864.
    25. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
    26. J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: NewYork, 1974.
    27. D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C. 1989.
    28. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    29. J. A. Pople, P. M. W. Gill and B. G. Johnson, Chem. Phys. Lett., 1992, 199, 557.
    30. B. G. Johnson and M. J. Frisch, J. Chem. Phys., 1994, 100, 7429.
    31. J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991
    32. 王志中,现代量子化学计算方法,吉林大学出版社,1998
    33. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 207-229
    34. W. R. Walt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298
    35. K. Fukui, Int. J. Quantum. Chem., 1981, 15, 633.
    36. K. Fukui, A. Tachibana, K. Yamashita, Int. J. Quantum. Chem., 1981, 15, 621.
    1. Sanders, W. A.; Lin, M. C. in Chemical Kinetics of Small Organic Radicals, Vol. III (Ed.: Z. Afassi), CRC Press, Boca Raton, FLorida, 1988.
    2. Wang, Z. X.; Huang, M. B.; Liu, R. Z. Can. J. Chem. 1997, 75, 996.
    3. Butler, J. E.; Fleming, J. W.; Lin, M. C. Chem. Phys. 1981, 35, 355.
    4. Berman, M. R.; Lin, M. C. Chem. Phys. 1983, 82, 435.
    5. Faure, A.; Rist, C.; Valiron, P. Chem. Phys. 1999, 241, 29.
    6. Carl, S. A.; Elsamra, R. M. I.; Kulkarni, R. M.; Nguyen, H. M. T.; Peeters, J. J. Phys. Chem. A 2004, 108, 3695.
    7. Kuo, K. K.; Summerfield, M. Fundamentals of Solid Propellant Combustion, Progress in Astronautics and Aeronautics; AIAA, Inc. New York, 1984; Vol. 90.
    8. Alexander, M. H.; Dagdigian, P. J.; Jacox, M. E.; Kolb, C. E.; Melius, C. F.; et al. Prog. Energy Combust. Sci. 1991, 17, 263.
    9. Adams, G. F.; Shaw, R. W., Jr. Annu. ReV. Phys. Chem. 1992, 43, 311.
    10. Mebel, A. M.; Lin, M. C.; Morokuma, K.; Melius, C. F. J. Phys. Chem. 1995, 99, 6842.
    11. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J. J. Phys. Chem. Ref. Data 1992, 21, 1125.
    12. Lu, X.; Park, J.; Lin, M. C. J. Phys. Chem. A. 2000, 104, 8730.
    13. Hsu, C.-C.; Lin, M. C.; Mebel, A. M.; Melius, C. F. J. Phys. Chem. A. 1997, 101, 60.
    14. Lu, X.; Musin, R. N.; Lin, M. C. J. Phys. Chem. A. 2000, 104, 5141.
    15. Kaiser, E. W.; Japar, S. M. J. Phys. Chem. 1978, 82, 2753.
    16. Zdzislaw, L.; Zofia, M.; Adriana, O.-M.; Robert, W.; Konstantin, G. T. Phys. Chem. Chem. Phys. 1999, 1, 2441.
    17. Robert, W.; Zdzislaw, L.; Lundell, J. J. Phys. Chem. A. 1999, 103, 6234.
    18. Adriana, O.-M.; Krzysztof, M.; Zofia, M. J. Mol. Stru. 2005, 738, 193.
    19. Li, Y.; Li, H.; Hou, H.; Wang, B. J. Phys. Chem. A. 2005, 109, 3166.
    20. Yuri, B.; Stéphane, L.; Georges, L. B. J. Photoch. Photobio. A 2004, 168, 103.
    21.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.11; Gaussian, Inc.: Pittsburgh, PA, 1998.
    22. Schlegel, H. B. J. Chem. Phys. 1986, 84, 15.
    23. Nguyen, M. T.; Creve, S.; Vanquickenborne, L. G. J. Phys. Chem. 1996, 100, 18422.
    24. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
    25. Ignatyev, I. S.; Xie, Y.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 1997, 107, 141.
    26. Schlegel, H. B.; Sosa, C. Chem. Phys. Lett. 1988, 145, 329.
    27. McDouall, J. J. W.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2363.
    28. Farnell, L.; Pople, J. A. Radom, L. J. Phys. Chem. 1983, 87, 79.
    29. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
    30. Purvis, G.D.; Bartlett, R.J. J. Chem. Phys. 76 (1982) 1910.
    31. Dunning, T. H.; Jr. J. Chem. Phys. 1989, 90, 1007.
    32. Sander, S.P.; Friedl, R.R.; Golden, D.M.; Kurylo, M.J.; Huie, R.E.; Orkin, V.L.; Moortgat, G.K.; Ravishankara, A.R.; Kolb, C.E.; Molina, M.J.; Finlayson-Pitts, B.J. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No.14, JPL Publication 02-25, NASA, Jet Propulsion Laboratory, Pasadena, CA, 2003.
    33. Coffin, J. M.; Pulay, P. J. Phys. Chem. 1991, 95, 118.
    34. Jones, L. H.; Asprey, L. B.; Ryan, R. R. J. Chem. Phys. 1967, 47, 3371.
    35. Foster, S. C.; Johns, J. W. C. J. Mol. Specrrosc. 1984, 103, 176.
    36. Ochsenfeld, C.; Kaiser, R. I.; Lee, Y. T. J. Chem. Phys. 1997, 106, 4141.
    37. Li, J. L.; Huang, X. R.; Bai, H. T.; Geng, Cai-Yun; Yu, G. T.; Sun, C. C. J. Mol. Struc.-THEOCHEM 2005, 730, 205.
    38. Li, J. L.; Geng, Cai-Yun; Huang, X. R.; Sun, C. C. J. Chem. Theo. Comput. (submitted)
    39. Coffin, J. M.; Pulay, P. J. Phys. Chem. 1991, 95, 118.
    40. Jones, L. H.; Asprey, L. B.; Ryan, R. R. J. Chem. Phys. 1967, 47, 3371.
    41. Foster, S. C.; Johns, J. W. C. J. Mol. Specrrosc. 1984, 103, 176.
    42. Mebel, A. M.; Diau, E. W. G.; Lin, M. C.; Morokuma, K. J. Phys. Chem. 1996, 100, 7517.
    1. Argo A. M., Odzak J. F., Lai F. S. et al. Nature [J] 2002, 415, 623―626
    2. Jentoft R. E., Tsapatsis M., Davis M. E. et al. J. Catal. [J] 1998, 179, 565―580
    3. Argo A. M., and Gates B. C. Langmuir [J] 2002, 18, 2152―2157
    4. BAI Hong-Tao (白洪涛), HUANG Xu-Ri (黄旭日), YU Jian-Kang (于健康), et al. Chem. J. Chinese Universities(高等学校化学学报) [J], 2005, 26(4): 697―701
    5. Becke A.D. Phys. Rev. A [J] 1988, 38, 3098―3100
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.