猪小肠氨基酸代谢菌的分离和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸及其代谢产物对人和动物的健康有重要意义。由于小肠在解剖结构上处于优先利用摄入氨基酸的地位,小肠日粮氨基酸的代谢可直接影响氨基酸进入门静脉循环的模式,从而影响整个机体对氨基酸的利用。目前,关于小肠内氨基酸代谢情况存在许多争议,关于小肠内氨基酸的微生物代谢和转化情况鲜有报道。因此,本文旨在探究猪小肠微生物体外代谢氨基酸情况,分离鉴定猪小肠氨基酸代谢菌,为研究小肠内氨基酸的微生物代谢机理、转化途径和调控机制提供理论基础。
     第一部分:体外法研究猪小肠微生物对氨基酸的代谢。通过体外培养研究猪小肠各肠段微生物对精氨酸、谷氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、脯氨酸、苏氨酸、色氨酸和缬氨酸的代谢情况。分别接种十二指肠、空肠、回肠微生物处理液至含有10 mmol/L上述不同氨基酸的培养基中,体外发酵24h。0h、6h、12h、24h取样,用HPLC测定各组发酵液中游离氨基酸浓度,计算氨基酸消失率,分析各肠段微生物对氨基酸的代谢规律。试验结果表明,体外发酵24h,十二指肠组、空肠组和回肠组中赖氨酸、苏氨酸、组氨酸、精氨酸、谷氨酸和支链氨基酸的消失率显著高于蛋氨酸、苯丙氨酸、色氨酸和脯氨酸(P<0.01);十二指肠、空肠和回肠微生物对同种氨基酸的代谢情况存在差异。提示,猪小肠微生物可能对小肠内赖氨酸、苏氨酸、精氨酸、谷氨酸、组氨酸和支链氨基酸的代谢有重要影响。
     第二部分:猪小肠氨基酸代谢菌的分离和筛选。为了研究猪小肠氨基酸代谢菌的物种资源,该试验对赖氨酸、苏氨酸、组氨酸、谷氨酸和精氨酸代谢菌进行分离和筛选。利用改良型的Hungate滚管技术,根据菌落形态差异挑选出氨基酸代谢菌疑似菌株30株。将疑似菌株菌液接种到含有其对应氨基酸的培养基中,体外发酵24h。通过HPLC测定发酵液中游离氨基酸浓度,计算氨基酸消失率,筛选可代谢氨基酸的菌株。将筛选出的氨基酸代谢菌菌液接种到含有其对应氨基酸的培养基中,进行复筛。本试验共分离氨基酸代谢菌13株。其中,赖氨酸代谢菌3株,命名为L1、L2和L3,单菌发酵液中赖氨酸消失率分别为83.17%、47.17%和85.70%。苏氨酸代谢菌2株,命名为T1和T2,单菌发酵液中苏氨酸消失率分别为14.34%和2.09%。组氨酸代谢菌2株,命名为H1和H8,单菌发酵液中组氨酸消失率分别为8.72%和4.60%。精氨酸代谢菌3株,命名为A1、A3和A4,单菌发酵液中精氨酸消失率分别为5.81%、21.41%和15.23%。谷氨酸代谢菌3株,命名为G4、G9和G10,单菌发酵液中谷氨酸消失率分别为15.44%、33.26%和5.75%。试验结果表明,除赖氨酸代谢菌外,其余单菌的氨基酸代谢率显著低于小肠各肠段混合菌的代谢率。
     第三部分:猪小肠氨基酸代谢菌的鉴定与分类。为了进一步探究猪小肠氨基酸代谢菌的种类和特征,本试验对菌株L1、L2、L3、T1、H1、H8、A3、A4、G4和G9进行了形态、生化和16SrRNA基因序列鉴定。形态和生化鉴定结果表明,菌株L1、L2、L3和G9为克雷伯属(Klebsiella)细菌;T1、G4和H1为大肠杆菌(Escherichiacoli);H8、A3和A4为链球菌属(Streptococcus)细菌。系统进化树分析结果表明,L2、L3与Klebsiella pneumoniae strain K42和Klebsiella pneumonia ATCC13883T位于同一个分枝内,相似性达99%。G9和Klebsiella pneumoniae strain ECU-15位于同一个分枝内,相似性达99%。A3与Streptococcus bovis位于同一个分枝内,相似性达99%。
Amino acids and their metabolites are important to both animals and humans. Considering the anatomic priority of small intestine in amino acids utilization, intestinal amino acid metabolism plays a significant role in modulating amino acid systemic availability and profile for the utilization of extraintestinal tissues. Up to now, the intestinal metabolism of amino acids is still controversial. Knowledge about the microbial metabolism of dietary amino acids in the foregut is still unknown. Thus, this thesis aimed to investigate the in vitro microbial metabolism of amino acids, isolate amino acids utilizing bacteria and provide theoretical basis for further research on microbial metabolism of intestinal amino acids. It was described in the following three sections.
     The aim of the first experiment was to investigate the in vitro metabolism of amino acids, including arginine, glutamate, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan and valine, by microorganisms from different segment of pig small intestine. Fresh samples from duodenum, jejunum and ileum were used as inocula for cultivation of individual amino acid. Samples were takend after incubation of 0 h,6 h,12 h and 24 h. Concentrations of free amino acid in the culture media were detected by HPLC, which calculated and expressed as disappearance rates. Results showed that the disappearance rate of lysine, threonine, histidine, arginine, glutamate and BCAA in all treatments is higher than that of methionine, phenylalanine, proline and tryptophan (P<0.01) after incubation of 24 h. For each amino acid, the metabolic rates by microorganisms from duodenum, jejunum and ileum are different. The above results revealed the importance of microbial metabolism of lysine, threonine, arginine, glutamate, histidine, valine, leucine and isoleucine in small intestine.
     In order to research and analyze species resource of amino acid utilizing bacteria, lysine, threonine, histidine, arginine and glutamate utilizing strains were isolated by modified Hungate technique from pig small intestine.30 suspected strains were isolated by discriminating colonial morphology. Each suspected isolate was used to inoculate culture bottles with corresponding amino acid. After 24 h incubation, the cultures were taken to detect the concentration of free amino acid by HPLC and analyze amino acid disappearance rate to select amino acids utilizing strains. Each selected strains was used to inoculate culture bottles with corresponding amino acid. After 24 h incubation, the cultures were taken to detect the concentration of free amino acid by automatic amino acid analyzer and analyze amino acid disappearance rate. Thirteen strains were isolated, of which three lysine utilizing strains were named after L1, L2 and L3, with lysine disappearance rate of 83.17%, 47.17% and 85.70% respectively. Two threonine utilizing strains were named after T1 and T2, with threonine disappearance rate of 14.34% and 2.09% respectively. Two histidine utilizing strains were named after H1 and H8, with histidine disappearance rate of 8.72% and 4.60% respectively. Three arginine utilizing strains were named after A1, A3 and A4, with arginine disappearance rate of 5.81%,21.41% and 15.23% respectively. Three glutamate utilizing strains were named after G4, G9 and G10, with glutamate disappearance rate of 15.44%,33.26% and 5.75% respectively. Results showed that except lysine utilizing strains, the amino acid metabolic rate of the other stains are lower than that of mixing microorganisms from duodenum, jejunum and ileum.
     The study was designed to identify the morphology, biochemical and molecular traits of L1, L2, L3, T1, H1, H8, A3, A4, G4 and G9. Based on morphological and physiological characteristics, L1, L2, L3 and G9 were identified as Klebsiella, T1 and G4 were identified as Escherichia coli, and H8, A3 and A4 were identified as Streptococcus. The 16S rRNA gene sequence analysis showed that L2 and L3 had a closest relative with Klebsiella pneumoniae strain K42 and Klebsiella pneumonia ATCC13883T, G9 had a closest relative with Klebsiella pneumoniae strain ECU-15, and A3 had a closest relative with Streptococcus bovis.
引文
1. Kim SW, Mateo RD, Yin YL, et al. Functional amino acids and fatty acids for enhancing production performance of sows and piglets[J]. Asian-Australasian Journal of Animal Sciences,2007,20(2): 295-306
    2. Wu G, Knabe DA. Free and protein-bound amino acids in sow's colostrums and milk[J]. The Journal of Nutrition,1994,124(3):415-424
    3. Flynn NE, Wu G. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs[J]. The American journal of physiology,1996,271:1149-1155
    4. Wu G, Bazer FW, Tuo W, et al. Unusual abundance of arginine and ornithine in porcine allantoic fluid[J]. Biology of Reproduction,1996,54(6):1261-1265
    5. Kwon H, Spencer TE, Bazer FW, et al. Developmental changes of amino acids in ovine fetal fluids[J]. Biology of Reproduction,2003,68(5):1813-1820
    6. 刘兆金,王彬,黄瑞林,等.支链氨基酸对mRNA翻译起始的调控作用[J].家畜生态学报,2007,28:36-40
    7. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease[J]. Biomedecine & Pharmacotherapy,2003,57(3-4):145-155
    8. Lu SC. Regulation of glutathione synthesis[J]. Current Topics in Cellular Regulation,2000,36: 95-116
    9. Dasgupta A, Das S, Sarkar PK. Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs[J]. Free Radical Biology and Medicine,2007,42(5):617-626
    10. Wu G, Fang YZ, Yang S, et al. Glutathione metabolism and its implications for health[J]. The Journal of Nutrition,2004,134(3):489-492
    11. Lyons J, Rauh-Pfeiffer A, Yu YM, et al. Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(10):5071-5076
    12. Wu G, Meininger CJ. Regulation of nitric oxide synthesis by dietary factors[J]. Annual Review of Nutrition,2002,22:61-86
    13. Larque E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines[J]. Nutrition,2007,23(1):87-95
    14. Kandil HM, Argenzio RA, Chen W, et al. L-Glutamine and L-asparagine stimulate ODC activity and proliferation in a porcine jejunal enterocytes line[J]. The American journal of physiology,1995, 269:591-599
    15. Robert AC, Laurence JM. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases[J]. Drug Discovery,2007,6(5):373-390
    16. Ban H, Shigemitsu K, Yamatsuji T, et al. Arginine and leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells[J]. International journal of molecular medicine,2004,13(4):537-543
    17. Wu G, Jaeger LA, Bazer FW, et al. Arginine deficiency in premature infants:biochemical mechanisms and nutritional implications[J]. The Journal of nutritional biochemistry,2004,15: 442-451
    18. Meijer AJ, Dubbelhuis PF. Amino acid signaling and the integration of metabolism[J]. Biochemical and Biophysical Research Communications,2004,313(2):397-403
    19. Wu G, Morris SM Jr. Arginine metabolism:nitric oxide and beyond[J]. Biochemical Journal,1998, 336:1-17
    20. Escobar J, Frank JW, Suryawan A, et al. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation[J]. The American journal of physiology,2005,288:914-921
    21. Escobar J, Frank JW, Suryawan A, et al. Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs[J]. The American journal of physiology, 2006,290:612-621
    22. Metges CC. Does dietary protein in early life affect the development of adiposity in Mammals [J]. The Journal of Nutrition,2001,131:2062-2066
    23. Wu G, Self JT. Amino acids:metabolism and functions[M]. Encyclopedia of Animal Science (Ed. W. G. Pond and A. W. Bell). New York, Marcel Dekker, Inc.,2005:9-12
    24. Brosnan JT. Amino acids, then and now-a reflection on Sir Hans Kreb's contribution to nitrogen metabolism[J]. IUBMB Life,2001,52(6):265-270
    25. Fu W, Haynes TE, Kohli R, et al. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats[J]. The Journal of Nutrition,2005,135(4):714-721
    26. Jobgen WS, Fried SK, Fu WJ, et al. Regulatory role for the arginine-nitric oxide pathway in energy-substrate metabolism[J]. The Journal of nutritional biochemistry,2006,17:571-588
    27. Wu GY, Thompson JR, Baracos VE. Glutamine metabolism in skeletal muscle from the broiler chick(Gallusdomesticus) and the laboratory rat (Rattus norvegicus)[J]. The Biochemical Journal, 1991,274:769-774
    28. Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection[J]. Journal of leukocyte biology,2002,71(1):16-32
    29. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism[J]. Nature reviews Immunology,2005,5:641-654
    30. Kim SW, McPherson RL, Wu G. Dietary arginine supplementation enhances the growth of milk-fed young piglets[J]. The Journal of Nutrition,2004,134:625-630
    31. Kim SW, Mateo RD, Wu G, et al. Dietary L-arginine supplementation affects immune status of pregnant gilts[J]. The FASEB journal:official publication of the Federation of American Societies for Experimental Biology,2006,20:424
    32. Flynn NE, Meininger CJ, Haynes TE et al. The metabolic basis of arginine nutrition and pharmacotherapy[J]. Biomedicine & pharmacotherapy,2002,56:427-438
    33. Newsholme P, Brennnan L, Rubi B, et al. New insights into amino acid metabolism, beta-cell function and diabetes[J]. Clinical science,2005,108:185-194
    34. Zhou RY, Peng J, Liu ZL et al. Effects of biocom as a replacement of glutamine on performance and blood biochemical indexes of early weaned piglets[J]. Asian-Australasian Journal of Animal Sciences,2006,19:872-876
    35. Wu Q Bazer FW, Cudd TA, et al. Maternal Nutrition and Fetal Development[J]. The Journal of Nutrition,2004,134:2169-2172
    36. Martin, PM, AE Sutherland, LJ Van Winkle. Amino acid transport regulates blastocyst implantation[J]. Biology of Reproduction,2003,69:1101-1108
    37.印遇龙,李铁军,黄瑞林,等.猪氨基酸营养与代谢[M].北京:科学出版社,2008:72-126
    38. Windmueller HG, Spaeth AE. Intestinal of glutamine from the lumen as compared to glutamine from blood[J]. Arch Biochem Biophys,1975,171:662-672
    39. Windmueller HG, Spaeth AE. Metabolism of absorbed aspartate, asparagines, and arginine by small intestine in vivo[J]. Arch Biochem Biophys,1976,175:670-676
    40. Simon O, Bergner H, Munchmeyer R. Studies on the range of tissue protein synthesis in pigs:the effect of thyroid hormones[J]. The British journal of nutrition,1982,48(3):571-582
    41. Burrin DG, Shulman RJ, Reeds PJ, et al. Porcine colostrum and milk stimulate visceral organ and skeletalmuscle synthesis in neonatal piglets[J]. The Journal of Nutrition,1992,122(6):1205-1213
    42. Windmueller HG. Glutamine utilization by the small intestine[J]. Adv Enzymol,1982,53:201-237
    43. Batyzezzati A, Brillon DJ, Matthew DE. Oxidation of glutamic acid by the splanchnic bed in humans[J]. The American journal of physiology,1995,269:269-276
    44. Reeds PJ, Burrin DG, Jahoor F, et al. Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs[J]. The American journal of physiology,1996,270: 413-418
    45. Stoll B, Henry J, Reeds PJ, et al. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets[J]. The Journal of Nutrition,1998,128(3): 606-614
    46. Castillo L, Chapman TE, Yu YM, et al. Dietary arginine uptake by the splanchnic region in adult humans[J]. The American journal of physiology,1993,265:532-539
    47. Castillo L, deRojas TC, Chapman TE, et al. Splanchnic metabolism of dietary arginine in relation to nitric oxide synthesis in normal adult man[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(1):193-197
    48. Davis PK, Wu G. Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes[J]. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,1998,119(3): 527-637
    49. Wu G. Synthesis of citrulline and arginine from porcine in enterocytes of postnatal pigs[J]. The Journal of Nutrition,1997,272:1382-1390
    50. Murphy JM, Murch SJ, Ball RO. Proline is synthesized from glutamate during intragastric infusion but not during intravenous infusion in neonatal piglets[J]. The Journal of Nutrition,1996,126(4): 878-986
    51. Biolo G, Tessari P, Inchiostro S, et al. Leucine and phenylalanine kinetics during mixed meal ingestion:a multiple tracer approach[J]. The American journal of physiology,1992,262:455-463
    52. Hoerr RA, Matthews DE, Bier DM, et al. Effects of protein restriction and acute refeeding on leucine and lysine kinetics in young men[J]. The American journal of physiology,1993,264: 567-575
    53. Riedijk MA, van Goudoever JB. Splanchnic metabolism of ingested amino acids in neonates[J]. Current opinion in clinical nutrition and metabolic care,2007,10(1):58-62
    54. Yu YM, Wagner DA, Tredget EE, et al. Quantitative role of splanchnic region in leucine metabolism:L-[1-13C,15N]leucine and substrate balance studies[J]. The American journal of physiology,1990,259:36-51
    55. Wu G. Intestinal mucosal amino acid catabolism[J]. The Journal of Nutrition,1998,128:1249-1252
    56. Chen LX, Yin YL, Jobgen WS, et al. In vitro oxidation of essential amino acids by intestinal mucosal cells of growing pigs[J]. Livestock production science,2007,109:19-23
    57. Goldberg AL, Chang TW. Regulation and significance of amino acid metabolism in skeletal muscle[J]. Federation proceedings,1978,37:2301-2307
    58. Wu G, Thompson JR. The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick[J]. The Biochemical journal,1988,255:139-144
    59. Chen L, Li P, Wang J, et al. Catabolism of nutritionally essential amino acids in developing porcine enterocytes[J]. Amino Acids, DOI:10.1007/s00726-009-0268-1
    60. Wu G, Knabe DA, Yan W, et al. Glutamine and glucose metabolism in enterocytes of the neonatal pig[J]. American journal of physiology. Regulatory, integrative and comparative physiology,1995, 268:334-342
    61. Shoveller AK, Brunton JA, House JD, et al. Dietary cysteine reduces the methionine requirement by an equal proportion in both parenterally and enterally fed piglets[J]. The Journal of Nutrition, 2003,133:4215-4224
    62. Burrin DG, Stoll B. Emerging aspects of gut sulfur amino acid metabolism[J]. Current opinion in clinical nutrition and metabolic care,2007,10(1):63-68
    63. Lobley GE, Connell A, Revell D. The importance of transmethylation reactions to methionine metabolism in sheep:effects of supplementation with creatine and choline[J]. The British journal of nutrition,1996,75:47-56
    64. Lobley GE, Shen X, Le G, et al. Oxidation of essential amino acids by the ovine gastrointestinal tract[J]. The British journal of nutrition,2003,89:617-630
    65. Riedijk MA, Stoll B, Chacko S, et al. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:3408-3413
    66. Townsend JH, Davis SR, Mackey AD, et al. Folate deprivation reduces homocysteine remethylation in a human intestinal epithelial cell culture model:role of serine in one-carbon donation[J]. American journal of physiology. Gastrointestinal and liver physiology,2004,286: 588-595
    67. Fang ZF, Luo J, Qi ZL, et al. Effects of 2-hydroxy-4-methylthiobutyrate on portal plasma flow and net portal appearance of amino acids in piglets[J]. Amino Acids,2009,36(3):501-509
    68. Bos C, Stoll B, Fouillet H, et al. Intestinal lysine metabolism is driven by the enteral availability of dietary lysine in piglets fed a bolus meal[J]. American journal of physiology. Endocrinology and metabolism,2003,285(6):1246-1257
    69. Van Goudoever JB, Stoll B, Henry JF, et al. Adaptive regulation of intestinal lysine metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97: 11620-11625
    70. Schaart MW, Schierbeck H, van der Schoor SR, et al. Threonine utilization is high in the intestine of piglets[J]. The Journal of Nutrition,2005,135(4):765-770
    71. Bertolo RF, Chen CZ, Law G, et al. Threonine requirement of neonatal piglets receiving total parenteral nutrition is considerably lower than that of piglets receiving an identical diet intragastrically[J]. The Journal of Nutrition,1998,128:1752-1759
    72. Faure M, Moennoz D, Montigon F, et al. Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats[J]. The Journal of Nutrition,2005,135:486-491
    73. Faure M, Mettraux C, Moennoz D, et al. Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats[J]. The Journal of Nutrition,2006,136: 1558-1564
    74. Wang X, Qiao SY, Yin YL, et al. A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs[J]. The Journal of Nutrition,2007,137: 1442-1446
    75. Van der Schoor SR, van Goudoever JB, Stoll B, et al. The high metabolic cost of a functional gut[J]. Gastroenterology,2002,123:1931-1940
    76. McFarland LV. Normal flora:diversity and functions[J]. Microbial ecology in health and disease, 2000,12:193-207
    77.李兰娟,熊德鑫,杨景云,等.感染微生态学[M].北京:人民卫生出版社,2002:812-892
    78. Fooks LJ, Fuller R, Gibson GR, et al. Prebiotics, probiotics and human gutmicrobiology[J]. International dairy journal,1999,9:532-561
    79. Berg RD. The indigenous gastrointestinal microflora[J]. Trends in microbiology,1996,4:430-435
    80. Hooper LV, Wong MH, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science,2002,291:881-884
    81. Van de Dokkum W, Boer BC, van Faassen A, et al. Diet, faecal pH and colorectalcancer[J]. British journal of cancer,1983,48:109-110
    82. Guarner F, Malagelada JR. Gut flora in health and disease[J]. Lancet,2003,361(9356):512-519
    83. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell,2006,124(4):837-848
    84. Bingham SA, Englyst HN. Digestion and physiological properties of resistant starch in the human large bowel[J]. The British journal of nutrition,1996,75(5):733-747
    85. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut,1987,28(10):1221-1227
    86. Salminen S, Bouley C, Boutron-Ruault MC, et al. Functional food science and gastrointestinal physiology and function[J]. The British journal of nutrition,1998,80:147-171
    87. Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(33):12511-12516
    88. Heilig HG, Zoetendal EG, Vaughan EE, et al. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA[J]. Applied and environmental microbiology,2002,68(1):114-123
    89. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America,2009,106(10):3698-703
    1. Burrin DG, Reeds PJ. Alternative fuels in the gastrointestinal tract[J]. Current opinion in gastroenterology,1997,13:165-170
    2. Wu G, Knabe DA. Arginine synthesis in enterocytes of neonatal pigs[J]. The American journal of physiology,1996,269:621-629
    3. Stoll B, Henry J, Reeds PJ, et al. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets[J]. The Journal of Nutrition,1998,128: 606-614
    4. Wu G. Intestinal Mucosal amino acid catabolism[J]. The Journal of Nutrition,1998,128:1249-1252
    5. Chen LX, Yin YL, Jobgen WS, et al. In vitro oxidation of essential amino acids by intestinal mucosal cells of growing pigs[J]. Livestock production science,2007,109:19-23
    6. Chen L, Li P, Wang J, et al. Catabolism of nutritionally essential amino acids in developing porcine enterocytes[J]. Amino Acids, DOI:10.1007/s00726-009-0268-1
    7. Smith EA, Macfarlane GT. Enumeration of amino acid fermenting bacteria in the human large intestine:effects of pH and starch on peptide metabolism and dissimilation of amino acids [J]. FEMS Microbiology Ecology,1998,25:355-368
    8. Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host[J]. The Journal of Nutrition,2000,130:1857-1864
    9. Barbara AW, Marblou WB, Huug B, et al. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diet[J]. Animal feed science and technology, 2005,123:445-462
    10. Smith EA, Macfarlane GT. Dissimilatory amino acid metabolism in human colonic bacteria[J]. Anaerobe,1997,3:327-337
    11.杨菁,孙黎光.异硫氰酸苯酯柱前衍生化反相高效液相色谱法同时测定18种氨基酸[J].色谱,2002,20:369-371
    12. Riedijk MA, Stoll B, Chacko S, et al. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:3408-3413
    13. Stoll B, Henry J, Reeds PJ, et al. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets[J]. The Journal of Nutrition,1998,128(3): 606-614
    14. Castillo L, Chapman TE, Yu YM, et al. Dietary arginine uptake by the splanchnic region in adult humans[J]. The American journal of physiology,1993,265:532-539
    15.李兰娟,熊德鑫,杨景云,等.感染微生态学.北京:人民卫生出版社,2002:812-892Fooks LJ, Fuller R, Gibson GR, et al. Prebiotics, probiotics and human gutmicrobiology[J]. International dairy journal,1999,9:532-561
    16. Berg RD.The indigenous gastrointestinal microflora[J]. Trends in microbiology,1996,4:430-435
    17. Hooper LV, Wong MH, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science,2001,291:881-884
    1. McSweeney CS, Denman SE, Mackie RI. Methods in Gut Microbial Ecology for Ruminants [M]. Springer Netherlands,2005:24-26
    2. Bryant MP. Commentary on the Hungate technique for culture of anaerobic bacteria[J]. The American journal of clinical nutrition,1972,25(12):1324-1329
    3. Smith EA, Macfarlane GT. Dissimilatory amino acid metabolism in human colonic bacteria[J]. Anaerobe,1997,3(5):327-337
    4. 任建民,刘强.赖氨酸营养研究进展[J].饲料博览,2009,3:13-15
    5. Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science,2005,307:1915-1920
    6. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut[J]. Science,2001,292: 1115-1118
    7. Hooper LV, Bry L, Falk PG, et al. Host-microbial symbiosis in the mammaliam intestine:exploring an internal ecosystem[J]. Bioessays,1998,20:336-343
    1. 沈萍.微生物学[M].北京:高等教育出版社,2001:34
    2. McSweeney CS, Denman SE, Mackie RI. Methods in Gut Microbial Ecology for Ruminants [M]. Springer Netherlands,2005:24-26
    3. 东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].北京:科学出版社,2001:399-412
    4. 赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002:38-42
    5. Zoetendal EG, Akkermans AD, De Vos WM. Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host specific communities of active bacteria [J]. Applied and environmental microbiology,1998,64(10):3854-3859
    6. 朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43(4):503-508
    7. Berg RD. The indigenous gastrointestinal microflora[J]. Trends in Microbiology,1996,4(11): 430-435
    8. Hayashi H, Takahashi R, Nishi T, et al. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism[J]. Journal of medical microbiology,2005,54(11):1093-1101
    9. van Dokkum W, de Boer BC, van Faassen A, et al. Diet, faecal pH and colorectal cancer[J]. British journal of cancer,1983,48:109-110
    10.康白.人类胃肠道微生态学[M].大连:大连出版社,1998:200-221
    11. Swidsinski A, Khilkin M, Kerjaschki D, et al. Association between intraepithelial Escherichia coli and colorectal cancer[J]. Gastroenterology,1998,15(2):281-286
    12. Matto J, Maunuksela L, Kajander K, et al. Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome-a longitudinal study in IBS and control subjects[J]. FEMS immunology and medical microbiology,2005,43(2):213-222
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.