外来树种日本落叶松对小陇山土壤细菌多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用外来树种是我国甚至全世界森林生态恢复的重要手段之一,并且对一些地区的林业与生态恢复起到了推动作用。以往对于外来种方面的研究,大多集中于地表植物和动物群落组成和变化,以及生物多样性方面的改变,却常常忽略了广泛存在的外来种对土壤微生物多样性和微生物群落变化的影响。而微生物的群落结构及功能与地表植被紧密相连,是陆地生态系统物质和能量循环的一个重要环节。很多研究表明,地表植被的差异,尤其是引进植物物种会引起土壤微生物多样性及群落组成的改变。但是,引进外来树种日本落叶松在西北小陇山地区是否也影响或改变了土壤细菌多样性,在此之前还未有报道。
     本实验以甘肃小陇山森林实验站地区原始林砍伐后,对栽培引进外来速生树种(日本落叶松)、乡土树种(油松)和砍伐后自然演替的次生林形成的不同林龄的土壤为对象进行分析,研究不同林龄条件下这三种森林类型土壤理化性质的变化,并采用PCR-DGGE技术比较这三种森林土壤中细菌多样性的差异。结果表明:
     1.日本落叶松(JL)的土壤除JL-11(11年日本落叶松,pH7.06)外全部为酸性;次生林(NS)和油松(CP)的土壤pH值全部为酸性,其中CP-7(7年油松)最低为5.51,CP-10(10年油松)最高为6.98。所有样地的土壤田间持水量差异显著(P<0.05),最高的是NS-60(60年次生林),为37.07%;最低为CP-7,为22.31%。田间持水量差异主要是由于该采样地区土壤性质决定,三个林份中林龄越长,其土壤含水量也普遍较高。与此同时,日本落叶松在引种及长期栽种管理后,土壤全氮及土壤有机质含量相比油松有明显增加,其中最高的JL-11(11年日本落叶松)的土壤有机质含量达到了11.86%,高于四个林龄油松3.67%的平均值。
     2.通过应用变性梯度凝胶电泳(DGGE)技术对比了三种林分的细菌多样性差异,结果显示日本落叶松土壤的主要细菌多样性与其它两个林份条件下的主要细菌多样性比较有一定差异。根据DGGE条带的数目和条带的亮度,计算出10个样品中细菌的Shannon指数。发现除JL-30(30年日本落叶松)外,其余三个林龄日本落叶松的土壤细菌多样性均较低,介于2.76与2.93之间。而次生林土壤中的细菌多样性较高,其中NS-30(30年次生林)中最高,为3.03±0.02。油松土壤中的细菌多样性介于三种林分之间。
     3.DGGE图谱的PCA和UPGMA分析显示,不同林龄日本落叶松的细菌群落结构较其它两种林分更为相似。对不同林分土壤样品DGGE图谱中标记的各个主要和差异条带切割测序后,得到了19个条带的序列。测序后发现,小陇山地区不同林分的土壤细菌中Proteobacteria(a-、β-、γ-)占主要类群,其总量占测序分析的样品量的68.4%,其次为CFB和高G+C类。
     实验表明,日本落叶松的引种在当地的确造成了土壤理化性质的改变,也对该地区的土壤细菌多样性产生了一定影响,使其群落组成明显区别于其它两个林分。因此认为,天水小陇山林区日本落叶松的引种会对当地土壤环境产生一定影响。但栽培外来引进树种是否可能导致当地土壤生态系统的改变以及改变的机制,由于本研究仅从土壤细菌群落的多样性方面进行了初步的探讨和分析,并没有深入探讨,所以还有待从其他方面进一步研究。
The exotic tree species have been used to restore forest coverage over China and the world. Most previous studies focused on the affects of the exotic species on plant and animal community structure and original biodiversity and the exotic herbal plants were further found to affect the subsoil microbial diversity and function.However,few was made on how the exotic tree species influenced the local soil bacterial biomass or community structure.This study reported the changes of soil characteristics and soil bacterial diversity between the introduced exotic-fast-growth tree species Japan Larch(Larix kaempferi),the original native pine species (Pinus tabuliformis)and the naturally restored secondary forests.Main results are summarized as following.
     1.Except JL-11(11-year of Japan Larch,pH 7.06),the soils of all remaining samples were acid:the highest one was CP-10(11-year of Chinese Pine),reaching 6.98,and lowest one was CP-7(7-year of Chinese Pine),only 5.51.Significant discrepancy(P<0.05)was also found in soil water holding capacity between different samples:the highest one was NS-60(60-year of secondary forest),reaching 37.07%,and lowest one was CP-7(7-year of Chinese Pine),only 22.31%.The discrepancy of water holding capacity depended on the soil characteristics of sampling sites:it increased with the forest age growth in three different forest stands.The soil total N and organic contents increased significantly in the Japan Larch if compared with the other two types of stands:the highest one was JL-11(11-year Japan Larch),reaching 11.86%, higher than the average 3.67%of 8,11,18,30 year-old pine stands.
     2.The PCR-DGGE banding patterns suggested that the main bacterial populations were different between the exotic species and two other stands soils.Based on the presence and the intensity of each band in its profile of each samples,the Shannon-Weaver diversity index(H) was calculated to reflect species richness of the bacterial community:the secondary forest soils have higher bacterial diversity and NS-30(30-year of secondary forest)was the highest (3.03±0.02).All diversity indexes from Japan Larch are lower although JL-30(30-year Japan Larch)has relatively high values between 2.76 and 2.93.The bacterial diversity of the pine soils was between those of the other two forest soils.
     3.Higher similarities of bacterial community composition were observed within Japan Larch forests of various ages than those in the other two stands,as demonstrated by principal component analysis(PCA)and UPGMA method analysis.Band sequences revealed that the soil bacterial in Xiaolongshan belonged to three divisions,Proteobacteria,CFB and high G+C, among which the most dominant bacterial group was Proteobao(?)eria(a-、β-、γ-).
     The results suggested that introduced exotic species Japan Larch had effected the soil characteristics and bacterial community structure,made it different significantly with those in two other stands.The exotic species Japan Larch in Xiaolongshan national forest could effect the local soil enverionment.But whether this effect may change the local soil ecosystem,or the mechanism of the possibility for this change,was still unknown and need to be studied further more.
引文
Anne-elene P, Sandra L 2000. Invasion: the perspective of diverse plant communities. Austral Ecology, 25: 1-7
    Anniet M L, Martin B, Wilfred F M R,et al. 2005. Bacterial community structure and metabolic profiles in a forest soil exhibiting spatially variable net nitrate production. Soil Bio. Biochem., 37:1581-1588
    Bakken L R. 1985. Separation and purification of bacteria from soil. Appl . Envi ron. Microbiol. , 49:1482-1487.
    Bekele L, Dan B K, Mats O, et al. 2007. Factors controlling soil organic carbon sequestration under exotic tree plantations: A case study using the CO_2Fix model in southwestern Ethiopia. Forest Ecology and Management, 252:124-131
    Bending G D, Turner M K, Jones J E. 2002. Interaction between crop residue and soil organic matter quality and the functional diversity of soil micrbial communities. Soil Bio. Biochem., 34:1073-1082
    Bever J D, Westover K M, Antonovics J. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85:561-573
    Blum W E H, Santeles A A. 1994. A concept of sustainabilit and resilience based on soil functions in greenland D.T.(eds), soil resilience and sustainable land use CAB international wallingford. UK. 535-542
    Boon N, Windt W D, Verstraete W, et al. 2002. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-speci(?)c 16S rRNA primers for the analysis of bacterial communities from dijerent wastewater treatment plants. FEMS Microbiology Ecology, 39:101-112
    Boulos L, Preivost M, Barbeau B, et al. 1999. Live/dead Baclight: Application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Microbiol Methods, 37: 77-86
    Callaway R M, Maron J L. 2007. What have exotic plant invasions taught us over the past 20 years? TREE, 21: 369-374
    Callaway R M, Ridenour W M. 2004. Novel weapons: a biochemically based hypothesis for invasive success and the evolution of increased competitive ability. Front. Ecol. Env., 2: 436-433
    Chen H, Tang X S, Lin J, et al. 2002. Community constitute and phylogenetic analysison soil uncultured microorganism. Acta Microbiologica Sinica, 42(4): 479-483
    
    Chi Z M. 1999. Microbiology Ecology. Shandong University Publishing House ,China.
    Coblentzc B E. 1990. Exotic organisms: a dilemma for conservation biology. Conservation Biology, 4: 261-265
    Connally R, Veal D, Pipe J. 2002. High resolution detection of fuorescently labeled microorganisms in environmental samples using time-resolved fluorescence microscopy. FEMS Microbiology Ecology, 41: 239-245
    Corbin J D, D 'Antonio C M. 2004. Effects of exotic species on soil nitrogen cycling: Implications for restoration. Weed Technol, 18:1464-1467.
    Duim B, Vandamme P A, Rigter A, et al. 2001. Differentiation of Campylobacter species by AFLP fingerprinting.Microbiology, 147:2729- 273
    Dunbar J, Takala S, Barns S M. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ.Microbiol., 65:1662-1669
    Dunbar J, Ticknor L O, Kuske C R. 2001. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment prodiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol., 67:190-197
    Duongruitai N, Warren A D, Mark D, et al. 2008. Bacterial phylogenetic diversity in a constructed wetland system treating acid coal mine drainage. Soil Biol. Biochem., 40: 312-321
    Elia T, Mary C, Stefan M S. 2007. Phylogenetic diversity of bacteria associated with ascidians in Eel Pond (Woods Hole, Massachusetts, USA). Journal of Experimental Marine Biology and Ecology, 342: 138-146
    Enloe S F, DiTomaso J M, Orloff S B, et al. 2004. Soil water dynamics differ among rangeland plant communities dominated by yellow starthistle (Centaurea solstitialis), annual grasses, or perennial grasses. Weed Sci, 52: 929-935.
    Ens E J, French K. 2008. Exotic woody invader limits the recruitment of three indigenous plant species. Biological Conservation, 141:590-595
    Felske A, Akkermans A D L. 1998. Prominent occurrence of ribosomes from an uncultured bacterium of the Verrucomicrobiales cluster in grassland soils. Lett. Appl. Microbiol., 26: 219-223.
    Frank S, Chistoph C T. 1998. A new approach to utilize PCR-single-strand-conformation polymorphism for 16s rRNA gene-based microbial community analysis. Appl.Environ. Microbiol., 64: 4870-4876
    Gall J G, Pardue M L 1969. Formation of RNA-DNA hybrid molecules in cytogenetical preparations. Proc. Natl. Acad. Sci. USA, 63: 378-383.
    George A K, Douwe S B, Wietse de B, et al. 2002. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie van Leeuwenhoek 81:509-520
    Gland J L, Mills A L 1991. Classification and characterization of heterotrophic microbial community-level sole-carbonsource utilization. Appl. Environ. Microbial., 57: 2351-2359
    Grayston S J, Prescott C E. 2005. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol. Biochem., 37:1157-1167
    Guerra M M, Bernardo F, Mclauchlin J. 2002. Amplified fragment length polymorphism (AFLP) analysis of Listeria monocytogenes. Syst Appl Microbiol, 25: 456 -461.
    Hackl E, Pfeffer M, Donat C, et al. 2005. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem., 37(4): 661-671
    Hannam K D, Quideau S A, Kishchuk B E. 2006. Forest floor microbial communities in relation to stand composition and timber harvesting in northern Alberta. Soil Biol. Biochem., 28:2565-2575
    Hawksworth D L 1991. The fungal dimension of biodiversity :magnitude, significance, and conservation. Mycol. Res ., 95:641-655
    Haysom K A, Murphy S T. 2004. The status of invasiveness of forest tree species outside their natural habitat: A global review and discussion paper. Forest Genetic Resources ,31:5-8
    Head IM, Saunders J R, Pickup R W. 1998. Microbial evolution,diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol., 35:11-21
    Ibekwe A M, Sharon K P, Gan J Y, et,al. 2001. Impact of Fumigants on Soil Microbial Communities. Appl. Envi ron. Microbiol. ,67: 3245-3257.
    James B, Eric W, Triplet T. 1997. Molecular microbial diversity in soils from eastern amazoniaxvidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl . Envi ron. Microbiol. ,7 :2647-2653.
    Jensen S, (?)vreas L, Daae F L, et al,. 1998. Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. FEMS Microbiology Ecology, 26: 17-26
    Johan Colding. 2007. Ecological land-use complementation for building resilience in urban ecosystems. Landscape and Urban Planning, 81: 46-55
    Karlen D L, Wollenhaupt N C, Erbach D C et al. 1994. Long-term tillage effects on soil quality . Soil Tillage Res., 32: 313-327.
    Kavvadias V A, Alifrais D, Tsiontsis A, et al. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management, 144:113-127
    Kennydy A C,Smith K L. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170: 75-86.
    Kennydy A C, Virginia L G. 1997. Soil microbial diversity :present and future considerations. Soil Microbial Diversity, 162: 607-615.
    Konopka A, Oliver L, Turco R F. 1998. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb. Ecol., 35:103-115
    Kourtev P S, Ehrenfeld J G, Haggblom M. 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83: 3152-3166
    Kourtev P S, Ehvenfeld J G, Haggblom M. 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem., 35: 895-905
    Li W H, Zhang C B, Jiang H B, et al,. 2006. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant and Soil, 281:309-324
    Lowder M, Oliver J D. 2001. The use of modified GFP as a reporter for metabolic activity in Pseudomonas putida. Microb. Ecol., 41:310-313.
    
    Lu R-K. 1999. Soil Agrochemistry Analysis. Beijing: Beijing Agrotechnology Press .
    Lukow T , Dunfield P F , Leisack W. 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non2transgenic potato plants. FEMS Microbiol Ecol, 32:241-247
    Mack R N, Simberloff D, Bazazz F A. 2000. Biotic invasions:causes, epidemiology, global consequences, and control. Ecol.Appl, 10: 689-710.
    Mack M C, D'Antonio C M. 1998. Impacts of biological invasions on disturbance regimes. TREE, 13: 195-198
    Mack M C, D'Antonio C M. 2003. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland. Ecol.Appl, 13:154-166.
    Manning J E, Hershey N D, Brooker T R, et al. 1975. A new method of in situ hybridization. Chromosoma, 53:107-117.
    Marilley L, Vogt G, Blanc M. 1998. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifoliumrepens as revealed by PCR restriction analysis. Plant and Soil, 198: 219-224
    Marschner P, Yang C H, Lieberei R, Crowley D E. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem., 33:1437-1445.
    McEvoy P, Coombs E M. 1999. Biological control of plant invaders: regional patterns, field experiments,and structured population models. Ecol. Appl. 9: 387-401
    Miller D N, Bryant J E, Madsen E L, et al. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. App Environ Microbiol, 65:4715-4724
    Muyzer G, DeWaal E C, Uitterlinden A G 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amp lified genes encoding for 16SrRNA. Appl. Environ.Micrpbiol., 59: 695-700.
    Muyzer G. 1999. DGGE/TGGE: a method for identifying genes from natural ecosystem. Curr. Microbiol., 2:317-322.
    Nabla K, Eoin B, John C et al,. 2004. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environmental Microbiology, 6:1070-1080
    Nath J, Johnson K L. 2000. A review of fluorescence in-situ hybridization (FISH): Current status and future prospects.Biotech. Histochem., 75: 54-78.
    
    Noah F, Robert B J. 2006. The diversity and biogeography of soil bacterial communities. PNAS, 103: 626-631 Neely C L, Beare M H, Hargrove W L, et al. 1991. Relationships between fungal and bacterial substrate-induced respiration,biomass and plant residue decomposition. Soil Biol. Biochem. 23:947-954.
    Oliver D, Jaap B, An V, et al. 2004. Bacterial diversity in agricultural soils during litter decomposition. Appl Environ. Microbiol., 70:468-474
    Patrick J B. 2006. Biological invasions: Linking the aboveground and belowground consequences. Applied Soil Ecology, 32:1-5
    Petersen S O, Debosz K, Schjonning P, et al. 1997. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically fanned soils. Geoderma, 78:181-196.
    Perrings C, Williamson M, Cheltenham S D. 2000. The economics of biological invasions. UK: Edward Elgar Rice S K, Westerman B, Federici R. 2004. Impacts of the exotic,nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogencycling in a pine-oak ecosystem. Plant Ecol. 174: 97-107.
    Schmidt S K, Costello E K, Nemergut D R, et al,. 2007. Biogeochemical consequences of microbial turnover and seasonal succession in soil. Ecology, 88(6):1379-1385.
    Siemann E, Rogers W E. 2003. Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands. J. Ecol, 91: 923-931.
    Smalla K, et al. 1998. Analysis of Biolog GN substrate utilization patterns by microbial community. Appl . Environ . Microbiol, 64:1220-1225 .
    Solbrig O T. 1991. From genes to ecosystems :a research agenda for biodiversity. Report of a IUBS-SCOPEUNESCO workshop. The International Union of Biological Sciences. Paris France :51 Boulevar dole Montmorenny.
    Staddon W J, Duchesne L C,Trevors J T. 1997. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns.Microb Ecol, 34: 125-130
    Sumners W H, Archibold O E. 2007. Exotic plant species in the southern boreal forest of Saskatchewan. Forest Ecology and Management, 251:156-163
    Terence L M, Paul S, James C, James T. 2000. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl. Envi ron . Microbiol. 66: 3616-3620.
    Thomas M B, Reid A M. 2007. Are exotic natural enemies an effective way of controlling invasive plants? TREE, 22: 447-453
    Tomoya M, Yasunori N, Kazuo M, et al. 2007. Bacterial community in plant residues in a Japanese paddy field estimated by RFLP and DGGE analyses. Soil Biol. Biochem., 39: 463-472
    Veen J A, Overbeek L S, Elsas J D. 1997. Fate and activity of microorganisms introduced into soil microbiology .Microbiol. Mol. Biol. Rev . ,61 (2): 121-135.
    Vos P, Hogers R, Bleeker M, et al. 1995. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Res, 23:4407- 4414.
    Ward D M, Weller R, Bateson M M. 1990. 16S rRNA sequences reveal numerous unculturated microorganisms in a natural community. Nature, 345: 63-65
    Watve M G, Gangal R M. 1996. Problems in measuring bacterial diversity and a possible solution . Appl. Environ. Microbiol. ,62 (11): 4299-4301.
    Xing D F, Ren N Q. 2006. Common problems in the analyses of microbial community by denaturing gradient gel electrophoresis(DGGE). Acta Microbiologica Sinica, 46(2): 331-335.
    Xue K, Luo H F , Qi H Y, et al. 2005. Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA. Journal of Environmental Sciences, 17: 130-134
    Zak D R, Holmes W E, White D C, et al. 2003. Plant diversity, soil microbial communities, and ecosystem function:are there any links? Ecology,84:2042-2050
    Zheng H,Ouyang Z Y,Wang X K,et al.2004.Effects of forest restoration patterns on soil microbial communities.Chinese Journal of Applied Ecology,15(11):2019-2024
    Zheng H,Ouyang Z Y,Wang X K,et al.2005.Effects of regenerating forest cover on soil microbial communities:A case study in hilly red soil region,Southern China.Forest Ecology and Management,217:244-254
    Zhu Z J,Jiang P K,Xu Q F.2006.Study on the active organic carbon in soil under different types of vegetation.Forest Research,19(4):523-526.
    蔡燕飞,廖宗文.2002.土壤微生物生态学研究方法进展.土壤与环境,11(2):167-171.
    曹志红.1998.提高土壤质量,保证粮食安全.中国科学报,8:4-15
    曹志洪.2000.继承传统土壤学成果、促进现代土壤学发展.中国基础科学,2:11-16
    常成虎,巨天珍,王勤花,等.2005.甘肃小陇山日本落叶松人工林土壤养分特征分析.福建林业科技,32(3):55-61
    陈贤兴,何献武.2003.浙江省南麂岛豚草生物学特性及防除研究.河南科学,21(1):51-53
    陈秀蓉,南志标.2002.细菌多样性及其在农业生态系统中的作用.草业科学,19(9):34-38.
    丁建清,解焱.1996.中国外来物种入侵机制及对策//PP汪松,谢彼德,解焱.保护中国的生物多样性(二).北京:中国环境出版社,107-128
    东秀珠,洪俊华.2001.原核微生物的多样性.生物多样性,9(1):18-24
    范继辉,蒋莉,程根伟.2005.我国南方生物入侵的问题与对策.应用生态学报,16(3):568-572
    傅声雷.2007.土壤生物多样性的研究概况与发展趋势.生物多样性,15(2):109-115
    贺金生,王政权,方精云.2004.全球变化下的地下生态学:问题与展望.科学通报,49(13):1226-1233
    姜成林,徐丽华.1997.微生物多样性及其保育.生物多样性,5(4):276-280.
    姜学艳,黄艺.2003.菌根真菌增加植物抗盐碱胁迫的机理.生态环境,12(3):353-356.
    焦晓丹,吴凤芝.2004.土壤微生物多样性研究方法的进展.土壤通报.35(6):789-792.
    林志桂.1997.实践证明,合理引种外来树种对海南林业的发展起了不可估量的作用.热带林业,25:115-117.
    刘世贵,葛绍荣,龙章富.1994.川西北退化草地土壤微生物数量与区系研究.草业科学,4(4):70-76.
    马克平,钱迎倩.1994.生物多样性研究的原理与方法.北京:中国科学技术出版
    潘志刚,游应天.1994.中国主要外来树种引种栽培.北京:北京科学技术出版社,525-528
    庞福生,刘孝智,李晓伟,等.2001.侧柏火炬树混交林蓄水保水效益的研究.水土保持研究,8(3):14-16.
    彭少麟,向严词.1999.植物外来种入侵及其对生态系统的影响.生态学报,19(4):560-569.
    强胜,曹学章.2000.中国异域杂草的考察与分析.植物资源与环境学报,9(4):34-38
    王大力.1995.豚草属植物的化感作用研究综述.生态学杂志,14(4):48-53
    王海峰,翟明普,马长明.2006.外来种火炬树研究综述.山西林业科技,4(12):11-19
    王豁然.2002.外来树种的入侵性∥王豁然.外来树种与生态环境建设.北京:中国环境出版社
    王豁然,江泽平,傅紫岐.1999.林木引种与森林可持续经营.北京:中国环境出版社
    王明庥.2001.林木遗传育种学.北京:中国林业出版社,106
    王献溥,崔国发,李俊清;2000.海南生物多样性研究展望.北京林业大学学报,22(4):132-134
    吴中伦,潘志刚,于中奎,等.1983.国外树种引种概论.北京:科学出版社
    夏北成,Zhou J Z,James M T.1998.植被对土壤微生物群落结构的影响.应用生态学报,9(3):296-300.
    熊红,刘永碧.2003.植物引种与生物入侵.自然杂志,25(6):351-354
    许志刚,张世光,姬广海.2001.植物病原细菌的Biolog系统鉴定及其多元统计初析.应用与环境生物学报,7(3):288-290.
    杨芳,徐秋芳.2002.土壤微生物多样性研究进展.浙江林业科技,22(6):39-42
    张国华,曹文宣,陈宜瑜.1997.湖泊放养渔业对我国湖泊生态系统的影响.水生生物学报,21(3):271-280
    张惠文,张倩茹,周启星,等.2003.分子微生物生态学及其研究进展.应用生态学报,14(2):286-292
    张洪勋,王晓谊,齐鸿雁.2003.微生物生态学研究方法.生态学报,22(5):988-995
    张瑞福,崔中利,李顺鹏.2004.土壤微生物群落结构研究方法进展.土壤,36(5):476-480
    张薇,魏海雷,高洪文,等.2005.土壤微生物多样性及其环境影响因子研究进展.生态学杂志,24(1):48-52
    章家恩,蔡燕飞,高爱霞,等.2004.土壤微生物多样性实验研究方法概述.土壤,36(4):346-350
    章家恩,刘文高,胡刚.2002.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,11(2):140-143.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.