黄瓜霜霉病菌和番茄早疫病菌对嘧菌酯的抗药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嘧菌酯(Azoxystrobin)是由先正达公司(原捷利康)开发的,也是第一个商品化的甲氧基丙烯酸酯类杀菌剂,具有杀菌活性高,防病谱广,与环境相容性好等突出优点。甲氧基丙烯酸酯类杀菌剂作用于真菌线粒体电子传递链的复合物Ⅲ氧化还原酶系,阻断电子传递,干扰能量合成,因其通过与细胞色素b(Cyt b)的Q_o部位结合而称之为Q_o抑制剂(Q_oI)。由于其独特的作用机制,与已有的所有杀菌剂无交互抗药性。但已有研究表明多种植物病原真菌对该类药剂产生抗药性自发突变频率较高,在高选择压下自然界易形成抗药性病原真菌群体。
     黄瓜霜霉病和番茄早疫病是中国黄瓜和番茄生产上的严重病害。但长期以来一直缺乏防治这两种病害的有效药剂,寻找新型高效杀菌剂来控制这两种病害的流行已成为化学防治工作者的目标。所以研究番茄早疫病菌和黄瓜霜霉病菌对嘧菌酯的敏感性及其在嘧菌酯处理下的生理生化变化和靶标基因表达水平上的变化具有重要的现实意义。
     离体培养条件下,嘧菌酯单独作用对番茄早疫病菌的菌丝生长和孢子萌发的抑制作用不明显。旁路氧化在番茄早疫病菌野生菌株的孢子萌发中提供大于27.03倍生理功能的补偿作用;在菌丝生长中提供4.83-9.95倍的补偿作用。嘧菌酯对番茄早疫病菌的菌丝生长、孢子萌发、孢子产生有抑制作用。
     12.5μg/mL的嘧菌酯处理1h对菌丝呼吸耗氧有良好的抑制作用,其抑制效果随药剂浓度提高而略有增加,但对菌丝生长的抑制率随药剂浓度的提高增加缓慢。随处理时间延长,药剂对菌丝耗氧的抑制作用下降,但仍然抑制菌丝生长。研究证明延长处理时间呼吸作用对药剂的敏感性下降的机理不是旁路氧化途径增强,也不是因为基质中药剂效力的下降而是存在其它机制。
     黄瓜霜霉病是由Pseudoperonospora cubensis引起的,能导致黄瓜产量的减少。在2006年从山东省寿光地区温室大棚中采集的106个黄瓜霜霉菌株中EC_(50)的范围是0.0063-0.0688μg/mL,平均EC_(50)为0.01955μg/mL,没有监测到抗性菌株。在2007年采集的97个黄瓜霜霉菌株中,有57株为抗性菌株,抗性菌株的EC_(50)为0.609 to>51.2μg/mL,抗性倍数为21.15->2618.9。
     2007年从山东寿光地区采集的97个黄瓜霜霉菌株中,监测到57个抗性菌株。在57个抗性菌株中EC_(50)为0.609-10μg/mL有20株,EC_(50)为10-50μg/mL有23株,EC_(50)为>51.2μg/mL有14株。抗性倍数为21.15->2618.9。从三个不同抗性水平范围中任意选取一个菌株,提取DNA,经过DNA单克隆及质粒提取,测序。实验结果发现抗药性菌株的Cytb基因发生了点突变(GGT-GCT),导致143位由甘氨酸突变为丙氨酸。抗性水平不同的菌株突变位点却相同,而且在一年的时间内就产生了抗性菌株。
Azoxystrobin,developed by Syngenta(Zeneca) company,was the first product of the strobilurin fungicides.It combines high level and broad-spectrum of fungicidal activity with excellent safety in the environment.Strobilurin fungicides inhibit mitochondrial respiration in fungi at a specific site on complexⅢand break energy synthesization of fungi.Strobilurins were called QoIs as they combined at Qo site of Cytb.This kind of fungicide was widely used because of their novel action mechanism and non-cross-resistance with any other presented fungicides.However,the frequency of spontaneous resistance mutation was high according to several research reports.It's easy to form resistant-population under high fungicidal selection pressure.
     Cucumber downy mildew(Pseudoperonospora cubensis) and Tomato early blight (Alternaria solani) are one of the serious diseases on China cucumber and tomato production,respectively.Aimed to control the popularity of Cucumber downy mildew and Tomato early blight,fungicidal workers are searching new fungicides.So,it is essential to embark on bioactivity and toxicology at molecular biochemical level of azoxystrobin to Pseudoperonospora cubensis and Alternaria solani.
     The bioactivity of azoxystrobin to Alternaria solani which had never been exposured to QoIs or QiIs was determined and also its influence on the fungus's biological properties was determined.We also made clear the synergistic effect of SHAM.The result was that azoxystrobin worked alone expressed less inhibition on mycelial growth and spore germination.Sensitivity of Alternaria solani to azoxystrobin could be decreased by the induction of alternative respiration.In the absence of a host,alternative respiration provided a>27.03-fold rescue potential from azoxystrobin during the germination of conidia derived from five wild-type isolates ofAlternaria solani.And for mycelial growth, the rescue potential was 4.83~9.95-fold.SHAM had synergistic effect on the bioactivity of Azoxystrobin.But,azoxystrobin alone could strongly inhibit conidia production and delay the pigment formation.
     Oxygen consumption test of mycelia of Alternaria solani showed that azoxystrobin strongly inhibited mycelial respiration after 1 hour of the treatment at 12.5μg/mL and the effect became stronger when the concentration was increased.As treatment time went on, the respiration inhibition on the mycelia decreased,while the mycelium growth was still inhibited strongly.Results showed that the sensitivity decrease of mycelium respiration to azoxystrobin was not caused by induction of alternative respiration or degrade of the fungicide in medium.
     Cucumber downy mildew caused by Pseudoperonospora cubensis limits crop production in Shandong province of China.Since management of downy mildew is strongly dependent on fungicides,a rational design of control programs requires a good understanding of the fungicide resistance phenomenon in field populations of the pathogen. A total of 106 and 97 isolates of P.cubensis were obtained in 2006 and 2007,respectively. The EC_(50) values for the growth of all the 106 isolates collected in 2006 were 0.0063-0.0688μg/mL with an average ECs0 value of 0.0196±0.0048μg/mL azoxystrobin which were considered sensitive isolates.However,57 field isolates of P.cubensis out of 97 collected in 2007 with EC_(50) that ranged from 0.609 to>51.2μg/mL were considered resistant to azoxystrobin.
     A total of 97 isolates of P.cubensis were obtained in 2007。There are 57 resistant isolates.The EC_(50) values for resistant isolates ranged from 0.609 to>51.2μg/mL,with the resistance factor 21.15->2618.9.Of all the 57 resistant isolates,the EC_(50) values of 20 isolates,23 isolates and 14 isolates were 0.609-10μg/mL,10-50μg/mL and>51.2μg/mL,respectively.One isolate was randomly selected from each of the three categories and one sensitive isolate was randomly selected for the molecular testing.A single point mutation(GGT to GCT) in the cytochrome b gene,resulting in substitution of glycine by alanine at position 143,was found in the three selected azoxystrobin-resistant isolates of downy mildew.This substitution in cytochrome b exhibited different resistance levels,with the resistance factor from 21.15 to greater than 2618.9.In addition,the different resistance levels seemed to appear within 1 year(within 2006 to 2007).
引文
[1] Affourtit C, Heaney-Steve P, Moore Anthony L. Mitochondrial electron transfer in the wheat pathogenic fungus Septoria tritici: on the role of alternative respiratory enzymes in fungicide resistance [J]. Biochimica et Biophysica Acta, 2000, 1459: 291 - 298
    
    [2] Avila-Adame C, Koller W. Impact of alternative respiration and target-site mutations in responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides [J]. Pest management Science, 2003c, 59:303 - 309
    [3] Avila-Adame C, Koller W. Insertional mutagenesis of Magnaporthe grisea toward decreased responsiveness of alternative respiration to inhibition by azoxystrobin [J]. Journal of Genetic Plant Pathology, 2003a, 69: 126 -131
    [4] Award. The strobilurin metominostrobin induces an alternative respiratory pathway in the rice blast fungus Magnaporthe grisea [J]. Journal of Genetic Plant Pathology, 2001, 67: 253 - 258
    [5] Bartlett D W, Clough J M, Godwin J R, et al The strobilurin fungicides [J]. Pest Management Science, 2002, 58: 649 - 662.
    [6] Basil N, Ziogas, Brian C, et al Alternatiev respiration: a biochemical Mechanism of resistance to Azoxystrobin (ICIA 5504) in Septoria tritici [J]. Pesticide Science, 1997, 50: 28 - 34
    [7] Baumler S, Sierotzki H, Gisi U, et al Evaluation of Erysiphe graminis f. sp. tritici field isolates for resistance to strobilurin fungicides with different SNP detection systems [J]. Pest Management Science, 2003, 59: 310-314
    [8] Becker W F, Jagow G V, Anke T, et al Oudemansin, strobilurin A, strobilurinB and myxothiazol :new inhibitors of the bcl segment of the respiratory chain with an E-13-methoxyacrylate system as common structural element [J]. FEBS Letters, 1981, 132: 329 - 333
    [9] Buck J W, Williams-Woodward J L. The effect of fungicides on urediniospore germination and disease development of daylily rust [J]. Crop Protection, 2003, 22: 135 -140
    [10] Chin K M, Chavaillaz D, Kaesbohrer M, et al Characterizing resistance risk of Erysiphe graminis f.sp.tritlci to strobilurins [J]. Crop Protection, 2001, 20: 87 - 96
    
    [11] Clough M J, Godfrey R A C. The strobilurin fungicides.In:Fungicidal Activity.Edited by Hutson H.D. and Miyamoto J., John Wiley&Sons Ltd., Chapters5, 1998: 109 -149
    
    [12] Cohen Y, Samoucha Y. Cross-resistance to four systemic fungicides in Metalaxyl-resistance strains of Phyrtophthora infedstans and Pseudoperonospora cubensis [J]. Plant Disease, 1984, 68: 137 -139
    [13] Dale S. Efficacy of Amistar against fruit and vegetable diseases in Asia [A]. Chemical Control of Plant Diseases in China. Vol.3 [C]. 2002, 42 - 49
    [14] David H, Gent-Howard F, Schwartz, et al Effect of commercial adjuvants on vegetable crop fungicide coverage,absorption, and efficacy [J]. Plant Disease, 2003, 87: 591 - 597
    [15] Eugene O, Erickson-Wayne F, Wilcox. Distributions of sensitivities to three sterol demethylation inhibitor fungicides among populations of Uncinula necatorsensitive and resistant to triadimefon [J]. Phytopathology, 1997, 87: 784-791
    [16] Euske R E, Gooding M J, Jones S A. The effects of adding picoxystrobin,azoxystrobin and nitrogen to a triazole programme on disease control, flag leaf senescence, yield and grain quality of winter wheat [J]. Crop Protection, 2003,22: 975 - 987
    [17] Fujita N, Hamada K, Inagaki M, et al Strobilurin baseline determination and resistance monitoring.(Abstr) Annual Phytopathology Society of Japan, 1999, 65 :692 -697
    [18] Galion M L, Leroux P, Smith C M. Uses and Challenges of Novel Compounds for Plant Disease Control [J]. Crop Protection, 2000, 19: 1-11.
    [19] Gilberto O, Wolfram K. Baseline sensitivities of Venturia insequalis populations to the strobiluri fungicide kresoxim-methyl [J]. Plant Disease, 1999, 83:274 - 278
    [20] Gisi U, Chin K M, Knapova G, et al Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides [J]. Crop Protection, 2000, 19: 863 - 872
    [21] Gisi U. Synergistic interaction of fungicides in mixtures [J]. Phytopathology, 1996, 86: 1273-1279
    [22] Glaab J, Werner M, Kaiser. Increased nitrate reductase activity in leaf tissue after application of the fungicide kresoxim-methyl [J]. Planta, 1999, 207: 442 - 448
    [23] Grossmann K, Retzlaff G. Bioregulatory effects of the fungicidal strobilurin Kresoxim-methyl in wheat (Triticum 8estivum) [J]. Pesticide Science, 1997, 50: 11 - 20
    [24] Gullino M L, Leroux P, Constance M. Uses and challenges of novel compounds for plant disease control [J]. Crop Protection, 2000,19: 1 -1
    [25] Gullino M L, Minuto A, Gilardi G, et al Efficacy of azoxystrobin and other strobilurins against Fusarium wilts of carnation, cyclamen and Paris daisy [J]. Crop Protection, 2002, 21: 57 - 61
    [26] Hellwig Y, Dasenbrock J, Klostermeyer D, et al New benzodioxepin type strobilurins from basidiomycetes. Structural revision and determination of the absolute configuration of strobilurin D and related β-methoxyacrylate antibiotics [J].Tetrahedron, 1999, 55: 10101 -10118
    [27] Howell N, Karin G. Mutational Analysis of the Mouse Mitochondrial Cytochrome b Gene [J].Journal of Molecular Biology, 1988, 203: 607 - 618
    [28] Ishii H, Fraaije B A, Sugiyama T, et al Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology, 2001, 91: 1166 -1171.
    [29] Ishii H, Noguchi K, Tomita Y, et al Occurrence of strobilurin resistance in powdery mildew and downy mildew on cucumber. (Abstr.) Annual Phytopathology Society of Japan, 65: 655
    [30] Jean-Paul di Rago, Jean-Yves Coppee, Anne-Marie Colson. Molecular basis for resistance to myxothiazol, Mucidin(strobilurin A), and stigmatellin [J]. The Journal of Biological Chemistry,1989, 264: 14543 - 14548
    [31] Joseph-Home T, Hollomon D W, Wood P M. Fungal Respiration: a Fusion of Standard and Alternative Components [J]. Biochim Biophys Acta, 2001, 1504: 179 -195.
    [32] Joseph-Home T, Hollomon D W. Functional Diversity within the Mitochondrial Electron Transport Chain of Plant Pathogenic Fungi [J]. Pest Managent Science, 2000, 56: 24 - 30.
    [33] Keinath A P, DuBose V B. Evaluation of fungicides for prevention and management of powdery mildew on watermelon [J]. Crop Protection, 2004,23: 35 - 42
    [34] Kim Yun-Sik, Dixon E W, Vincelli P, et al Field resistance to strobilurin (QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochromeb gene [J].Phytopathology, 2003, 93: 89 1 - 900
    [35] Kozovska Z, Maraz A, Magyar I, et al Multidrug resistance as a dominant molecular marker in transformation of wine yeast [J]. Journal of Biotechnology, 2001, 92: 27 - 35
    [36] Kroi S, Steglich W. Total synthesis of the strobilurins [J]. Tetrahedron, 2004, 4921 - 4929
    [37] Kunz A, Lutz B, Deising H, et al Assessment of sensitivities to anilinopyrimidine- and strobilurin-fungicides in populations of the apple scab fungus Venturia inaequalis. Journal of Phytopathology, 1998, 146: 231 - 238.
    [38] Louis K, Prom T, Isakeit. Laboratory, greenhouse, and field assessment of fourteen fungicides for activity against Claviceps africana, causal agent of Sorghum [J]. Ergot. Plant Disease, 2003, 87:252-258
    [39] Maria L, Ramirez, sofia Chulze, et al Impact of environmental factors and fungicides on growth and deoxinivalenol production by Fusarium graminearum isolates from Argentinian wheat [J]. Crop Protection, 2004, 23: 117 -125
    [40] Matheron M E, Porchas M. Comparison of five fungicides on development of root, crown, and fruit rot of Chile pepper and recovery of Phytophthora capsici from soil [J]. Plant Disease, 2000,84: 1038 -1043
    [41] Matheron M E, Porchas M. Impact of azoxystrobin, dimethomorph, fluazinam, fosety1-A1, and metalaxyl on grovrth, sporulation, and zoospore cyst germination of three Phytophthora spp [J].Plant disease, 2000, 84: 454 - 458
    [42] Ma Z H, Felts D, Michaolides T J. Resistance to azoxystrobin in Alternaria Isolates from pistachio in California [J]. Pesticide Biochemistry and Physiology, 2003, 77: 66 - 74
    [43] McManus P S, Best V M, Voland R. P, et al Sensitivity of Monilinia oxycocci to fenbuconazole and propiconazole in vitro and control of cranberry cottonball in the field [J]. Plant Disease, 1999,83:445-450
    [44] Miguez M, Reeve C, Wood P M, et al Alternative oxidase reduces the sensitivity ofMycosphaerella graminicola to QoI fungicides [J]. Pest Management Science, 2003, 60 :3 - 7
    [45] Mitani S, Araki S, Takii Y, et al The biochemical mode of action of the novel selective fungicide cyazofamid: specific inhibition of mitochondrial complex Ⅲ in Phytium spinosum [J]. Pesticide Biochemistry and Physiology, 2001, 71: 107 -115
    [46] Mizutani A, Yukiota H, Tamura H, et al Respiratory characteristics in Pyricularia oryzae exposed to a novel alkoxyiminoacetamide fungicide. Phytopathology, 1995, 85: 306 - 311
    [47] Mizutani A, Miki N, Yukioka H, et al A Possible Mechanism of Control of Rice Blast Disease by a Novel Alkoxyiminoacetamide Fungicide, SSF126 [J]. Phytopathology, 1996, 86: 295 - 300.
    
    [48] Mizutani A, Yukiota H, Tamura H, et al Respiratory Characteristics in Pyricularia oryzae Exposed to a Novel Alkoxyiminoacetamide Fungicide [J]. Phytopathology, 1995, 85: 306-311.
    [49] Ogasawara K, Enoyoshi T, Miyahara T, et al Cucurbit powdery mildew resistant to strobilurins. (Abstr.) Annual Phytopathology Society of Japan, 1999, 65: 655
    [50] Olaya G, Zheng D, KOller W. Differential Responses of Germinating Venturia inaequalis Conidia to Kresoxim-methyl [J]. Pesticide Science, 1998, 54: 230 - 236.
    [51] Olaya G, KOller W. Baseline Sensitivities of Venturia inaequalis Populations to the Strobilurin Fungicide Kresoxim-methyl [J]. Plant Disease, 1999, 83:274 - 278.
    [52] Olaya G, KOller W. Diversity of kresoxim-methyl sensitivities in baseline populations of Venturin inaequalis. Pesticide Science, 1999, 55: 1083 - 1088
    [53] Pasche J S, Wharam C M, Gudmestad N C. Shift in sensitivity of Alternaria solani in response to QoO fungicides [J]. Plant Disease, 2004, 88:181-187
    [54] Perez L, Hernandez A, Hernandez L, et al Effect of trifloxystrobin and azoxystrobin on the control of black sigatoka (Mcosphaerella fljiensis Morelet) on banana and plantain [J]. Crop Protection,2002,21:17-23
    [55] Raupach G S, Inc T, Kloepper J W. Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation [J] .Plant Disease,2000, 84: 1073 - 1075
    [56] Reuveni M, Cohen H, Zahavi T, et al Polar-a potent Polyoxin B compound for controlling powdery mildews in apple and nectarine trees, and grapevines [J]. Crop Protection, 2000, 19: 393 -399
    [57] Reuveni M, Sheglov D. Effects of azoxystrobin, Difenoconazole, polyoxin B (polar)and trifloxystrobin on germination and growth of Alternaria alternate and decay in red delicious apple fruit [J]. Crop Protection, 2002, 21: 951 - 955
    [58] Reuveni M. Activity of triflxystrobin against powdery and downy mildew diseases of grapevines [J]. Canadia Journal Plant Pathology, 2001a, 23: 52 - 59
    [59] Reuveni M. Efficacy of trifloxystrobin (Flint), a new strobilurin fungicide, in controlling powdery mildews on apple, mango and nectarine, and rust on prune trees [J]. Crop Protection, 2000, 19: 335-341
    [60] Reuveni M. Improved control of powdery mildew (Sphaerotheca pannosa) of nectarines in Israel using strobilurin and polyoxin B fungicides:mixtures with sulfur;and early bloom applications [J]. Crop Protection, 2001b, 20: 663 - 668
    [61] Robinsom H L, Ridout C J, Sierotzki H, et al Isogamous, hermaphroditic inheritance of mitochondrion-encoded resistance to Qo inhibitor fungicides in Blumeria graminis f.sp.tritici [J]. Fungal Genetics and Biology, 2002, 36: 98 -106
    [62] Rohel E A, Cavellier N, Hollomon D W. Microscopic analysis of the effect of azoxystrobin treatments in Mycosphaerella graminicola infection using fluorescent protection (GFP)-expressing transformants [J]. Pest Managment Science, 2001, 57: 1017 -1022
    [63] Rossi R, Carpita A, Ribecai A, et al Stereocontrolled synthesis of carbon-carbon double bond locked analogues of strobilurins which are characterized by atraps-1,2-disubstitued cyclopropane ring [J]. Tetrahedron, 2001, 57: 2847 - 2856
    [64] Russell P E. The assessment of resistance risk and registration of fungicides in the EU 9th Symp..Res .Commit. Fungic. Resist. (Abstr.) Annual Phytopathology Society of Japan, 9-18
    [65] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 1999
    [66] Sannino A, Bolzoni L, Bandini M. Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables [J]. Journal of Chromatography A, 2004,1036: 161 -169
    [67] Schepers H T. Persistence of resistance to fungicides in Sphaerotheca fuliginea [J]. Netherlands Journal of Plant Pathology, 1984, 90: 165 -171
    [68] Schutte G C, Mansfield R I, Smith H, et al Application of Azoxystrobin for Control of benomyl-resistant Guignardia citricarpa on Valencia oranges in south Africa [J]. Plant Disease, 2003, 87: 784 - 788
    [69] Sedegui M, Carroll R B, Morehatr A L, et al Comparison of assays for measuring sensitivity of Phytophthora infestans isolates to fungicides [J]. Plant Disease, 1999, 83:1167-1169
    [70] Sierotzki H, Paris S, Steinfeld U, et al Mode of resistance to respiration inhibitors at the cytochrome bcl enzyme complex of Mycosphaerella fijensis field isolates [J].Pest Managent Science, 2000a, 56: 833 - 841
    [71] Takeda T, Kawagoe Y, Uchida K, et al The appearance of resistant isolates to strobilurins. (Abstr.) Annual Phytopathology Society of Japan, 1999, 65: 655
    [72] Walter M, Harris-Virgin P, Thomas W, et al Agrochemicals suitable for downy mildew control in New Zealand boysenberry production [J]. Crop Protection, 2004, 23: 327 - 333
    [73] Wong F P, Wilcox W F. Distribution of baseline sensitivities to azoxystrobin among isolates of Plasmopara viticola [J]. Plant Disease, 2000, 84: 275 - 281.
    [74]Wong F P,Wilcox W E Distribution of Baseline Sensitibities to Azoxystrobin Among Isolates of Plasmoparaviticola[J].Plant Disease,2000;84(3):27 5-281
    [75]Wood P M,Hollomon D W.A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex Ⅲ[J].Pest Management Science,2003,59:499 - 511
    [76]Ziogas B N,Baldwin B C,Young J E.Alternative Respiration:a Biochemical Mechanism of Resistance to Azoxystrobin(ICIA5504) in Septoria tritici[J].Pesticide Science,1999,50:28 -34.
    [77]陈利锋,徐敬友.农业植物病理学(南方本)[M].北京:中国农业出版社,2001:314-317
    [78]金丽华,陈长军,王建新,等.旁路氧化作用对嘧菌酯抑制辣椒炭疽菌孢子萌发和菌丝生长的影响[J].植物病理学报,2007,37(3):289-295
    [79]黄星.水稻稻瘟病菌对三环唑的抗药性研究[D].南京:南京农业大学,2002
    [80]李长松,路兴波,杨崇良,等.植物病害对杀菌剂的抗性及治理对策[C]//周明国.中国植物病害化学防治研究(第一卷).北京:中国农业科学技术出版社,1998,62-64
    [81]李金先,王国荣,楼曼庆,等.60%氟吗锰锌防治黄瓜霜霉病田间药效试验[J].农药,2003,42:28
    [82]刘长令,关爱莹,张明星.广谱高效杀菌剂嘧菌酯[J].世界农药,2002,24(1):46-49
    [83]刘君丽,司乃国,陈亮,等.创制杀菌剂烯肟菌酯生物活性及应用研究(II)-葡萄霜霉病[J].农药,2003,42:32-33
    [84]齐淑华,袁会珠,杨代斌,等.新杀菌剂溶菌灵对黄瓜霜霉病的防治研究。中国植物病害化学防治(第一卷),中国农业科学技术出版社,1998,260-261
    [85]门振,郝春艳,温沛宏,等.甲氧基丙烯酸酯类杀菌剂-苯氧菌酯[C]//周明国.中国植物病害化学防治研究(第三卷).北京:中国农业科学技术出版社,2002,142-143
    [86]石延霞.黄瓜霜霉病菌侵染模拟、致病机理和高温诱导抗病性的研究[D].东北农业大学,2002
    [87]司乃国.我国创制杀菌剂的研究与开发[J].农药,2003,42:6-8
    [88]司乃国,刘君丽,李志念等.创制杀菌剂烯肟菌酯生物活性及应用研究(Ⅰ)-黄瓜霜霉病.农药,42:36-38
    [89]司乃国,刘君丽,张宗俭,等.甲氧丙烯酸酯类杀菌剂的开发与应用[C]//周明国.中国植物病害化学防治研究(第二卷).北京:中国农业科学技术出版社,2000,16-19
    [90]王文桥,刘国容,严乐恩,等.黄瓜和葡萄霜霉病菌的抗药性监测[J].南京农业大学学报,1996,19(增刊):127-131
    [91]谢标洪.阿米西达防治黄瓜白粉病的技术研究[D].南京:南京农业大学,2003
    [92]叶正和,汤德祥,谷峙.黄瓜霜霉病菌对四种杀菌剂的抗药性风险评估[C]//周明国.中国植物病害化学防治研究(第二卷).北京:中国农业科学技术出版社,2000,236-241
    [93]殷锦捷,马海云,关爱莹,等.高效杀菌剂氟嘧菌酯[J].农药,2003,42:40-42
    [94]张舒亚,周明国.甲氧基丙烯酸酯类杀菌剂的生物学及应用技术研究[C]//周明国.中国植物病害化学防治研究(第三卷).北京:中国农业科学技术出版社,2002,1-10
    [95]张舒亚.嘧菌酯对植物病原真菌的生物活性及抗药性研究[D].南京:南京农业大学,2002
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.