基于软磁铁氧体的高速永磁无刷电机磁场分析及弱磁结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速轴承技术和电机控制技术的发展,高速永磁电机以其低转子损耗、高功率密度的特点,应用越来越广泛。然而,在高速状态下,永磁电机铁心内磁场交变频率很高,定子铁耗很大,发热严重。为了减少定子铁耗,本文结合软磁铁氧体高初始磁导率、高电阻率、低成本的特点,提出了一种基于软磁铁氧体的高速永磁无刷直流电机结构,并对这种电机进行了深入地分析,主要内容如下:
     首先,基于软磁铁氧体高磁导率、高电阻率的特点,将软磁铁氧体磁环作为电机定子铁心,转子采用钕铁硼磁环,构成无齿槽电机结构,通过定转子尺寸的合理匹配可以使软磁铁氧体和转子钕铁硼各自运行于理想工作点,提高了电机功率密度的同时使电机铁耗大大降低,效率明显提升。通过样机实验证明本文提出的电机设计方案是正确可行的。
     其次,对基于软磁铁氧体的高速永磁无刷直流电机内部磁场进行了深入分析研究。一方面,通过分析计算无齿槽结构永磁电机内的气隙磁场分布特点,指出电机气隙内磁场分布不均匀,即同一根绕组导体处于不同的位置感生旋转电动势不同。同时转子磁钢充磁方式对电机气隙磁场影响较大,通过计算比较发现转子磁钢采用平行充磁可以有效提高电机内气隙磁场的大小,适用于高速永磁电机。另一方面,基于无齿槽电机气隙磁场的解析计算结果,进一步推导了该类电机绕组感生电动势解析计算公式,其计算结果与有限元对比,吻合较好,证明该计算方法准确可行,为电机的设计计算提供依据。另外,由于无齿槽结构电机有效气隙很大,电机的端部漏磁严重,本文利用三维有限元分析了电机的端部漏磁,指出端部漏磁对于靠近端部的气隙磁场影响严重,电机设计时必须考虑这一因素的影响。基于此本文提出了一种改进的转子励磁结构,以改善电机端部漏磁,通过三维有限元计算结果证明该转子励磁结构是有效的、可行的。
     再次,结合软磁铁氧体材料饱和磁感应强度较低以及软磁铁氧体为各向同性软磁材料的特点,提出了一种新的高速永磁电机弱磁结构,电机的直流励磁绕组通过外部旁路铁轭给电机定子铁心加一轴磁场使其饱和,从而增大转子永磁磁路的磁阻,达到弱磁的目的。通过三维有限元分析计算,证明此弱磁结构的正确性、有效性。为了简化有限元计算,对上述弱磁结构电机的三维磁场,提出了一种等效的二维有限元模型,通过与三维有限元计算结果的对比证明该二维等效模型是准确可靠的。
     最后,基于无位置传感器无刷电机专用芯片ML4425,本文设计了一套高速永磁无刷直流电机控制系统,并进行了样机实际运行试验,证明了此控制系统的可行性。
With the development of high-speed bearings and motor control technique, the High-speed permanent-magnet motors, which have advantage of low rotor loss and high power density, have been applied more and more extensively. However, in the state of high speed, the frequency of alternating magnetic field is so high that the stator iron loss is large, which leads to the motor overheating. In order to reduce the stator iron loss, A permanent magnet brushless DC motor is designed, the material of which the stator is soft ferrite, which has the characteristics of high initial permeability, high resistivity and low cost. And then a depth study of this motor is carried out. The main contents are as following:
     Firstly, based on the characteristics of high permeability and high resistivity of soft ferrite, a slotless motor structure is constructed, which the stator core is made up of soft ferrite and the rotor of NdFeB magnetic ring. The sizes of stator and rotor are matched appropriately, which makes the soft ferrite and NdFeB run at the ideal operating point and the power density is increased while the motor iron loss is reduced greatly and efficiency improved significantly. Prototype experiments indicate that the design proposed in this paper is feasible.
     Secondly, the internal magnetic field of ferrite-based high-speed permanent magnet brushless DC motor is analyzed especially. On the one hand, by analyzing the characteristic of the distribution of slotless permanent magnet motor, the conclusion that the distribution of gap magnetic field is not homogeneous, i.e.the same conductor in a winding generates different electromotive force in different location. Besides, the motor air gap magnetic field is influenced greatly by direction of the magnetization of rotor magnets. Via calculation, the conclusion that the parallel magnetized rotor magnet can enhance the air gap magnetic field is proposed, and parallel magnetization is fit to the high-speed permanent magnet motor. On the other hand, based on the analytical results of the slotless motor air gap magnetic field, analytical emf formula of that kind of motor is deduced and verified by the result of finite element analysis, and then the formula can provide the basis for the design and calculation of motor. Additionally, due to the big air gap of slotless motor, the magnetic leakage of motor end is serious. By means of three-dimensional finite element analysis, the flux leakage of motor ends are analyzed, and the result indicates that magnetic flux leakage influences the air gap magnetic field seriously, which should be considered in the design of motor. In order to reduce the magnetic leakage of the motor ends, an improved structure of the rotor excitation is proposed and verified by three-dimension finite element analysis.
     Thirdly, with the combination of the soft ferrite's characteristics of low saturation magnetic flux density and isotropy, a novel weak magnetic structure of high-speed permanent magnet motor is proposed, the DC excitation winding of which generates an axial magnetic field and enhances the saturation of the stator yoke iron core and increases the magnetic reluctance of permanent magnet circuit, and the goal of weakening magnetic is achieved. The correctness and feasibility are verified by finite element analysis. In order to simplify the calculation of finite element analysis, a two-dimension finite element model of the weakening magnetic structure equivalent to three-dimension counterpart is proposed and compared with the result of three-dimension finite element analysis, and reach the conclusion that the two-dimension finite element model is accurate and reliable.
     Finally, based on sensorless brushless motor ASIC, a control system of high-speed permanent magnet brushless DC motor is designed and prototype testing is carried out, which verifies the feasibility of the control system.
引文
[1]黄允凯,余莉.速永磁电动机设计的关键问题.电机,2006,39(8):6-9
    [2]李鲲鹏.高速电机电路模型和铁耗的分析与计算[D].硕士.南京:东南大学,2003.3
    [3]王民生,张侠.高速无刷直流电动机及其应用.微电机,2006,39(4):61—62
    [4]周凤争,沈建新,王凯,林瑞光.高速永磁无刷直流电动机拓扑结构的研究.微特电机,2007
    [5]沈建新.超高速永磁无刷电机拓扑结构与控制策略的研究[R].浙江省自然科学基金(Y104442)申请报告,2004.
    [6]李钟明,刘卫国.永磁电动机[M].北京:国防工业出版社,1999.
    [7]唐任远.现代永磁电动机理论与设计[M].北京:机械工业出社.2002
    [8]胡文静.永磁无刷直流电动机的发展及展望[J].微电机,2002年第35卷第4期,37-38.
    [9]强曼若.无刷直流电动机的发展与应用[J].微电机,1995,28(1):23—29.
    [10]张琛.永磁无刷直流电动机原理及其应用[M].北京:机械工业出版社,2004.
    [11]叶金虎.无刷直流电动机.[M]北京:科学出版社,1982.
    [12]王秀和等编著.永磁电动机[M].中国电力出版社,2008.
    [12]李钟明,刘卫国.永磁电动机[M].北京:国防工业出版社,1999.
    [13]王凤翔.高速电机的设计特点及相关技术研究.沈阳工业大学学报,2006,28(3):258—263
    [14]LI T, Slemon G. Reduction of cogging torque in permanent motors[J]. IEEE Tansctions on Magnetics,1998,29(2):2028-2031
    [15]N. Bianchi, S. Bolognani, and ELuise. High Speed Drive Using a Slotless PM Motor, Proc.IEE—Elect. Power Applicat. vOl.21, no.4, PP:1083-1090, July.2006
    [16]周兵,徐衍亮.无槽绕组无刷直流电机的转矩分析.微电机,2003,36(2):11.12
    [17]王晓远,冯华,李娟.无齿槽无刷直流电动机气隙磁密有限元分析.微电机
    [18]陈阳生,林友仰.永磁电机气隙磁密的分析计算.电机工程学报.1994年9月
    [19]徐成喜.无槽无刷直流电动机及其磁钢最佳工作点的确定.[J]微特电机1995,5
    [20]唐敏。无槽电枢电动机的发热分析[J]。电机技术,1999,(4):13.15
    [21]Miroslav Markovic and Yves Perriard. Analytical Solution for Rotor Eddy-Current Losses in a Slotless Permanent-Magnet Motor:The Case of Current Sheet Excitation. IEEE Transactions on Magnetics, VOL.44, NO.3, MARCH 2008
    [22]Sang-Ho Lee, Su-Beom Park, Soon-0 Kwon, Ji-Young Lee, Jung-Jong Lee, Jung-Pyo Hong, and Jin Hur. Characteristic Analysis of the Slotless Axial-Flux Type Brushless DC Motors Using Image Method. IEEE Transactions on Magnetics, VOL.42, NO.4, APRIL 2006
    [23]Mi-Yong Kim, Yong-Chul Kim, and Gyu-Tak Kim. Design of Slotless-Type PMLSM for High Power Density Using Divided PM. IEEE Transactions on Magnetics, VOL.40, NO.2, MARCH 2004
    [24]Parag R. Upadhyay, K. R. Rajagopal, and B. P. Singh. Effect of Armature Reaction on the Performance of an Axial-Field Permanent-Magnet Brushless DC Motor Using FE Method. IEEE Tansctions on Magnetics, VOL.40, NO.4, JULY 2004
    [25]Ernest A. Mendrela, Ryszard Beniak, and Rafal Wrobel. Influence of Stator Structure on Electromechanical Parameters of Torus-Type Brushless DC Motor. IEEE Transactions on energy conversion, VOL.18, NO.2, JUNE 2003.
    [26]Miroslav Markovic and Yves Perriard. Simplified Design Methodology for a Slotless Brushless DC Motor. IEEE Transactions on Magnetics, VOL.42, NO.12, DECEMBER 2006.
    [27]吕志勇,江建中.永磁无刷直流电机无位置传感器控制综述.中小型电机,2000,27(4):33—36
    [28]李天舒,刘军.反电势法控制无刷直流电动机实验研究.2008年,第1期.
    [29]双纪文,黄志辉.基于DSP的无位置传感器无刷直流电机控制系统.机车电传
    动.2008年。12期.
    [30]Yu Tao, Wang Fengxiang, Wang Jiqiang. "Investigation on Structure of Stator Core and Winding for High Speed PM Machines."Proceedings of the Eighth International Conference, Volume 2,27-29 Sept 2005 p:903-906
    [31]Wang Jiqiang, Wang Fengxiang, Yu Tao. "Analysis of Rotor Losses for a High Speed PM Generator. " IEEE Trans on magnetics, vOl.38, no.5, september 2002, p:3285-3287
    [32]Nicola Bianchi Silverio Bolognani and Fabio Luise. "Potentials and Limits of High—Speed PM Motors. " IEEE Trans on Industry Applications, VOl.40, No.6, November 2004. P:1570-1578
    [33]M. A. Rahman, Akira Chiba, and Tadashi Fukao. "Super High Speed Electrical Machines—Summary. " Power Engineering Society General Meeting,6-10 June 2004. VOl.2. p:1272-1275
    [34]沈建新,费伟中,陈利根.气隙磁场波形及磁瓦充磁方式对无刷直流电动机性能的影响.微特电机2006年第6期
    [35]朱德明,严仰光.表贴式永磁电机的两种充磁方式南京航空航天大学学报Vol.38 No.3 Jun.2006
    [36]周凤争,刘宝成,唐庆华,王凯,沈建新.高速无刷直流电机转子充磁方式研究微电机2009年第42卷第8期
    [37]Z. Q. Zhu, David Howe, and C. C. Chan. "Improved analytical model for predicting the magnetic field distribution in brushless permanent— magnet machines", IEEE Transaction on magnetics. VOl.38, No.1, pp:229-238. January 2002
    [38]李琳,林瑞光,曹亮.基于新型弱磁控制方法的无刷直流电机有限元分析,微电机2006年第39卷第8期
    [39]李榕,刘卫国,刘向阳,刘景林.永磁无刷直流电机消除逆变环流的弱磁性能研究.电工技术学报Vol.22 No.9 Sep.2007
    [40]贾爱萍,须斌,秦小雷,陈宝.电动自行车用无刷直流电动机弱磁控制技术.
    微特电机2005年第8期
    [41]谭建成著.电机控制专用集成电路.机械工业出版社,2003
    [42]吴胜华.高压悬浮驱动器IR2110的原理和扩展应用.电源技术应用,2002.7
    [43]杨志斌,黎海文,吴一辉,基于ML4426的电磁型平面微电机转速控制,微电机,Vol.37,N0.6,pp.37-46,2004。
    [44]刘刚,王志强,房建成.永磁无刷直流电机控制技术与应用[M].机械工业出版社,2008.
    [45]ML4425无位置传感器的BLDC电动机控制器参考手册[M],武汉,武汉力源电子股份有限公司发行,1998.
    [46]刘庆福.刘刚等.无位置传感器无刷直流电动机的高速驱动系统,微电机,No.35,05,2002。
    [47]邹继斌.无位置传感器无刷直流电机驱动电路的研究,微电机,Vol.32,No.2,pp16-19,1999。
    [48]刘春基,王强.电动势换向无刷直流电机的预定位方式起动,微特电机,No.2,pp8-10,1999。
    [49];先峰峰,周顺荣等,无刷直流电动机无位置传感器驱动系统,微特电机,No.35,01,2004。
    [50]汪洋.无位置传感器无刷直流电机稳定运行控制,微特电机,N0.3,pp.32-34,2004。
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.