母猪低蛋白日粮对新生仔猪肝脏糖异生和肝脏线粒体功能的影响及其表遗传机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究表明,妊娠期母体营养不良导致后代出生重下降,影响机体葡萄糖的生成及线粒体的产能。线粒体在肝脏中数量丰富,提供细胞正常活动所需的ATP,其能量代谢水平易受营养水平的影响。妊娠期母体营养不良会降低后代肝脏胰岛素样生长因子的含量、促进脂肪在肝脏的沉积以及降低线粒体氧化磷酸化,这些研究大多以灵长类、啮齿类和反刍动物为研究对象,并且大多数研究关注成年期肝脏的变化,然而妊娠母猪营养不良对新生仔猪肝脏糖异生与线粒体功能的影响尚未见报道。新生动物肝脏糖异生与线粒体功能与机体代谢稳态和健康密切相关,本研究的目的是阐述妊娠母猪日粮蛋白水平对新生仔猪肝脏糖异生及线粒体功能的影响,并揭示其表遗传机制。
     1母猪低蛋白日粮对新生仔猪肝脏糖异生的影响
     14头初产纯种小梅山母猪随机分为标准蛋白组(SP,12%粗蛋白)和低蛋白组(LP,6%粗蛋白),饲养于江苏农林职业技术学院小梅山猪保种场。正式实验开始前进行一个月的预饲喂,使母猪适应低蛋白日粮,每天饲喂1.8kg饲料,分8:00和14:00两次饲喂。预饲喂期结束后,肌肉注射PG600同期发情并人工授精,妊娠母猪采取自然分娩,出生仔猪称重,测量体长、体高、胸围。母猪分娩结束后,立即从每窝新生仔猪中选取体重居中的雌性和雄性仔猪各1头,断头采集样品。
     母猪低蛋白日粮显著降低了新生仔猪出生重(P<0.05)、肝重(P<0.01)、肾重(P<0.05)以及肾上腺重(P<0.05),同时,显著降低了新生仔猪血清葡萄糖(P<0.01)、乳酸(P<0.05)、赖氨酸(P<0.05)、苏氨酸(P<0.05)、异亮氨酸(P<0.05)和脯氨酸(P<0.05)的浓度。性别间比较发现,雄性仔猪体重(P<0.05)显著高于雌性仔猪,雄性仔猪血清中含有较高浓度的皮质醇(P=0.06),但未达到统计显著性。
     母猪低蛋白日粮显著升高了新生仔猪肝糖原含量(P<0.05),并伴随着雄性新生仔猪肝脏葡萄糖-6-磷酸酶(G6PC)活性(P<0.05)的增加。用实时荧光定量PCR和Western blot方法检测肝脏糖异生相关基因和蛋白的表达,结果表明:母猪低蛋白日粮显著上调了雄性新生仔猪肝脏果糖-1,6-二磷酸酶(P<0.05)、G6PC (P<0.05)、过氧化物酶体增殖物激活受体丫辅激活因子lα(PGC-1α,P<0.05)与糖皮质激素受体(GR,P<0.05)的mRNA水平,同时,增加了细胞核内磷酸化GR (Ser211)蛋白的含量(P<0.05)。以上结果表明,母猪日粮蛋白水平影响了肝脏糖异生功能,并且存在性别差异。
     2母猪低蛋白日粮对新生仔猪肝脏线粒体功能的影响
     母猪低蛋白日粮显著升高了新生仔猪肝脏烟酰胺腺嘌呤二核苷酸(NADH)的浓度(P<0.05)以及NADH/NAD的值(P<0.05)。单磷酸腺苷(AMP)和能荷值都存在日粮(P<0.05)与性别(P<0.05)的互作效应,用最小显著性差异法比较发现,母猪低蛋白日粮显著升高雄性仔猪肝脏AMP的含量(P<0.05),能荷值有下降的趋势(P=0.06);而雌性仔猪肝脏AMP (P<0.05)浓度显著降低,能荷值(P<0.05)显著上升。
     另外,母猪低蛋白日粮显著增加了雄性仔猪肝脏细胞色素c氧化酶亚基Ⅰ (COX1, P<0.05)、细胞色素c氧化酶亚基Ⅱ (COX2, P<0.05)、细胞色素c氧化酶亚基Ⅲ (COX3, P<0.05)、烟酰胺腺嘌呤二核苷酸脱氢酶亚基Ⅲ(ND3,P<0.05)和细胞色素b基因(CYTB,P<0.05) mRNA水平,并提高了细胞色素c氧化酶(COX, P<0.05)的酶活性,而对LP组雌性仔猪肝脏线粒体DNA转录及COX酶活性都没有显著影响。这提示母猪低蛋白日粮对线粒体功能的改变也存在着性别特异性。
     3母猪低蛋白日粮影响新生仔猪葡萄糖-6-磷酸酶及线粒体DNA转录调控的表遗传机制
     首先,我们运用DNA步移法克隆得到了1213bp的G6PC基因5’端启动子序列,并用3’RACE技术克隆了960bp的G6PC基因3'UTR序列,然后运用甲基化DNA免疫共沉淀技术(MeDIP)、染色质免疫共沉淀技术(ChIP)分别对肝脏G6PC基因及线粒体DNA启动子区进行DNA甲基化、组蛋白修饰以及转录因子GR结合量的检测,同时还用实时荧光定量PCR检测了靶向G6PC3'UTR的miRNAs的表达。
     母猪低蛋白日粮显著增加了雄性仔猪肝脏GR结合在G6PC外显子1(P<0.05)和启动子(P<0.05)的含量,同时也降低了雄性仔猪肝脏G6PC启动子的甲基化水平(P<0.05);然而母猪低蛋白日粮显著增加了雌性仔猪肝脏GR结合在G6PC外显子1(P<0.05)的含量,但对G6PC启动子结合GR的含量以及DNA甲基化水平无显著影响。仔猪肝脏G6PC基因启动子组蛋白修饰也发现性别特异性:LP组雄性仔猪组蛋白H3(H3,P<0.05)和组蛋白H3K9三甲基化(H3K9me3, P<0.05)的富集程度较SP组显著降低,而组蛋白H3乙酰化(H3Ac, P<0.05)和组蛋白H3K4三甲基化(H3K4me3,P<0.05)的富集程度较SP组显著增加;LP组雌性仔猪则H3(P<0.05)的富集程度较SP组显著增加,而H3Ac (P<0.05)和H3K9、K4三甲基化(P<0.05)的富集程度较SP组均显著增加,另外,靶向G6PC基因3’UTR的ssc-miR-339-5p (P<0.05)和ssc-miR-532-3p (P<0.05)的表达上调。
     从母猪日粮蛋白水平对线粒体DNA启动子甲基化程度的研究来看,母体低蛋白日粮显著降低了雄性新生仔猪肝脏线粒体DNA启动子区5’-甲基胞嘧啶(P<0.01)和5’-羟甲基胞嘧啶(P<0.05)的甲基化水平,然而显著升高了雌性新生仔猪肝脏ntDNA启动子5’-甲基胞嘧啶(P<0.01)和5’-羟甲基胞嘧啶(P<0.01)甲基化水平。
     综上所述,以上结果提示母体低蛋白情况下,糖皮质激素通过GR调控新生仔猪肝脏能量代谢,并且表遗传机制参与了对G6PC和线粒体DNA的转录调控。
Epidemiological and animal studies indicate that maternal malnutrition during pregnancy results in low birthweight and impacts body's energy metabolism. The liver is rich in mitochondria, which are involved in generating most of the cell's supply of ATP for normal functions. The level of energy metabolism is vulnerable to nutritional insults. Maternal malnutrition during pregnancy reduces the content of hepatic insulin-like growth factor, promotes fat deposition and impairs mitochondrial oxidative phosphorylation in the liver of offsprings. While most of these studies use primates, rodents and goats as model, and mainly focus on adult animals, no reports are available on the effect of malnutrition in pregnant sows on hepatic gluconeogenesis and mitochondrial function in newborn piglets. Hepatic gluconeogenesis and mitochondrial function are of particular importance in neonates for energy homeostasis and health. Therefore, the purpose of this study was to describe the effect of sows feeding low protein diet on hepatic gluconeogenesis and mitochondrial function in newborn piglets and its underlying epigenetic mechanisms.
     1Effects of maternal low protein diet during pregnancy on hepatic gluconeogenesis in newborn piglets
     The animal experiment was conducted in the National Meishan Pig Preservation and Breeding Farm at Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, Jiangsu Province, P. R. China. Fourteen primiparous purebred Meishan gilts (body weight:36.1±1.8kg) were assigned randomly into standard (SP) and low (LP) protein groups. The SP sows were fed on diets containing12%crude protein during gestation, while those in LP group were fed diets containing6%crude protein. The dietary treatment began one month before artificial insemination at the first observation of estrus. Sows were fed twice daily (0800and1400h) with the rations of1.8kg/day during gestation. After the pre-feeding, estrus synchronization was conducted by intramuscular injection of PG600. The birthweight, length, height and bust of the piglets were documented after birth. One male and one female piglet of the mean body weight (±10%) were selected from each litter and exsanguinated before sucking, and samples were collected.
     Maternal LP diet during pregnancy significantly reduced the birth weight (P<0.05), liver weight (P<0.01), kidney weight (P<0.05) and adrenal weight (P<0.05) in male newborn piglets. In addition, maternal LP diet significantly reduced the concentrations of serum glucose (P<0.01), lactic acid (P<0.05), lysine (P<0.05), threonine (P<0.05), isoleucine (P<0.05), and proline (P <0.05). Comparing between genders, the birth weight (P<0.05) and the serum cortisol concentration (P=0.06) in males was significantly or tended to be higher than in females.
     Maternal LP diet significantly increased hepatic glycogen content in LP piglets (P<0.05), associated with enhanced liver G6PC enzyme activity (P<0.05). Realtime PCR and Western blot were performed to detect gene and protein expression. Maternal LP diet significantly increased hepatic FBP1(P<0.05), G6PC (P<0.01), PGC-la (P<0.05) and GR (P<0.05) gene expression in males. In addition, the nuclear p-Ser211GR (P<0.05) protein content was significant enhanced in LP male newborns. These results indicate that maternal LP diet impacts hepactic gluconeogenesis in a gender-specific manner.
     2Effects of maternal low protein diet during pregnancy on hepatic mitochondrial function in newborn piglets
     Maternal LP diet significantly increased the concentration of hepatic NADH (P<0.05) and the ratio of NADH/NAD (P<0.05). Hepatic AMP concentration and energy charge were effected significantly by diet x sex interaction. Maternal LP diet significantly increased the concentration of hepatic AMP (P<0.05) and significantly decreased energy charge (P<0.05) in male newborns, while the opposite was observed in female newborns.
     In addition, maternal LP diet significantly increased hepatic COX1(P<0.05), COX2(P<0.05), COX3(P<0.05), ND3(P<0.05) and CYTB (P<0.05) gene expression, which was accompied by significantly increased enzyme activity of COX (P<0.05) in males but not in females. These results indicate that maternal LP diet exerts a gender dependent effect on mitochondrial function in newborn piglets.
     3Epigenetic mechanisms underlying the effect of maternal low protein diet on transcriptional regulation of hepatic G6PC and mitochondrial coding genes
     First, we cloned1213bp promoter sequence of G6PC by genomic DNA walking. Moreover,960bp3'UTR sequence of G6PC was cloned by RACE. Then the methods of MedIP and ChIP were used to detect DNA methylation, histone modification and GR binding.
     Maternal LP diet significantly increased GR binding to G6PC promoter and exon1in both males (P<0.05) and females (P<0.05), yet the methylation level of G6PC (P<0.01) promoter was significantly decreased only in male piglets, but not female. Also, we found gender difference in histone modifications in newborn piglets. In male newborns, maternal LP diet significantly reduced the enrichment of H3(P<0.01) on the promoter of G6PC gene in liver, increased the enrichment of H3Ac (P<0.05) and H3K4me3(P<0.05) and decreased the enrichment of H3K9me3(P<0.05) on the promoter of G6PC gene. In females, the enrichment of H3(P<0.05), H3K4me3(P<0.01), H3K9me3(P<0.05) and H3K27me3(P<0.05) were all significantly increased in the LP group. Moreover, maternal LP significantly reduced the expression level of ssc-miR-339-5p (P<0.05) and ssc-miR-532-3p (P<0.01), which target at the3'UTR of G6PC, in females.
     Maternal low protein diet significantly decreased the methylation of5mc (P<0.01) and5hmc (P <0.05) in hepatic mitochondrial DNA promoter in male piglets while decreased the methylation of5mc (P<0.01) and5hmc (P<0.05) in hepatic mitochondrial DNA promoter in female piglets. These results indicate that the effects of maternal low protein diet on hepatic energy metabolism in newborn piglets are mediated through GR and epigenetic mechanisms involved in transcriptional regulation of G6PC and mitochondrial coding genes.
引文
[1]Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus:the thrifty phenotype hypothesis [J]. Diabetologia,1992,35(7):595-601
    [2]Kornhauser D, Adam PA, Schwartz R. Glucose production and utilization in the newborn puppy [J]. Pediatr Res,1970,4(2):120-128
    [3]Franko KL, Forhead AJ, Fowden AL. Effects of maternal dietary manipulation
    during different periods of pregnancy on hepatic glucogenic capacity in fetal and pregnant rats near term [J]. Nutr Metab Cardiovasc Dis,2009,19(8):555-562
    [4]Nyirenda MJ, Lindsay RS, Kenyon CJ, et al. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring [J]. J Clin Invest,1998,101(10):2174-2181
    [5]Desai M, Byrne CD, Zhang J, et al. Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet [J]. Am J Physiol, 1997,272(5 Pt 1):G1083-1090
    [6]Nijland MJ, Mitsuya K, Li C, et al. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability [J]. J Physiol,2010,588(Pt 8):1349-1359
    [7]Franko KL, Giussani DA, Forhead AJ, et al. Effects of dexamethasone on the glucogenic capacity of fetal, pregnant, and non-pregnant adult sheep [J]. J Endocrinol,2007,192(1):67-73
    [8]Rozance PJ, Limesand SW, Barry JS, et al. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1 alpha mRNA and phosphorylated CREB in fetal sheep [J]. Am J Physiol Endocrinol Metab,2008, 294(2):E365-370
    [9]Trinh KY, O'Doherty RM, Anderson P, et al. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats [J]. J Biol Chem,1998,273(47):31615-31620
    [10]Massillon D, Barzilai N, Chen W, et al. Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats [J]. J Biol Chem, 1996,271(17):9871-9874
    [11]Rondinone CM. Minireview:ribonucleic acid interference for the identification of new targets for the treatment of metabolic diseases [J]. Endocrinology,2006,147(6): 2650-2656
    [12]Parker JC, VanVolkenburg MA, Levy CB, et al. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase [J]. Diabetes,1998,47(10):1630-1636
    [13]Fowden AL, Mijovic J, Silver M. The effects of cortisol on hepatic and renal gluconeogenic enzyme activities in the sheep fetus during late gestation [J]. J Endocrinol,1993,137(2):213-222
    [14]Fowden AL, Apatu RS, Silver M. The glucogenic capacity of the fetal pig: developmental regulation by cortisol [J]. Exp Physiol,1995,80(3):457-467
    [15]Argaud D, Zhang Q, Pan W, et al. Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states:gene structure and 5'-flanking sequence [J]. Diabetes,1996,45(11):1563-1571
    [16]Schmoll D, Allan BB, Burchell A. Cloning and sequencing of the 5'region of the human glucose-6-phosphatase gene:transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells [J]. FEBS Lett,1996,383(1-2):63-66
    [17]Lange AJ, Argaud D, el-Maghrabi MR, et al. Isolation of a cDNA for the catalytic subunit of rat liver glucose-6-phosphatase:regulation of gene expression in FAO hepatoma cells by insulin, dexamethasone and cAMP [J]. Biochem Biophys Res Commun,1994,201(1):302-309
    [18]Newton R. Molecular mechanisms of glucocorticoid action:what is important? [J]. Thorax,2000,55(7):603-613
    [19]Vander Kooi BT, Onuma H, Oeser JK, et al. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements [J]. Mol Endocrinol,2005,19(12):3001-3022
    [20]Lane RH, MacLennan NK, Hsu JL, et al. Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance [J]. Endocrinology,2002,143(7):2486-2490
    [21]Symonds ME, Sebert SP, Hyatt MA, et al. Nutritional programming of the metabolic syndrome [J]. Nat Rev Endocrinol,2009,5(11):604-610
    [22]Gibney ER, Nolan CM. Epigenetics and gene expression [J]. Heredity,2010,105(1): 4-13
    [23]Strakovsky RS, Zhang X, Zhou D, et al. Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats [J]. J Physiol,2011,589(Pt 11):2707-2717
    [24]Ulitsky I, Laurent LC, Shamir R. Towards computational prediction of microRNA function and activity [J]. Nucleic Acids Res,2010,38(15):e160
    [25]Bast A, Wolf G, Oberbaumer I, et al. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells [J]. Diabetologia,2002,45(6):867-876
    [26]Park KS, Kim SK, Kim MS, et al. Fetal and early postnatal protein malnutrition cause long-term changes in rat liver and muscle mitochondria [J]. J Nutr,2003, 133(10):3085-3090
    [27]Theys N, Bouckenooghe T, Ahn MT, et al. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat [J]. Am J Physiol Regul Integr Comp Physiol,2009,297(5):R1516-1525
    [28]Psarra AM, Sekeris CE. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells:role of the mitochondrial glucocorticoid receptor [J]. Biochim Biophys Acta,2011,1813(10):1814-1821
    [29]Nafikov RA, Beitz DC. Carbohydrate and lipid metabolism in farm animals [J]. J Nutr,2007,137(3):702-705
    [30]Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry [M]. Wh Freeman 2005
    [31]Widmaier EP, Raff H, Strang KT. Vander's human physiology [J].2003:
    [32]Rajas F, Bruni N, Montano S, et al. The glucose-6 phosphatase gene is expressed in human and rat small intestine:regulation of expression in fasted and diabetic rats [J]. Gastroenterology,1999,117(1):132-139
    [33]Arden SD, Zahn T, Steegers S, et al. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein [J]. Diabetes,1999,48(3): 531-542
    [34]Khan A, Zong-Chao L, Efendic S, et al. Glucose-6-phosphatase activity in the hypothalamus of the ob/ob mouse [J]. Metabolism,1998,47(6):627-629
    [35]Hanson RW, Mehlman MA, Lardy HA. Gluconeogenesis, its regulation in mammalian species [M]. Wiley 1976
    [36]Ermolaeva LP, Mil'man LS, Shatova EV. [The rate of gluconeogenesis and the activity of its key enzymes in the kidneys of the developing chick embryo] [J]. Izv Akad Nauk Ser Biol,1994,(1):155-159
    [37]Ermolaeva LP. [Rate of gluconeogenesis in the hepatocytes of the developing chick embryo] [J]. Ontogenez,1987,18(4):430-433
    [38]Sadava D, Frykman P, Harris E, et al. Development of enzymes of glycolysis and gluconeogenesis in human fetal liver [J]. Biol Neonate,1992,62(2-3):89-95
    [39]Dhanotiya RS, Bhardwaj R. Sequential development of enzymes of gluconeogenesis and glucose synthesis in fetal goat liver [J]. Biomed Biochim Acta, 1988,47(8):805-808
    [40]Fowden AL, Mijovic J, Ousey JC, et al. The development of gluconeogenic enzymes in the liver and kidney of fetal and newborn foals [J]. J Dev Physiol,1992, 18(3):137-142
    [41]Jones CT, Ashton IK. The development of some enzymes of gluconeogenesis in the liver and kidney of the foetal guinea pig [J]. Biochem J,1972,130(1):23P-24P
    [42]Dawkins MJ. Biochemical aspects of developing function in newborn mammalian liver [J]. Br Med Bull,1966,22(1):27-33
    [43]Barnes RJ, Comline RS, Silver M. Effect of cortisol on liver glycogen concentrations in hypophysectomized, adrenalectomized and normal foetal lambs during late or prolonged gestation [J]. J Physiol,1978,275:567-579
    [44]Silver M. Prenatal maturation, the timing of birth and how it may be regulated in domestic animals [J]. Exp Physiol,1990,75(3):285-307
    [45]Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome [J]. Nature,2001,414(6865):821-827
    [46]Sumida KD, Hill JM, Matveyenko AV. Sex differences in hepatic gluconeogenic capacity after chronic alcohol consumption [J]. Clin Med Res,2007,5(3):193-202
    [47]Djouadi F, Weinheimer CJ, Saffitz JE, et al. A gender-related defect in lipid
    metabolism and glucose homeostasis in peroxisome proliferator- activated receptor alpha- deficient mice [J]. J Clin Invest,1998,102(6):1083-1091
    [48]刘锐,猪肝脏糖异生的品种特点及其糖皮质激素的作用[学位论文],2008。
    [49]Kasser TR, Martin RJ, Gahagan JH, et al. Fasting plasma hormones and metabolites in feral and domestic newborn pigs [J]. J Anim Sci,1981,53(2):420-426
    [50]Duee PH, Pegorier JP, Peret J, et al. Separate effects of fatty acid oxidation and glucagon on gluconeogenesis in isolated hepatocytes from newborn pigs [J]. Biol Neonate,1985,47(2):77-83
    [511 Susa JB, Cowett RM, Oh W, et al. Suppression of gluconeogenesis and endogenous glucose production by exogenous insulin administration in the newborn lamb [J]. Pediatr Res,1979,13(5 Pt 1):594-598
    [52]Donkin SS, Armentano LE. Regulation of gluconeogenesis by insulin and glucagon in the neonatal bovine [J]. Am J Physiol,1994,266(4 Pt 2):R1229-1237
    [53]Samols E, Marri G, Marks V. Promotion of Insulin Secretion by Glucagon [J]. Lancet,1965,2(7409):415-416
    [54]Cherrington AD, Fuchs H, Stevenson RW, et al. Effect of epinephrine on glycogenolysis and gluconeogenesis in conscious overnight-fasted dogs [J]. Am J Physiol,1984,247(2 Pt 1):E137-144
    [55]Gustavson SM, Chu CA, Nishizawa M, et al. Interaction of glucagon and epinephrine in the control of hepatic glucose production in the conscious dog [J]. Am J Physiol Endocrinol Metab,2003,284(4):E695-707
    [56]Zaleski J, Bryla J. Effect of alloxan-diabetes on gluconeogenesis and ureogenesis in isolated rabbit liver cells [J]. Biochem J,1978,176(2):563-568
    [57]Chan TM. The permissive effects of glucocorticoid on hepatic gluconeogenesis. Glucagon stimulation of glucose-suppressed gluconeogenesis and inhibition of 6-phosphofructo-l-kinase in hepatocytes from fasted rats [J]. J Biol Chem,1984, 259(12):7426-7432
    [58]Filsell OH, Jarrett IG, Taylor PH, et al. Effects of fasting, diabetes and glucocorticoids on gluconeogenic enzymes in the sheep [J]. Biochim Biophys Acta, 1969,184(1):54-63
    [59]Exton JH, Harper SC, Tucker AL, et al. Effects of adrenalectomy and glucocorticoid replacement on gluconeogenesis in perfused livers from diabetic rats [J]. Biochim Biophys Acta,1973,329(1):41-57
    [60]Sistare FD, Haynes RC, Jr. Acute stimulation by glucocorticoids of gluconeogenesis from lactate/pyruvate in isolated hepatocytes from normal and adrenalectomized rats [J]. J Biol Chem,1985,260(23):12754-12760
    [61]Exton JH. Regulation of gluconeogenesis by glucocorticoids [J]. Monogr Endocrinol,1979,12:535-546
    [62]Muller MJ, Seitz HJ. Rapid and direct stimulation of hepatic gluconeogenesis by L-triiodothyronine (T3) in the isolated-perfused rat liver [J]. Life Sci,1980,27(10): 827-835
    [63]Commerford SR, Ferniza JB, Bizeau ME, et al. Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats [J]. Am J Physiol Endocrinol Metab,2002,283(3):E545-555
    [64]Luo MJ, Chen LL, Zheng J, et al. [The effect of calorie restriction on the expression of liver's gluconeogenesis genes of rats fed a high fat diet] [J]. Zhonghua Gan Zang Bing Za Zhi,2008,16(2):125-128
    [65]Kaloyianni M, Freedland RA. Contribution of several amino acids and lactate to gluconeogenesis in hepatocytes isolated from rats fed various diets [J]. J Nutr,1990, 120(1):116-122
    [66]Azzout-Marniche D, Gaudichon C, Blouet C, et al. Liver glyconeogenesis:a pathway to cope with postprandial amino acid excess in high-protein fed rats? [J]. Am J Physiol Regul Integr Comp Physiol,2007,292(4):R1400-1407
    [67]Toyoshima Y, Tokita R, Ohne Y, et al. Dietary protein deprivation upregulates insulin signaling and inhibits gluconeogenesis in rat liver [J]. J Mol Endocrinol, 2010,45(5):329-340
    [68]Kalhan S, Parimi P. Gluconeogenesis in the fetus and neonate [J]. Semin Perinatol, 2000,24(2):94-106
    [69]Girard JR, Ferre P, Gilbert M, et al. Fetal metabolic response to maternal fasting in the rat [J]. Am J Physiol,1977,232(5):E456-463
    [70]Lemons JA, Moorehead HC, Hage GP. Effects of fasting on gluconeogenic enzymes in the ovine fetus [J]. Pediatr Res,1986,20(7):676-679
    [71]Li C, Levitz M, Hubbard GB, et al. The IGF axis in baboon pregnancy:placental and systemic responses to feeding 70% global ad libitum diet [J]. Placenta,2007, 28(11-12):1200-1210
    [72]Hyatt MA, Butt EA, Budge H, et al. Effects of maternal cold exposure and nutrient restriction on the ghrelin receptor, the GH-IGF axis, and metabolic regulation in the postnatal ovine liver [J]. Reproduction,2008,135(5):723-732
    [73]Novak EM, Lee EK, Innis SM, et al. Identification of novel protein targets regulated by maternal dietary fatty acid composition in neonatal rat liver [J]. J Proteomics, 2009,73(1):41-49
    [74]Lei KJ, Shelly LL, Pan CJ, et al. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a [J]. Science,1993,262(5133):580-583
    [75]Pan CJ, Lei KJ, Annabi B, et al. Transmembrane topology of glucose-6-phosphatase [J]. J Biol Chem,1998,273(11):6144-6148
    [76]Lei KJ, Chen H, Pan CJ, et al. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse [J]. Nat Genet,1996,13(2):203-209
    [77]Kishnani PS, Bao Y, Wu JY, et al. Isolation and nucleotide sequence of canine glucose-6-phosphatase mRNA:identification of mutation in puppies with glycogen storage disease type la [J]. Biochem Mol Med,1997,61(2):168-177
    [78]Hutton JC, O'Brien RM. Glucose-6-phosphatase catalytic subunit gene family [J]. J Biol Chem,2009,284(43):29241-29245
    [79]Van Schaftigen E. Glucosamine-sensitive and -insensitive detritiation of [2-3H] glucose in isolated rat hepatocytes:a study of the contributions of glucokinase and glucose-6-phosphatase [J]. Biochem J,1995,308 (Pt 1):23-29
    [80]Hers HG. The control of glycogen metabolism in the liver [J]. Annu Rev Biochem, 1976,45:167-189
    [81]Hornbuckle LA, Everett CA, Martin CC, et al. Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ [J]. Am J Physiol Endocrinol Metab,2004,286(5):E795-808
    [82]Argaud D, Kirby TL, Newgard CB, et al. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate [J]. J Biol Chem,1997, 272(19):12854-12861
    [83]Massillon D. Regulation of the glucose-6-phosphatase gene by glucose occurs by transcriptional and post-transcriptional mechanisms. Differential effect of glucose and xylitol [J]. J Biol Chem,2001,276(6):4055-4062
    [84]Ashmore J, Hastings AB, Nesbett FB, et al. Studies on carbohydrate metabolism in rat liver slices. VI. Hormonal factors influencing glucose-6-phosphatase [J]. J Biol Chem,1956,218(1):77-88
    [85]Garland RC. Induction of glucose 6-phosphatase in cultured hepatoma cells by dexamethasone [J]. Biochem Biophys Res Commun,1986,139(3):1130-1134
    [86]Lin B, Morris DW, Chou JY. Hepatocyte nuclear factor 1alpha is an accessory factor required for activation of glucose-6-phosphatase gene transcription by glucocorticoids [J]. DNA Cell Biol,1998,17(11):967-974
    [87]Voice MW, Webster AP, Burchell A. The in vivo regulation of liver and kidney glucose-6-phosphatase by dexamethasone [J]. Horm Metab Res,1997,29(3): 97-100
    [88]Kallwellis-Opara A, Zaho X, Zimmermann U, et al. Characterization of cis-elements mediating the stimulation of glucose-6-phosphate transporter promoter activity by glucocorticoids [J]. Gene,2003,320:59-66
    [89]Leung LY, Woo NY. Effects of growth hormone, insulin-like growth factor I, triiodothyronine, thyroxine, and cortisol on gene expression of carbohydrate metabolic enzymes in sea bream hepatocytes [J]. Comp Biochem Physiol A Mol Integr Physiol,2010,157(3):272-282
    [90]Iyer SL, Liu AC, Widnell CC. Regulation of glucose 6-phosphatase in hepatic microsomes by thyroid and corticosteroid hormones [J]. Arch Biochem Biophys, 1983,223(1):173-184
    [91]Porterfield SP. The effects of growth hormone, thyroxine and insulin on the activities of reduced nicotinamide adenine dinucleotide phosphate dehydrogenase, glucose-6-phosphatase and glycogen phosphorylase in fetal rat liver [J]. Hormone and metabolic research=Hormon- und Stoffwechselforschung=Hormones et metabolisme,1979,11(7):444-448
    [92]Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice [J]. Science,1995,269(5223):540-543
    [93]Hellman B. Studies in obese-hyperglycemic mice [J]. Ann N Y Acad Sci,1965, 131(1):541-558
    [94]Khan A, Narangoda S, Ahren B, et al. Long-term leptin treatment of ob/ob mice improves glucose-induced insulin secretion [J]. Int J Obes Relat Metab Disord, 2001,25(6):816-821
    [95]Forhead AJ, Lamb CA, Franko KL, et al. Role of leptin in the regulation of growth and carbohydrate metabolism in the ovine fetus during late gestation [J]. J Physiol, 2008,586(9):2393-2403
    [96]Gaudy AM, Clementi AH, Campbell JS, et al. Suppressor of cytokine signaling-3 is a glucagon-inducible inhibitor of PKA activity and gluconeogenic gene expression in hepatocytes [J]. J Biol Chem,2010,285(53):41356-41365
    [97]Wang Y, Li G, Goode J, et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes [J]. Nature,2012,485(7396):128-132
    [98]Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction [J]. Mol Cell, 2000,6(1):87-97
    [99]Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes [J]. Cell,2001,104(4):517-529
    [100]Sutherland C, O'Brien RM, Granner DK. Phosphatidylinositol 3-kinase, but not p70/p85 ribosomal S6 protein kinase, is required for the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin. Dissociation of signaling pathways for insulin and phorbol ester regulation of PEPCK gene expression [J]. J Biol Chem,1995,270(26):15501-15506
    [101]Schmoll D, Walker KS, Alessi DR, et al. Regulation of Glucose-6-phosphatase Gene Expression by Protein Kinase Balpha and the Forkhead Transcription Factor FKHR. EVIDENCE FOR INSULIN RESPONSE UNIT-DEPENDENT AND-INDEPENDENT EFFECTS OF INSULIN ON PROMOTER ACTIVITY [J]. J Biol Chem,2000,275(46):36324-36333
    [102]Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction [J]. Nature,2003,423(6939):550-555
    [103]Wang Y, Vera L, Fischer WH, et al. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis [J]. Nature,2009,460(7254):534-537
    [104]Khan A, Low H, Efendic S. Effects of fasting and refeeding on the activity of hepatic glucose-6-phosphatase in rats [J]. Acta Physiol Scand,1985,124(4): 591-596
    [105]Barzilai N, Massillon D, Rossetti L. Effects of fasting on hepatic and peripheral glucose metabolism in conscious rats with near-total fat depletion [J]. Biochem J, 1995,310 (Pt 3):819-826
    [106]Mithieux G. Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production [J]. Reprod Nutr Dev,1996,36(4): 357-362
    [107]Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1 [J]. Nature,2005,434(7029): 113-118
    [108]Bizeau ME, Thresher JS, Pagliassotti MJ. Sucrose diets increase glucose-6-phosphatase and glucose release and decrease glucokinase in hepatocytes [J]. J Appl Physiol,2001,91(5):2041-2046
    [109]Panserat S, Capilla E, Gutierrez J, et al. Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose [J]. Comp Biochem Physiol B Biochem Mol Biol,2001,128(2):275-283
    [110]Panserat S, Medale F, Breque J, et al. Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss) [J]. J Nutr Biochem,2000,11(1):22-29
    [111]Caseras A, Meton I, Vives C, et al. Nutritional regulation of glucose-6-phosphatase
    gene expression in liver of the gilthead sea bream (Sparus aurata) [J]. Br J Nutr, 2002,88(6):607-614
    [112]Venkatraman JT, Pehowich D, Singh B, et al. Effect of dietary fat on diabetes-induced changes in liver microsomal fatty acid composition and glucose-6-phosphatase activity in rats [J]. Lipids,1991,26(6):441-444
    [113]Garg ML, Sabine JR, Snoswell AM. A comparison of the influence of diets high in saturated versus unsaturated fatty acids on lipid composition and glucose-6-phosphatase activity of rat liver microsomes [J]. Biochem Int,1985, 10(4):585-595
    [114]Rajas F, Gautier A, Bady I, et al. Polyunsaturated fatty acyl coenzyme A suppress the glucose-6-phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4 alpha [J]. J Biol Chem,2002,277(18):15736-15744
    [115]Panserat S, Perrin A, Kaushik S. High dietary lipids induce liver glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss) [J]. J Nutr,2002,132(2):137-141
    [116]Sreeja VG, Leelamma S. Hyperglycemic effect of low protein cassava diet [J]. Indian J Exp Biol,1998,36(3):308-310
    [117]Veldhorst MA, Westerterp-Plantenga MS, Westerterp KR. Gluconeogenesis and
    energy expenditure after a high-protein, carbohydrate-free diet [J]. Am J Clin Nutr, 2009,90(3):519-526
    [118]Kirchner S, Kaushik S, Panserat S. Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss) [J]. Comp Biochem Physiol A Mol Integr Physiol,2003,134(2):337-347
    [119]Kirchner S, Kaushik S, Panserat S. Low protein intake is associated with reduced hepatic gluconeogenic enzyme expression in rainbow trout (Oncorhynchus mykiss) [J]. J Nutr,2003,133(8):2561-2564
    [120]Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (Foxol) targets to proteasomal degradation [J]. Proc Natl Acad Sci U S A,2003, 100(20):11285-11290
    [121]Matsumoto M, Pocai A, Rossetti L, et al. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxol in liver [J]. Cell Metab,2007,6(3):208-216
    [122]Nakae J, Biggs WH,3rd, Kitamura T, et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxol [J]. Nat Genet,2002,32(2):245-253
    [123]Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism [J]. Oncogene,2008,27(16):2320-2336
    [124]Streeper RS, Svitek CA, Chapman S, et al. A multicomponent insulin response sequence mediates a strong repression of mouse glucose-6-phosphatase gene transcription by insulin [J]. J Biol Chem,1997,272(18):11698-11701
    [125]Ayala JE, Streeper RS, Desgrosellier JS, et al. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters:transcription factor FKHR binds the insulin response sequence [J]. Diabetes,1999,48(9):1885-1889
    [126]Landschulz WH, Johnson PF, Adashi EY, et al. Isolation of a recombinant copy of the gene encoding C/EBP [J]. Genes Dev,1988,2(7):786-800
    [127]Wang ND, Finegold MJ, Bradley A, et al. Impaired energy homeostasis in C/EBP alpha knockout mice [J]. Science,1995,269(5227):1108-1112
    [128]Qiao L, Mac Lean PS, You H, et al. knocking down liver ccaat/enhancer-binding protein alpha by adenovirus-transduced silent interfering ribonucleic acid improves hepatic gluconeogenesis and lipid homeostasis in db/db mice [J]. Endocrinology, 2006,147(6):3060-3069
    [129]Hornbuckle LA, Everett CA, Martin CC, et al. Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ [J]. American Journal of Physiology-Endocrinology And Metabolism,2004,286(5):E795-E808
    [130]Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis [J]. Cell,1998,92(6):829-839
    [131]Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 [J]. Nature,2001,413(6852):131-138
    [1321 Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3 [J]. Nat Med,2004,10(5): 530-534
    [1331 Boustead JN, Stadelmaier BT, Eeds AM, et al. Hepatocyte nuclear factor-4 alpha
    mediates the stimulatory effect of peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1 alpha) on glucose-6-phosphatase catalytic subunit gene transcription in H4IIE cells [J]. Biochem J,2003,369(Pt 1):17-22
    [134]Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha):transcriptional coactivator and metabolic regulator [J]. Endocr Rev,2003,24(1):78-90
    [135]Chrivia JC, Kwok RP, Lamb N, et al. Phosphorylated CREB binds specifically to the nuclear protein CBP [J]. Nature,1993,365(6449):855-859
    [136]Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through
    the coactivator PGC-1 [J]. Nature,2001,413(6852):179-183
    [137]Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism [J]. Nature,2005,437(7062):1109-1111
    [138]Sladek FM, Zhong WM, Lai E, et al. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily [J]. Genes Dev,1990, 4(12B):2353-2365
    [1391 Diaz Guerra MJ, Bergot MO, Martinez A, et al. Functional characterization of the L-type pyruvate kinase gene glucose response complex [J]. Mol Cell Biol,1993, 13(12):7725-7733
    [140]Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism [J]. Proc Natl Acad Sci U S A,1997,94(24): 13209-13214
    [141]Hirota K, Sakamaki J, Ishida J, et al. A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding [J]. J Biol Chem, 2008,283(47):32432-32441
    [142]Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1):requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis [J]. Proc Natl Acad Sci U S A,2003,100(7): 4012-4017
    [143]De Souza CT, Frederico MJ, da Luz G, et al. Acute exercise reduces hepatic glucose production through inhibition of the Foxol/HNF-4alpha pathway in insulin resistant mice [J]. J Physiol,2010,588(Pt 12):2239-2253
    [144]Schilling MM, Oeser JK, Boustead JN, et al. Gluconeogenesis:re-evaluating the FOXO1-PGC-1alpha connection [J]. Nature,2006,443(7111):E10-11 [145] Freeman BC, Yamamoto KR. Continuous recycling:a mechanism for modulatory signal transduction [J]. Trends Biochem Sci,2001,26(5):285-290
    [146]Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation [J]. Nature,2006,439(7078):871-874
    [147]Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci [J]. Nat Genet,2000, 25(3):269-277
    [148]Burdge GC, Hoile SP, Uller T, et al. Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition [J]. PLoS One, 2011,6(11):e28282
    [149]Li C, Schlabritz-Loutsevitch NE, Hubbard GB, et al. Effects of maternal global nutrient restriction on fetal baboon hepatic insulin-like growth factor system genes and gene products [J]. Endocrinology,2009,150(10):4634-4642
    [150]Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A [J]. J Biol Chem, 1990,265(28):17174-17179
    [151]Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin:novel chemical probes for the role of histone acetylation in chromatin structure and function [J]. Bioessays,1995,17(5):423-430
    [152]Boffa LC, Vidali G, Mann RS, et al. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate [J]. J Biol Chem,1978,253(10):3364-3366
    [153]Massillon D, Arinze IJ, Xu C, et al. Regulation of glucose-6-phosphatase gene expression in cultured hepatocytes and H4IIE cells by short-chain fatty acids:role of hepatic nuclear factor-4alpha [J]. J Biol Chem,2003,278(42):40694-40701
    [154]Chatelain F, Pegorier JP, Minassian C, et al. Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney:in vivo and in vitro studies in cultured fetal hepatocytes [J]. Diabetes,1998,47(6):882-889
    [155]Ursing BM, Arnason U. The complete mitochondrial DNA sequence of the pig (Sus scrofa) [J]. J Mol Evol,1998,47(3):302-306
    [156]Ghivizzani SC, Mackay SL, Madsen CS, et al. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region [J]. J Mol Evol,1993, 37(1):36-37
    [157]Bellance N, Lestienne P, Rossignol R. Mitochondria:from bioenergetics to the metabolic regulation of carcinogenesis [J]. Front Biosci,2009,14:4015-4034
    [158]Leigh-Brown S, Enriquez JA, Odom DT. Nuclear transcription factors in mammalian mitochondria [J]. Genome Biol,2010,11(7):215
    [159]Suzuki M, Toyooka S, Miyajima K, et al. Alterations in the mitochondrial displacement loop in lung cancers [J]. Clin Cancer Res,2003,9(15):5636-5641
    [160]Lievre A, Chapusot C, Bouvier AM, et al. Clinical value of mitochondrial mutations in colorectal cancer [J]. J Clin Oncol,2005,23(15):3517-3525
    [161]Navaglia F, Basso D, Fogar P, et al. Mitochondrial DNA D-loop in pancreatic cancer:somatic mutations are epiphenomena while the germline 16519 T variant worsens metabolism and outcome [J]. Am J Clin Pathol,2006,126(4):593-601
    [162]Zhao YB, Yang HY, Zhang XW, et al. Mutation in D-loop region of mitochondrial DNA in gastric cancer and its significance [J]. World J Gastroenterol,2005,11(21): 3304-3306
    [163]Ye C, Shu XO, Pierce L, et al. Mutations in the mitochondrial DNA D-loop region and breast cancer risk [J]. Breast Cancer Res Treat,2010,119(2):431-436
    [164]Pejovic T, Ladner D, Intengan M, et al. Somatic D-loop mitochondrial DNA mutations are frequent in uterine serous carcinoma [J]. Eur J Cancer,2004,40(16): 2519-2524
    [165]Cardon LR, Burge C, Clayton DA, et al. Pervasive CpG suppression in animal mitochondrial genomes [J]. Proc Natl Acad Sci U S A,1994,91(9):3799-3803
    [166]Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria [J]. Proc Natl Acad Sci U S A,2011,108(9):3630-3635
    [1671 Lee J, Kim CH, Simon DK, et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival [J]. J Biol Chem,2005,280(49):40398-40401
    [168]De Rasmo D, Signorile A, Roca E, et al. cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis [J]. FEBS J, 2009,276(16):4325-4333
    [169]Cammarota M, Paratcha G, Bevilaqua LR, et al. Cyclic AMP-responsive element binding protein in brain mitochondria [J]. J Neurochem,1999,72(6):2272-2277
    [170]Ryu H, Lee J, Impey S, et al. Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons [J]. Proc Natl Acad Sci U S A,2005,102(39):13915-13920
    [171]Wrutniak C, Cassar-Malek I, Marchal S, et al. A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver [J]. J Biol Chem,1995, 270(27):16347-16354
    [172]Casas F, Rochard P, Rodier A, et al. A variant form of the nuclear triiodothyronine receptor c-ErbAalphal plays a direct role in regulation of mitochondrial RNA synthesis [J]. Mol Cell Biol,1999,19(12):7913-7924
    [173]Morrish F, Buroker NE, Ge M, et al. Thyroid hormone receptor isoforms localize to cardiac mitochondrial matrix with potential for binding to receptor elements on mtDNA [J]. Mitochondrion,2006,6(3):143-148
    [174]Psarra AM, Solakidi S, Trougakos IP, et al. Glucocorticoid receptor isoforms in human hepatocarcinoma HepG2 and SaOS-2 osteosarcoma cells:presence of glucocorticoid receptor alpha in mitochondria and of glucocorticoid receptor beta in nucleoli [J]. Int J Biochem Cell Biol,2005,37(12):2544-2558
    [175]Filipovic D, Gavrilovic L, Dronjak S, et al. Brain glucocorticoid receptor and heat shock protein 70 levels in rats exposed to acute, chronic or combined stress [J]. Neuropsychobiology,2005,51(2):107-114
    [176]Cato AC, Mink S. BAG-1 family of cochaperones in the modulation of nuclear receptor action [J]. J Steroid Biochem Mol Biol,2001,78(5):379-388
    [177]Cvoro A, Dundjerski J, Trajkovic D, et al. Association of the rat liver glucocorticoid receptor with Hsp90 and Hsp70 upon whole body hyperthermic stress [J]. J Steroid Biochem Mol Biol,1998,67(4):319-325
    [178]Nilsen J, Brinton RD. Mitochondria as therapeutic targets of estrogen action in the central nervous system [J]. Curr Drug Targets CNS Neurol Disord,2004,3(4): 297-313
    [179]Ioannou IM, Tsawdaroglou N, Sekeris CE. Presence of glucocorticoid responsive elements in the mitochondrial genome [J]. Anticancer Res,1988,8(6):1405-1409
    [180]Psarra AM, Sekeris CE. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions [J]. Biochim Biophys Acta,2009, 1787(5):431-436
    [181]Sterling K. Thyroid hormone action:identification of the mitochondrial thyroid hormone receptor as adenine nucleotide translocase [J]. Thyroid,1991,1(2): 167-171
    [182]Psarra AM, Solakidi S, Sekeris CE. The mitochondrion as a primary site of action of steroid and thyroid hormones:presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells [J]. Mol Cell Endocrinol,2006, 246(1-2):21-33
    [183]Enriquez JA, Fernandez-Silva P, Garrido-Perez N, et al. Direct regulation of mitochondrial RNA synthesis by thyroid hormone [J]. Mol Cell Biol,1999,19(1): 657-670
    [184]Fernandez-Vizarra E, Enriquez JA, Perez-Martos A, et al. Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones [J]. Curr Genet,2008,54(1):13-22
    [185]Yu FL, Feigelson P. A comparative study of RNA synthesis in rat hepatic nuclei and mitochondria under the influence of cortisone [J]. Biochim Biophys Acta,1970, 213(1):134-141
    [186]Mansour AM, Nass S. In vivo cortisol action on RNA synthesis in rat liver nuclei and mitochondria [J]. Nature,1970,228(5272):665-667
    [187]Kimberg DV, Loud AV, Wiener J. Cortisone-induced alterations in mitochondrial function and structure [J]. J Cell Biol,1968,37(1):63-79
    [188]Wakat DK, Haynes RC, Jr. Glucocorticoid-stimulated utilization of substrates in hepatic mitochondria [J]. Arch Biochem Biophys,1977,184(2):561-571
    [189]Allan EH, Chisholm AB, Titheradge MA. The stimulation of hepatic oxidative phosphorylation following dexamethasone treatment of rats [J]. Biochim Biophys Acta,1983,725(1):71-76
    [190]Brillon DJ, Zheng B, Campbell RG, et al. Effect of cortisol on energy expenditure and amino acid metabolism in humans[J]. Am J Physiol,1995,268(3 Pt 1): E501-513
    [191]Rachamim N, Latter H, Malinin N, et al. Dexamethasone enhances expression of mitochondrial oxidative phosphorylation genes in rat distal colon [J]. Am J Physiol, 1995,269(5 Pt 1):C1305-1310
    [192]Kadowaki T, Kitagawa Y. Enhanced transcription of mitochondrial genes after growth stimulation and glucocorticoid treatment of Reuber hepatoma H-35 [J]. FEBS Lett,1988,233(1):51-56
    [193]Van Itallie CM. Dexamethasone treatment increases mitochondrial RNA synthesis in a rat hepatoma cell line [J]. Endocrinology,1992,130(2):567-576
    [194]Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans [J]. PLoS Med,2007,4(3):e76
    [195]Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice [J]. Nature,2003,421(6919):182-187
    [196]Gianotti TF, Sookoian S, Dieuzeide G, et al. A decreased mitochondrial DNA content is related to insulin resistance in adolescents [J]. Obesity (Silver Spring), 2008,16(7):1591-1595
    [197]Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes [J]. Diabetes,2002,51(10):2944-2950
    [198]Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function [J]. Annu Rev Physiol,2009,71:177-203
    [199]Dhahbi JM, Mote PL, Wingo J, et al. Calories and aging alter gene expression for gluconeogenic, glycolytic, and nitrogen-metabolizing enzymes [J]. Am J Physiol, 1999,277(2 Pt 1):E352-360
    [200]Hagopian K, Ramsey JJ, Weindruch R. Caloric restriction increases gluconeogenic and transaminase enzyme activities in mouse liver [J]. Exp Gerontol,2003,38(3): 267-278
    [201]Civitarese AE, Smith SR, Ravussin E. Diet, energy metabolism and mitochondrial biogenesis [J]. Curr Opin Clin Nutr Metab Care,2007,10(6):679-687
    [202]Canto C, Auwerx J. PGC-lalpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure [J]. Curr Opin Lipidol,2009,20(2):98-105
    [203]Sparks LM, Xie H, Koza RA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle [J]. Diabetes,2005,54(7):1926-1933
    [204]Berdanier CD. Diabetes and nutrition:the mitochondrial part [J]. J Nutr,2001, 131(2):344S-353S
    [205]Herrero A, Portero-Otin M, Bellmunt MJ, et al. Effect of the degree of fatty acid unsaturation of rat heart mitochondria on their rates of H2O2 production and lipid and protein oxidative damage [J]. Mech Ageing Dev,2001,122(4):427-443
    [206]Pamplona R, Portero-Otin M, Sanz A, et al. Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain [J]. Exp Gerontol,2004,39(5):725-733
    [207]Ruff SJ, Ong DE. Cellular retinoic acid binding protein is associated with mitochondria [J]. FEBS Lett,2000,487(2):282-286
    [208]Everts HB, Berdanier CD. Nutrient-gene interactions in mitochondrial function: vitamin A needs are increased in BHE/Cdb rats [J]. IUBMB Life,2002,53(6): 289-294
    [209]Chou SY, Hannah SS, Lowe KE, et al. Tissue-specific regulation by vitamin D status of nuclear and mitochondrial gene expression in kidney and intestine [J]. Endocrinology,1995,136(12):5520-5526
    [210]Cantatore P, Petruzzella V, Nicoletti C, et al. Alteration of mitochondrial DNA and RNA level in human fibroblasts with impaired vitamin B12 coenzyme synthesis [J]. FEBS Lett,1998,432(3):173-178
    [211]Bell AW, Ehrhardt RA. Regulation of placental nutrient transport and implications for fetal growth [J]. Nutr Res Rev,2002,15(2):211-230
    [212]Edwards LJ, McMillen IC. Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo-pituitary adrenal axis in sheep during late gestation [J]. Biol Reprod, 2002,66(5):1562-1569
    [213]Desai M, Crowther NJ, Lucas A, et al. Organ-selective growth in the offspring of protein-restricted mothers [J]. Br J Nutr,1996,76(4):591-603
    [214]Huxley RR, Neil HA. Does maternal nutrition in pregnancy and birth weight influence levels of CHD risk factors in adult life? [J]. Br J Nutr,2004,91(3): 459-468
    [215]Lechtig A, Yarbrough C, Delgado H, et al. Influence of maternal nutrition on birth weight [J]. Am J Clin Nutr,1975,28(11):1223-1233
    [216]Lesage J, Hahn D, Leonhardt M, et al. Maternal undernutrition during late gestation-induced intrauterine growth restriction in the rat is associated with impaired placental GLUT3 expression, but does not correlate with endogenous corticosterone levels [J]. J Endocrinol,2002,174(1):37-43
    [217]Cornock R, Langley-Evans SC, Mobasheri A, et al. The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins [J]. Reprod Biol Endocrinol,2010,8:105
    [218]Fowden AL, Forhead AJ. Adrenal glands are essential for activation of glucogenesis during undernutrition in fetal sheep near term [J]. Am J Physiol Endocrinol Metab, 2011,300(1):E94-102
    [219]Wu G, Pond WG, Ott T, et al. Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs [J]. J Nutr,1998, 128(5):894-902
    [220]Pond WG, Su DR, Mersmann HJ. Divergent concentrations of plasma metabolites in swine selected for seven generations for high or low plasma total cholesterol [J]. J Anim Sci,1997,75(2):311-316
    [221]Wynne ES, Cott CL. Effect of food intake on amino acids in human plasma[J]. Am J Clin Nutr,1956,4(3):275-278
    [222]Richardson LR, Hale F, Ritchey SJ. EFFECT OF FASTING AND LEVEL OF DIETARY PROTEIN ON FREE AMINO ACIDS IN PIG PLASMA [J].J Anim Sci,1965,24:368-372
    [223]Schelling GT, Hinds FC, Hatfield EE. Effect of dietary protein levels, amino acid supplementation and nitrogen source upon the plasma free amino acid concentrations in growing lambs [J]. J Nutr,1967,92(3):339-347
    [224]Dean WF, Scott HM. Use of free amino acid concentrations in blood plasma of chicks to detect deficiencies and excesses of dietary amino acids [J]. J Nutr,1966, 88(1):75-83
    [225]Varma DR, Ramakrishnan R. Effects of protein-calorie malnutrition on transplacental kinetics of aminoisobutyric acid in rats [J]. Placenta,1991,12(3): 277-284
    [226]Malandro MS, Beveridge MJ, Kilberg MS, et al. Effect of low-protein diet-induced intrauterine growth retardation on rat placental amino acid transport [J]. Am J Physiol,1996,271(1 Pt 1):C295-303
    [227]El Khattabi I, Remacle C, Reusens B. The regulation of IGFs and IGFBPs by prolactin in primary culture of fetal rat hepatocytes is influenced by maternal malnutrition [J]. Am J Physiol Endocrinol Metab,2006,291(4):E835-842
    [228]Davenport ML, D'Ercole AJ, Underwood LE. Effect of maternal fasting on fetal growth, serum insulin-like growth factors (IGFs), and tissue IGF messenger ribonucleic acids [J]. Endocrinology,1990,126(4):2062-2067
    [229]Hyatt MA, Gardner DS, Sebert S, et al. Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring [J]. Reproduction,2011,141(1):119-126
    [230]Torres N, Bautista CJ, Tovar AR, et al. Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat [J]. Am J Physiol Endocrinol Metab,2010,298(2):E270-277
    [231]Bennett LW, Keirs RW, Peebles ED, et al. Methodologies of tissue preservation and analysis of the glycogen content of the broiler chick liver [J]. Poult Sci,2007, 86(12):2653-2665
    [232]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods,2001,25(4): 402-408
    [233]Lafeber HN, Rolph TP, Jones CT. Studies on the growth of the fetal guinea pig. The effects of ligation of the uterine artery on organ growth and development [J]. J Dev Physiol,1984,6(6):441-459
    [234]Lesage J, Blondeau B, Grino M, et al. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation,
    and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat [J]. Endocrinology,2001,142(5):1692-1702
    [235]Wood CE, Cudd TA. Development of the hypothalamus-pituitary-adrenal axis of the equine fetus:a comparative review [J]. Equine Vet J Suppl,1997, (24):74-82
    [236]Sangild PT, Hilsted L, Nexo E, et al. Vaginal birth versus elective caesarean section: effects on gastric function in the neonate [J]. Exp Physiol,1995,80(1):147-157
    [237]Silver M, Fowden AL. Pituitary-adrenocortical activity in the fetal pig in the last third of gestation [J]. Q J Exp Physiol,1989,74(2):197-206
    [238]Bertram C, Trowern AR, Copin N, et al. The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11 beta-hydroxysteroid dehydrogenase:potential molecular mechanisms underlying the programming of hypertension in utero [J]. Endocrinology,2001,142(7): 2841-2853
    [239]Wang Z, Frederick J, Garabedian MJ. Deciphering the phosphorylation "code" of the glucocorticoid receptor in vivo [J]. J Biol Chem,2002,277(29):26573-26580
    [240]Kwong WY, Miller DJ, Wilkins AP, et al. Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses [J]. Mol Reprod Dev,2007,74(1):48-56
    [241]Szalat A, Raz I. Gender-specific care of diabetes mellitus:particular considerations in the management of diabetic women [J]. Diabetes Obes Metab,2008,10(12): 1135-1156
    [242]Legato MJ, Gelzer A, Goland R, et al. Gender-specific care of the patient with diabetes:review and recommendations [J]. Gend Med,2006,3(2):131-158
    [2431 Ding EL, Song Y, Malik VS, et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes:a systematic review and meta-analysis [J]. JAMA,2006, 295(11):1288-1299
    [244]Stothard P. The sequence manipulation suite:JavaScript programs for analyzing and formatting protein and DNA sequences [J]. Biotechniques,2000,28(6):1102,1104
    [245]Kertesz M, Iovino N, Unnerstall U, et al. The role of site accessibility in microRNA target recognition [J]. Nat Genet,2007,39(10):1278-1284
    [246]Diamond MI, Miner JN, Yoshinaga SK, et al. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element [J]. Science, 1990,249(4974):1266-1272
    [247]Devos A, Claessens F, Alen P, et al. Identification of a functional androgen-response element in the exon 1-coding sequence of the cystatin-related protein gene crp2 [J]. Mol Endocrinol,1997,11(8):1033-1043
    [248]McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming [J]. Physiol Rev,2005,85(2):571-633
    [249]Balaban RS. The mitochondrial proteome:a dynamic functional program in tissues and disease states [J]. Environ Mol Mutagen,2010,51(5):352-359
    [250]Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers [J]. Biochemistry,1968,7(11):4030-4034
    [251]Sanni LA, Rae C, Maitland A, et al. Is ischemia involved in the pathogenesis of murine cerebral malaria? [J]. Am J Pathol,2001,159(3):1105-1112
    [252]Gaikwad A, Long DJ,2nd, Stringer JL, et al. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue [J]. J Biol Chem,2001,276(25): 22559-22564
    [253]Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion [J]. Am J Physiol,1998,275(1 Pt2):H195-203
    [254]Mongan PD, Capacchione J, West S, et al. Pyruvate improves redox status and decreases indicators of hepatic apoptosis during hemorrhagic shock in swine [J]. Am J Physiol Heart Circ Physiol,2002,283(4):H1634-1644
    [255]MacDonald MJ, Marshall LK. Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle [J]. Arch Biochem Biophys,2000,384(1):143-153
    [256]Salazar VL, Stoddard PK. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus [J]. J Exp Biol,2008, 211(Pt6):1012-1020
    [257]Luo ZC, Fraser WD, Julien P, et al. Tracing the origins of "fetal origins" of adult diseases:programming by oxidative stress? [J]. Med Hypotheses,2006,66(1): 38-44
    [258]Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients [J]. Diabetes,2007,56(5):1376-1381
    [259]Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes [J]. N Engl J Med,2004, 350(7):664-671
    [260]Engeham S, Mdaki K, Jewell K, et al. Mitochondrial Respiration Is Decreased in Rat Kidney Following Fetal Exposure to a MaternalLow-ProteinDiet [J]. J Nutr Metab,2012,2012:989037
    [261]Liu J, Chen D, Yao Y, et al. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle [J]. PLoS One,2012,7(4):e34835
    [262]Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming [J]. Reproduction,2004,127(5):515-526
    [263]Fowden AL. Endocrine regulation of fetal growth [J]. Reprod Fertil Dev,1995,7(3): 351-363
    [264]Thomas AL, Krane EJ, Nathanielsz PW. Changes in the fetal thyroid axis after induction of premature parturition by low dose continuous intravascular cortisol infusion to the fetal sheep at 130 days of gestation [J]. Endocrinology,1978,103(1): 17-23
    [265]Fowden AL. The insulin-like growth factors and feto-placental growth [J]. Placenta, 2003,24(8-9):803-812
    [266]Hill DJ, Petrik J, Arany E. Growth factors and the regulation of fetal growth [J]. Diabetes Care,1998,21 Suppl 2:B60-69
    [267]Efstratiadis A. Genetics of mouse growth [J]. Int J Dev Biol,1998,42(7):955-976
    [268]Clarke KA, Ward JW, Forhead AJ, et al. Regulation of 11 beta-hydroxysteroid dehydrogenase type 2 activity in ovine placenta by fetal cortisol [J]. J Endocrinol, 2002,172(3):527-534
    [269]Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms [J]. Mol Cell Endocrinol,2001,185(1-2):61-71
    [270]Gallou-Kabani C, Vige A, Gross MS, et al. Nutri-epigenomics:lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond [J]. Clin Chem Lab Med,2007,45(3):321-327
    [271]Gallou-Kabani C, Vige A, Junien C. Lifelong circadian and epigenetic drifts in metabolic syndrome [J]. Epigenetics,2007,2(3):137-146
    [272]Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outcomes [J]. Am J Clin Nutr,2009,89(5):1488S-1493S
    [273]Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers [J]. Yonsei Med J,2009,50(4):455-463
    [274]Winter S, Fischle W. Epigenetic markers and their cross-talk [J]. Essays Biochem, 2010,48(1):45-61
    [275]Lillycrop KA, Phillips ES, Jackson AA, et al. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring [J]. J Nutr,2005,135(6):1382-1386
    [276]Lillycrop KA, Phillips ES, Torrens C, et al. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring [J]. Br J Nutr,2008,100(2):278-282
    [277]Razin A, Cedar H. DNA methylation and gene expression [J]. Microbiol Rev,1991, 55(3):451-458
    [278]Marmorstein R. Protein modules that manipulate histone tails for chromatin regulation [J]. Nat Rev Mol Cell Biol,2001,2(6):422-432
    [279]Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome [J]. Cell,2007,129(4):823-837
    [280]Roh TY, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping [J]. Genes Dev,2005,19(5): 542-552
    [281]Roh TY, Ngau WC, Cui K, et al. High-resolution genome-wide mapping of histone modifications [J]. Nat Biotechnol,2004,22(8):1013-1016
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.