玉米秸秆微生物燃料电池产电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源供求关系的不平衡,人们越来越重视对后续能源的开发,并强调能源形式的多样化。近年来,微生物燃料电池(MFC)已成为一个研究热点。将玉米秸秆与微生物燃料电池结合,不但可以解决秸秆的有效利用问题,还可以通过微生物燃料电池将秸秆中蕴藏的化学能直接转化为电能,具有广阔的发展前景。
     本论文将汽爆玉米秸秆经过Ca(OH)2过量法解毒洗涤后,得到秸秆水洗液和剩余固体两部分。利用空气阴极单室瓶形反应器,研究了以这两部分分别作为“燃料”时反应器的产电性能。结果表明,水洗液经过稀释后(1000mg/L)可以作为反应器的底物进行产电,得到的最高功率密度为644mW/m2 ,与相同浓度的木糖做底物时得到的功率密度696W/m 2相当。水洗液的缓冲强度和电导率对MFC的功率输出有很大影响,在低电导率条件下(<20mS/cm),缓冲液浓度从50mM提高到200mM,功率输出提高100%。而当电导率升高到20mS/cm时,缓冲强度对功率输出几乎没有影响(987±38mW/m2)。
     以本实验室筛选和保存的纤维素降解菌Chaetomium spp.和Bacillus spp.与纤维素降解混合菌PCS-S和H-C为秸秆降解的生物催化剂,探讨了以秸秆为底物进行生物产电的可行性。纤维素降解纯菌和混合菌均能使纤维素降解,但没有电流产生,但加入产电菌后,秸秆在纤维素降解混合菌H-C和产电菌联合作用下降解并产生电流。以汽爆预处理的玉米秸秆作底物时,加入H-C可以获得502mW/m2的功率密度,高于未经预处理的玉米秸秆(448mW/m2)。纤维素酶可以作为单独底物产电,当它与秸秆共同作为底物时,功率密度仅提高12.7%。升高环境温度抑制了产电菌的活性,从而降低了MFC的功率输出。
With imbalance of supply and demand, people pay more attention to exploitation of alternative energy and emphasize energy diversification. Recently, microbial fuel cell (MFC) has become a research focus. It is a wide development prospect to combining corn stover and MFC technology, since this can not only solve the problem of effective utilization of corn stover, but can also exploit the energy in the corn stover through direct energy conversion in MFC.
     Through detoxification washing of steam-exploded corn stover using overliming, hydrolysate and residual solid were obtained. The performance of electricity generation was investigated in air-cathode single chamber MFC using these two parts as the“fuel”. The results showed that electricity could be produced from hydrolysate. The maximum power density of hydrolysate after diluted to 1000mg/L was 644mW/m2 , which was comparable with 696mW/m 2 generated by xylose in the same concentration. Phosphate buffer solution (PBS) concentration (50mM PBS and 200mM PBS) and solution conductivity were found to have a great effect on power output. When the concentration of buffer solution increased from 50mM to 200mM, the power output increased by 100% under the low conductivity environment (<20mS/cm). But when conductivity increased to 20mS/cm, buffer capacity had little effect on power output (987±38mW/m2).
     The feasibility of electricity production from corn stover using cellulose degradation bacteria Chaetomium spp.、Bacillus spp.、PCS-S and H-C from our lab as biocatalysts in the MFC reactors was studied. The results showed that the cellulose degradation bacteria including pure strains and mixed cultures can not produce electricity directly using corn stover as the substrate. However, electricity was produced when mixed culture H-C cooperated with electrogenesis bacteria. The maximum power density from steam-exploded corn stover when adding H-C was 502mW/m2, which was higher than that of unprepared corn stover (448mW/m2). Cellulase can be used as the substrate for electricity generation. The power density only increased by 12.7% when together with corn stover as the substrate. The activity of electrogenesis bacteria was inhibited when temperature increased, therefore, the power output of MFC decreased.
引文
1 K. Rabaey, W. Verstraete. Microbial Fuel Cells: Novel Biotechnology for Energy Generation. Trends in Biotechnology. 2005, 23(6): 291~298
    2靳草,国庆.关于我国能源战略的思考.经济问题探索. 2006, (3): 4~11
    3侯霖,薛冬桦,李涛,金花.玉米秸秆预处理及水解生成可发酵性糖.长春工业大学学报. 2007, 28(1): 26~28
    4 G. Milazzo, M. Blank.生物电化学―生物氧化还原反应.天津科学技术出版社, 1990: 335~348
    5宝玥,吴霞琴.生物燃料电池的研究进展.电化学. 2004, 10(1): 1~8
    6 M. C. Potter. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proc R Soc Ser B. 1911, 84(571): 260~276
    7韩保祥,毕可万.采用葡萄糖氧化酶的生物燃料电池的研究.生物工程学报. 1992, 8(2): 203~206
    8 B. H. Kim, H. J. Kim, M. S. Hyun, D. H. Park. Direct Electrode Reaction of Fe (III)-reducing Bacterium, Shewanella putrifaciens. J Microbiol Biotechnol. 1999, 9(5): 127~131
    9 F. Scholz, U. Schroder. Bacterial Batteries. Nat Biotechnol. 2003, 21(9): 3~4
    10 H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, B. H. Kim. A Mediatorless Microbial Fuel Cell Using a Metal Reducing Bacterium, Shewanella putrefaciens. Enzyme Microb Tech. 2002, 30(2): 145~152
    11 B. Min, S. Cheng, B. E. Logan. Electricity Generation Using Membrane and Salt Bridge Microbial Fuel Cells. Water Res. 2005, 39(9): 1675~1686
    12 Y. A. Gorby, S. Yanina, J. S. McLean, et al. Electrically Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and other Microorganisms. PNAS. 2006, 103(30): 11358~11363
    13 B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, et al. Microbial fuel cells: Methodology and Technology. Environ Sci Technol. 2006, 40(17): 5181~5192
    14 T. H. Pham, K. Rabaey, P. Aelterman, P. Clauwaert P, L. De. Schamphelaire, N. Boon, W. Verstraete. Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology. Eng Life Sci. 2006, 6(3): 285~292
    15 R. A. Bullen, T. C. Arnot, J. B. Lakeman, F. C. Walsh. Biofuel Cells andtheir Development. Biosens Bioelectron. 2006, 21(11): 2015~2045
    16 A. ter Heijne, H. V. M. Hamelers, V. de Wilde, et al. A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells. Environ. Sci. Technol. 2006, 40(17): 5200~5205
    17 S. Oh, B. Min, B. E. Logan. Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells. Environ. Sci. Technol. 2004, 38(6): 4900~4904
    18 K. Rabaey, N. Boon, S. D. Siciliano, et al. Biofuel Cells Select for Microbial Consortia that Self-mediate Electron Transfer. Appl. Environ. Microbiol. 2004, 70(4): 5373~5382
    19 Z. He, N. Wagner, S. D. Minteer, et al. The Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy. Environ. Sci. Technol. 2006, 40(8): 5212~5217
    20 K. Rabaey, P. Clauwaert, P. Aelterman, et al. Tubular Microbial Fuel Cells for Efficient Electricity Generation. Environ. Sci. Technol. 2005, 39(9): 8077~8082
    21 S. Freguia, K. Rabaey, Z. G. Yuan, et al. Electron and Carbon Balances in Microbial Fuel Cells Reveal Temporary Bacterial Storage Behavior during Electricity Generation. Environ. Sci. Technol. 2007, 41(12): 2915~2921
    22 S. Cheng, H. Liu, B. E. Logan. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells. Environ. Sci. Technol. 2006, 40(9): 364~369
    23曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报. 2006, 26(8): 1252~1257
    24 D. R. Bond, D. E. Holmes, L. M. Tender, et al. Electrode-reducing Microorganisms that Harvest Energy from Marine Sediments. Science. 2002, 295(6): 483~485
    25 P. Aelterman, K. Rabaey, H. T. Pham, et al. Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells. Environ. Sci. Technol. 2006, 40(7): 3388~3394
    26 H. Liu, B. E. Logan. Electricity Generation Using an Air-cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. EnViron. Sci. Technol. 2004, 38(14): 4040~4046
    27 K. Rabaey, G. Lissens, S. D. Siciliano, W. A. Verstraete. A Microbial Fuel Cell Capable of Converting Glucose to Electricity at High Rate and Efficiency. Biotechnol. Lett. 2003, 25(18): 1531~1535
    28 Z. He, S. D. Minteer, L. T. Angenent. Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. EnViron. Sci. Technol. 2005, 39(14): 5262~5267
    29 H. Liu, S. Cheng, B. E. Logan. Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2005, 39(2): 658~662
    30 B. E. Logan, C. Murano, K. Scott, N. D. Gray, I. M. Head. Electricity Generation from Cysteine in a Microbial Fuel Cell. Water Research. 2005, 39(5): 942~952
    31 J. Heilmann, B. E. Logan. Production of Electricity from Proteins Using a Microbial Fuel Cell. Water Environment Research. 2006, 78(5): 531~537
    32 J. Niessen, U. Schroder, F. Scholz. Exploiting Complex Carbohydrates for Microbial Electricity Generation-a Bacterial Fuel Cell Operating on Starch. Electrochem. Commun. 2004, 6(9): 955~958
    33 Z. Ren, T. Ward, J. Regan. Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture. ENVIRON. SCI. & TECHNOL. 2007, 41(13): 4781~4786
    34 M.A. Rodrigo, P. Ca?nizares, J. Lobato, R. Paz, C. S′aez, J.J. Linares. Production of Electricity from the Treatment of Urban Wastewater Using a Microbial Fuel Cell. Journal of Power Sources. 2007, 169(1): 198~204
    35 B. Min, B. E. Logan. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38(21): 5809~5814
    36 S. E. Oh, B. E. Logan. Hydrogen and Electricity Production from a Food Processing Wastewater Using Fermentation and Microbial Fuel Cell Technologies. Water Research. 2005, 39(19): 4673~4682
    37 B. Min, J. R. Kim, S. E. Oh, J. M. Regan, B. E. Logan. Electricity Generation from Swine Wastewater Using Microbial Fuel Cells. Water Research. 2005, 39(20): 4961~4968
    38 Y. Feng, X. Wang, B. E. Logan, H. Lee. Brewery Wastewater Treatment Using Air-cathode Microbial Fuel Cells. Applied Microbiology and Biotechnology. 2008, 78(5): 873~880
    39 Y. Zuo, P. C. Maness, B. E. Logan. Electricity Production from Steam-Exploded Corn Stover Biomass. Energy & Fuels. 2006, 20(4): 1716~1721
    40 H. Rismani-Yazdi, A. D. Christy, B. A. Dehority, M. Morrison, Z. Yu, O. H. Tuovinen. Electricity Generation From Cellulose by Rumen Microorganisms in Microbial Fuel Cells. Biotechnology and Bioengineering. 2007, 97(6):1398~1407
    41黄霞,梁鹏,曹效鑫.无介体微生物燃料电池的研究进展.中国给水排水. 2007, 23(4): 1~6
    42 A. Pizzariello, M. Stred'ansky, S. Miertus. A Glucose/Hydrogen Peroxide Biofuel Cell that Uses Oxidase and Peroxidase as Catalysts by Composite Bulk-modified Bioelectrodes Based on a Solid Binding Matrix. Bioelectrochemistry. 2002, 56(1~2): 99~105
    43 K. Rabaey, W. Ossieur, M. Verhaege, W. Verstraete. Continuous Microbial Fuel Cells Convert Carbohydrates to Electricity. Water Sci Technol. 2005, 52(11): 515~523
    44 R. L. Meyer, L. H. Larsen, N. P. Revsbech. Microscale Biosensor for Measurement of Volatile Fatty Acids in Anoxic Environments. Appl. Environ. Microbiol. 2002, 68(3): 1204~1210
    45 I. S. Chang, J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, B. H. Kim. Continuous Determination of Biochemical Oxygen Demand Using Microbial Fuel Cell Type Biosensor. Biosens. Bioelectron. 2004, 19(6): 607~613
    46 L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig, D. R. Lovley. Harnessing Microbially Generated Power on the Seafloor. Nat. Biotechnol. 2002, 20(8): 821~825
    47 D. R. Lovley, E. J. P. Phillips. Novel Mode of Microbial Energy Metabolism: Organism Carbon Oxidation Coupled to Dissimilatory Reduction of Iron and Manganese. Appl. Environ. Microbiol. 1988, 54(7): 1472~1480
    48 S. A. Cheng, H. Liu, B. E. Logan. Increased Performance of Single-chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochem Commun. 2006, 8(3): 489~494
    49 M. A. H. Franson. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, 1998: 13~18
    50陈洪章,刘健,李佐虎.半纤维素蒸汽爆破水解物抽提及其发酵生产单细胞蛋白工艺.化工冶金. 1999, 20(4): 428~431
    51 H. Liu, S. Cheng, B. E. Logan. Power Generation in Fed-batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature and Reactor Configuration. EnViron. Sci. Technol. 2005, 39(14): 5488~5493
    52 D. R. Bond, D. R. Lovley. Electricity production by Geobacter Sulfurreducens Attached to Electrodes. Appl. Environ. Microbial. 2003, 69(3): 1548~1555
    53 S. K. Chaudhuri, D. R. Lovley. Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nat. Biotechnol. 2003, 21(10):1229~1232
    54 D. R. Lovley. Bug Juice:Harvesting Electricity with Microorganisms. Nat. Rev. Microbial. 2006, 4(6): 497~508
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.