苏云金芽孢杆菌YBT-1520全基因组测序和比较基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文详细报道了对鳞翅目害虫有高毒力的苏云金芽孢杆菌(Bacillusthuringiensis)菌株YBT-1520的全基因组测序以及与炭疽芽孢杆菌(Bacillus anthracisAmes)、腊状芽孢杆菌(Bacillus cereus ATCC 14579)和苏云金芽孢杆菌(Bacillusthuringiensis 97-27)的比较基因组学分析。介绍了它们在染色体和质粒的保守性、致病因子、可移动因子、代谢和调控以及进化方面的异同点。
     YBT-1520基因组由1条染色体和9个质粒组成,其中染色体的长度为5,547,282bp,编码5440个ORF;9个质粒中,最大的为293,574 bp,编码298个ORF,最小的2062 bp,编码3个ORF,9个质粒的总长度为477,287bp,共编码523个ORF。直系同源簇比较表明YBT-1520与炭疽芽孢杆菌(Bacillus anthracis Ames)、腊状芽孢杆菌(Bacillus cereus ATCC 14579)和苏云金芽孢杆菌(Bacillus thuringiensis 97-27)染色体具有显著的保守性,是由共同的祖先进化而来。YBT-1520染色体编码腊状芽孢杆菌群共有的一些致病因子,如肠毒素、磷脂酶、InA蛋白、Enhancin蛋白、几丁质酶以及YBT-1520染色体特有的ZwA基因簇,这些致病因子对苏云金芽孢杆菌杀虫活性具有增效作用。与炭疽芽孢杆菌和腊状芽孢杆菌相比,YBT-1520编码更多的噬菌体DNA、插入序列和转座子,这些可移动元件使YBT-1520基因组具有很高的可塑性,能够与其它细菌的染色体、质粒进行遗传物质的交流。YBT-1520染色体含有32个双组分调控系统、59个受PlcR多效调节因子调控的基因以及310个具有调控作用结构域的基因。其中有5个双组分调控系统与细菌致病性直接相关,8个PlcR调控的基因也与YBT-1520的致病性相关。在分解代谢方面,YBT-1520碳水化合物的分解代谢能力较弱,只能利用有限的多糖如肝糖元、淀粉、几丁质和壳聚糖,缺少甘露糖代谢途径、树胶醛糖和鼠李糖代谢途径以及肌醇代谢的关键酶;相反地,YBT-1520编码丰富的蛋白酶、氨基酸膜转运蛋白以及绝大多数氨基酸合成代谢的关键酶,使其更容易地从环境中摄取氨基酸和核酸,这是腊状芽孢杆菌群共有的特点,因此腊状芽孢杆菌群祖先很可能不是土壤微生物,而是起源于昆虫病源菌。我们还分析了YBT-1520编码的特有基因,这些特有基因的主要功能是复制、重组和修复、转录以及氨基酸转运和代谢,其中包含一个尿素酶操纵子,这可能增加了YBT-1520对富含蛋白的酸环境的适应性。
     pBMB293是YBT-1520最重要的质粒,其编码的4个杀虫晶体蛋白基因(Cry1Aa,Cry1Ia,Cry2Aa和Cry2Ab)、1个营养期杀虫蛋白(Vip3A)和1个溶血性肠毒素操纵子都集中在pBMB293的一个致病岛上。除致病岛外的pBMB293序列与质粒pb10987和pPER272有高度的同源性,这个保守区域由共同的祖先进化而来。pBMB293还编码12个调控相关基因,包括2个能够调控芽孢形成的Rap-Phr调控系统。pBMB293编码的溶血性肠毒素操纵子和ORF8具有染色体编码的PlcR多效调节子的结合位点,可能受其调控。pBMB137编码的调控因子MerR能够对外界金属刺激做出快速反应,pBMB137编码的IS元件,如转座子Tn4430和Tn5044以及嗜热解烃菌同源插入序列使其更容易地进行遗传物质的传递交流。pBMB67编码的结合转移基因使其具有结合转移的特性。这些质粒更使该菌株具有高杀虫活性以及高度可塑性。
In this thesis,we reported the whole genome sequence of Bacillus thuringiensis strain YBT-1520,which is highly toxic to lepidopteran pests and performed comparative analysis with the genomes of Bacillus anthracis Ames,Bacillus cereus ATCC 14579 and Bacillus thuringiensis 97-27.Comparison of these genomes and their plasmids reveals the similarities and differences in terms of conservation,virulence,mobile elements,metabolic competence and regulatory mechanisms.
     The genome of YBT-1520 is composed of a chromosome of 5,547,282bp and nine plasmids of total length of 477,287 bp,harbouring 5440 and 523 open reading frames (ORF),respectively.Of the 9 plasmids,the largest is 293,574 bp and harbors 298 ORFs, the smallest one is 2062 bp and harbors 30RFs.The analysis of orthologous genes reveals high conservation of genome content among YBT-1520,Bacillus anthracis Ames,Bacillus cereus ATCC 14579 and Bacillus thuringiensis 97-27,suggesting that they could have been inherited from a common ancestor.The chromosomally encoded virulence factors in YBT-1520 are common to the B.cereus group of bacteria,including enterotoxin, phospholipase,immune inhibitor A,Enhancin protein and chitinase,except that the ZwA gene cluster is specific to YBT-1520.Those virulence factors may enhance insecticidal toxicity to pests.Compared with Bacillus anthracis and Bacillus cereus,YBT-1520 encods more phages,IS elements and transposons,which may account for the genome plasticity and genetic exchange between the plasmid and chromosome.The YBT-1520 chromosome encods 32 putative two-component regulatory systems(5 genes involved in pathogenicity), 59 genes regulated by the pleiotropic regulator PlcR(8 genes involved in pathogenicity) and 310 genes with regulator motifs.In metabolic competence,YBT-1520 has a reduced capacity for sugar utilization and the polysaccharides which can be degraded is limited to glycogen and starch,chitin and chitosan.It lacks mannose,arabinose and rhamnose pathways and also lacks the key enzymes of inositol degradation pathway.In contrast, YBT-1520 encods abundant proteolytic enzymes,peptide and amino acid transporters and enzymes for amino acid metabolism,which is common to the B.cereus group,suggesting that their ancestor should be an opportunistic insect pathogen rather than a benign soil bacterium.We also performed analysis of the specific genes for YBT-1520,most of which are associated with replication and repair,transcription and amino acid metabolism.There is a urease operon specific for YBT-1520,which may be related to its adaptation to the protein-rich environment.
     The most important plasmid pBMB293 harbors a pathogenicity island consisting of five insecticidal crystal proteins(Cry1Aa,Cry1Ia,Cry2Aa andCry2Ab),one vegetative insecticidal protein(Vip3A)and one haemolytic enterotoxin operon.Comparative analysis identified a high conserved core region among pBMB293,pb10987 and pPER272, suggesting that these plasmids might have evolved from a common ancestral plasmid and formed a unique plasmid family,pBMB293 carries 12 genes related to regulation, including 2 Rap-Phr regulators for the sporulation process.There are 2 putative PlcR-binding motifs,which harbor downstream of the enterotoxin operon and the conserved hypothetical protein ORF8.Plasmid pBMB137 encodes a MerR regulator responding to environmental stimuli.The IS,such as Tn4430,Tn5044 and IS homolog to Geobacillus thermodenitrificans NG80-2p facilitate the genetic exchange for pBMB137. Plasmid pBMB137 encodes several genes involved in conjugation.The presence of nine plasmids could account for the genome plasticity and high pathogenicity for YBT-1520.
引文
CDC,Aiba H. (2007). Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10:134-9.
    
    Andrup L., Jensen G. B., Wilcks A., Smidt L., Hoflack L., and Mahillon J. (2003). The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 49: 205-32.
    
    Aronson A. I., and Shai Y. (2001). Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195:1-8.
    
    Aronson A. I., Tyrell D. J., Fitz-James P. C., and Bulla L. A., Jr. (1982). Relationship of the syntheses of spore coat protein and parasporal crystal protein in Bacillus thuringiensis. J Bacteriol 151: 399-410.
    
    Asano S. I., Nukumizu Y., Bando H., Iizuka T., and Yamamoto T. (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 63: 1054-7.
    
    Ash C., and Collins M. D. (1992). Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol Lett 73: 75-80.
    
    Ash C., Farrow J. A., Dorsch ML, Stackebrandt E., and Collins M. D. (1991). Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41: 343-6.
    
    Ballester V., Granero F., Tabashnik B. E., Malvar T., and Ferre J. (1999). Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl Environ Microbiol 65: 1413-9.
    
    Banach-Orlowska M., Fijalkowska I. J., Schaaper R. M., and Jonczyk P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol 58: 61-70.
    
    Bao Q., Tian Y., Li W., Xu Z., Xuan Z., Hu S., Dong W., Yang J., Chen Y., Xue Y., Xu Y., Lai X., Huang L., Dong X., Ma Y., Ling L., Tan H., Chen R., Wang J., Yu J., and Yang H. (2002). A complete sequence of the T. tengcongensis genome. Genome Res 12: 689-700.
    Barragan M. J., Blazquez B., Zamarro M. T., Mancheno J. M., Garcia J. L., Diaz E., and Carmona M. (2005). BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 280:10683-94.
    
    Baum J. A., and Gilbert M. P. (1991). Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids. J Bacteriol 173: 5280-9.
    
    Bavykin S. G., Mikhailovich V. M., Zakharyev V. M., Lysov Y. P., Kelly J. J., Alferov O. S., Gavin I. M., Kukhtin A. V., Jackman J., Stahl D. A., Chandler D., and Mirzabekov A. D. (2007). Discrimination of Bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray. Chem Biol Interact.
    
    Beebee T. J., and Bond R. P. (1973). Effect of the exotoxin of Bacillus thuringiensis on normal and ecdysone-stimulated ribonucleic acid polymerase activity in intact nuclei from the fat-body of Sarcophaga bullata larvae. Biochem J 136:1-7.
    
    Bellmann A., Vrljic M., Patek M., Sahm H., Kramer R., and Eggeling L. (2001). Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147: 1765-74.
    
    Bendtsen J. D., Nielsen H., von Heijne G., and Brunak S. (2004). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783-95.
    
    Benoit T. G., Wilson G. R., Bull D. L., and Aronson A. I. (1990). Plasmid-associated sensitivity of Bacillus thuringiensis to UV light. Appl Environ Microbiol 56: 2282-6.
    
    Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H., Harper D., Bateman A., Brown S., Chandra G., Chen C. W., Collins M., Cronin A., Fraser A., Goble A., Hidalgo J., Hornsby T., Howarth S., Huang C. H., Kieser T., Larke L., Murphy L., Oliver K., O'Neil S., Rabbinowitsch E., Rajandream M. A., Rutherford K., Rutter S., Seeger K., Saunders D., Sharp S., Squares R., Squares S., Taylor K., Warren T., Wietzorrek A., Woodward J., Barrell B. G., Parkhill J., and Hopwood D. A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-7.
    
    Bentley S. D., and Parkhill J. (2004). Comparative genomic structure of prokaryotes. Annu Rev Genet 38: 771-92.
    
    Berardini M., Foster P. L., and Loechler E. L. (1999). DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli. J Bacteriol 181: 2878-82.
    
    Berry C., O'Neil S., Ben-Dov E., Jones A. F., Murphy L., Quail M. A., Holden M. T., Harris D., Zaritsky A., and Parkhill J. (2002). Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68: 5082-95.
    
    Beuzon C. R., Chessa D., and Casadesus J. (2004). IS200: an old and still bacterial transposon. Int Microbiol 7: 3-12.
    
    Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F., Gregor J., Davis N. W., Kirkpatrick H. A., Goeden M. A., Rose D. J., Mau B., and Shao Y. (1997). The complete genome sequence of Escherichia coli K-12. Science 277:1453-74.
    
    Bongiorni C., Ishikawa S., Stephenson S., Ogasawara N., and Perego M. (2005). Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. J Bacteriol 187: 4353-61.
    
    Bongiorni C., Stoessel R., Shoemaker D., and Perego M. (2006). Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J Bacteriol 188: 487-98.
    
    Boonserm P., Davis P., Ellar D. J., and Li J. (2005). Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348: 363-82.
    
    Brennan R. G., and Link T. M. (2007). Hfq structure, function and ligand binding. Curr Opin Microbiol 10:125-33.
    
    Brown N. L, Misra T. K., Winnie J. N., Schmidt A., Seiff M., and Silver S. (1986). The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol Gen Genet 202: 143-51.
    
    Brown N. L., Stoyanov J. V., Kidd S. P., and Hobman J. L. (2003). The MerR family of transcriptional regulators. FEMS Microbiol Rev 27: 145-63.
    
    Brown P. O., and Botstein D. (1999). Exploring the new world of the genome with DNA microarrays. Nat Genet 21: 33-7.
    
    Brunsing R. L., La Clair C., Tang S., Chiang C., Hancock L. E., Perego M., and Hoch J. A. (2005). Characterization of sporulation histidine kinases of Bacillus anthracis. J Bacteriol 187: 6972-81.
    Brussow H., Canchaya C., and Hardt W. D. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68: 560-602.
    
    Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D., Kerlavage A. R., Dougherty B. A., Tomb J. F., Adams M. D., Reich C. I., Overbeek R., Kirkness E. F., Weinstock K. G., Merrick J. M., Glodek A., Scott J. L., Geoghagen N. S., and Venter J. C. (1996). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058-73.
    
    Burton J. E., Oshota O. J., and Silman N. J. (2006). Differential identification of Bacillus anthracis from environmental Bacillus species using microanay analysis. J Appl Microbiol 101: 754-63.
    
    Carlson C. R., Caugant D. A., and Kolsto A. B. (1994). Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains. Appl Environ Microbiol 60:1719-1725.
    
    Caspi R., Foerster H., Fulcher C. A., Hopkinson R., Ingraham J., Kaipa P., Krummenacker M., Paley S., Pick J., Rhee S. Y., Tissier C., Zhang P., and Karp P. D. (2006). MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34: D511-6.
    
    CDC (2001). Update: Investigation of anthrax associated with intentional exposure and interim public health guidelines, October 2001. MMWR Morb Mortal Wkly Rep 50: 889-93.
    
    Challacombe J. F., Altherr M. R., Xie G., Bhotika S. S., Brown N., Bruce D., Campbell C. S., Campbell M. L., Chen J., Chertkov O., Cleland C., Dimitrijevic M., Doggett N. A., Fawcett J. J., Glavina T., Goodwin L. A., Green L. D., Han C. S., Hill K. K., Hitchcock P., Jackson P. J., Keim P., Kewalramani A. R., Longmire J., Lucas S., Malfatti S., Martinez D., McMurry K., Meincke L. J., Misra M., Moseman B. L., Mundt M., Munk A. C., Okinaka R. T., Parson-Quintana B., Reilly L. P., Richardson P., Robinson D. L., Saunders E., Tapia R., Tesmer J. G., Thayer N., Thompson L. S., Tice H., Ticknor L. O., Wills P. L., Gilna P., and Brettin T. S. (2007). The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol 189: 3680-1.
    
    ChandlerM, and MahillonJ. (2002). Insertion sequece revisites. Mobile DNA II pp.305-366.
    
    Chapman J. S., and Carlton B. C. (1985). Conjugal plasmid transfer in Bacillus thuringiensis. Basic Life Sci 30: 453-67.
    
    Chen F. C., Shen L. F., Tsai M. C., and Chak K. F. (2003). The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochem Biophys Res Commun 312: 708-15.
    
    Chitlaru T., Gat O., Gozlan Y., Ariel N., and Shafferman A. (2006). Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol 188: 3551-71.
    
    Chiu C. H., Tang P., Chu C, Hu S., Bao Q., Yu J., Chou Y. Y., Wang H. S., and Lee Y. S. (2005). The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33: 1690-8.
    
    Christiansen J. K., Larsen M. H., Ingmer H., Sogaard-Andersen L., and Kallipolitis B. H. (2004). The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 186: 3355-62.
    
    Claus H., Akca E., Debaerdemaeker T., Evrard C., Declercq J. P., Harris J. R., Schlott B., and Konig H. (2005). Molecular organization of selected prokaryotic S-layer proteins. Can J Microbiol 51: 731-43.
    
    Cohen S., Cahan R., Ben-Dov E., Nisnevitch M., Zaritsky A., and Firer M. A. (2007). Specific Targeting to Murine Myeloma Cells of CytlAa Toxin from Bacillus thuringiensis Subspecies israelensis. J Biol Chem 282: 28301-28308.
    
    Collins F. S., Green E. D., Guttmacher A. E., and Guyer M. S. (2003). A vision for the future of genomics research. Nature 422: 835-47.
    
    Crickmore N., Zeigler D. R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., and Dean D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 807-13.
    
    Daffonchio D., Cherif A., and Borin S. (2000). Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the "Bacillus cereus group". Appl Environ Microbiol 66: 5460-8.
    
    Dalhammar G., and Steiner H. (1984). Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur J Biochem 139: 247-52.
    
    de Been M., Francke C., Moezelaar R., Abee T., and Siezen R. J. (2006). Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology 152: 3035-48.
    
    de Castro E., Sigrist C. J., Gattiker A., Bulliard V., Langendijk-Genevaux P. S., Gasteiger E., Bairoch A., and Hulo N. (2006). ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34: W362-5.
    
    De Groote M. A., Ochsner U. A., Shiloh M. U., Nathan C., McCord J. M., Dinauer M. C., Libby S. J., Vazquez-Torres A., Xu Y., and Fang F. C. (1997). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94:13997-4001.
    
    de la Vega L. M., Barboza-Corona J. E., Aguilar-Uscanga M. G., and Ramirez-Lepe M. (2006). Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi. Can J Microbiol 52: 651-7.
    
    Delcher A. L., Harmon D., Kasif S., White O., and Salzberg S. L. (1999). Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636-41.
    
    Delecluse A., Bourgouin C., Klier A., and Rapoport G. (1989). Nucleotide sequence and characterization of a new insertion element, IS240, from Bacillus thuringiensis israelensis. Plasmid 21: 71-8.
    
    Delvecchio V. G., Connolly J. P., Alefantis T. G., Walz A., Quan M. A., Patra G., Ashton J. M., Whittington J. T., Chafin R. D., Liang X., Grewal P., Khan A. S., and Mujer C. V. (2006). Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Appl Environ Microbiol 72: 6355-63.
    
    Derbyshire D. J., Ellar D. J., and Li J. (2001). Crystallization of the Bacillus thuringiensis toxin CrylAc and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr D Biol Crystallogr 57: 1938-44.
    
    Dorrell N., Mangan J. A., Laing K. G., Hinds J., Linton D., Al-Ghusein H., Barrell B. G., Parkhill J., Stoker N. G., Karlyshev A. V., Butcher P. D., and Wren B. W. (2001). Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11: 1706-15.
    
    Driss F., Kallassy-Awad M., Zouari N., and Jaoua S. (2005). Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 99: 945-53.
    Dubrac S., Boneca I. G., Poupel O., and Msadek T. (2007). New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol.
    
    Duport C., Zigha A., Rosenfeld E., and Schmitt P. (2006). Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. J Bacteriol 188: 6640-51.
    
    Dziewit L., Jazurek M., Drewniak L., Baj J., and Bartosik D. (2007). The SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAMI2. J Bacteriol 189:1983-97.
    
    Eddy S. R. (1998). Profile hidden Markov models. Bioinformatics 14: 755-63.
    
    Eisen J. A., Heidelberg J. F., White O., and Salzberg S. L. (2000). Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1: RESEARCH0011. Elez M., Radman M., and Matic I. (2007). The frequency and structure of recombinant products is determined by the cellular level of MutL. Proc Natl Acad Sci U S A 104: 8935-40.
    
    Emmert E. A., Klimowicz A. K., Thomas M. G., and Handelsman J. (2004). Genetics of zwittermicin a production by Bacillus cereus. Appl Environ Microbiol 70: 104-13.
    
    Escarceller M., Hicks J., Gudmundsson G., Trump G., Touati D., Lovett S., Foster P. L., McEntee K., and Goodman M. F. (1994). Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol 176: 6221-8.
    
    Estruch J. J., Warren G. W., Mullins M. A., Nye G. J., Craig J. A., and Koziel M. G. (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93: 5389-94.
    
    Ewing B., and Green P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186-94.
    
    Ewing B., Hillier L., Wendl M. C., and Green P. (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175-85.
    
    Fabret C., and Hoch J. A. (1998). A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 180: 6375-83.
    
    Fedhila S., Nel P., and Lereclus D. (2002). The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J Bacteriol 184: 3296-304.
    
    Feng L., Wang W., Cheng J., Ren Y., Zhao G., Gao C., Tang Y., Liu X., Han W., Peng X., Liu R., and Wang L. (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104: 5602-7.
    
    Finlay B. B., and Falkow S. (1997). Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136-69.
    
    Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M., and et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512.
    
    Frishman D., Mironov A., Mewes H. W., and Gelfand M. (1998). Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res 26: 2941-7.
    
    Fujita M., and Sadaie Y. (1998). Feedback loops involving SpoOA and AbrB in in vitro transcription of the genes involved in the initiation of sporulation in Bacillus subtilis. J Biochem (Tokyo) 124: 98-104.
    
    Gammon K., Jones G. W., Hope S. J., de Oliveira C. M., Regis L., Silva Filha M. H., Dancer B. N., and Berry C. (2006). Conjugal transfer of a toxin-coding megaplasmid from Bacillus thuringiensis subsp. israelensis to mosquitocidal strains of Bacillus sphaericus. Appl Environ Microbiol 72: 1766-70.
    
    Gattiker A., Gasteiger E., and Bairoch A. (2002). ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics 1: 107-8.
    
    Gaviria Rivera A. M., Granum P. E., and Priest F. G. (2000). Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol Lett 190: 151-5.
    
    Geissmann T. A., and Touati D. (2004). Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. Embo J 23: 396-405.
    
    Gerdes K., Christensen S. K., and Lobner-Olesen A. (2005). Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3: 371-82.
    
    Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P., Chakraborty T., Charbit A., Chetouani F., Couve E., de Daruvar A., Dehoux P., Domann E., Dominguez-Bernal G., Duchaud E., Durant L., Dussurget O., Entian K. D., Fsihi H., Garcia-del Portillo F., Garrido P., Gautier L., Goebel W., Gomez-Lopez N., Hain T., Hauf J., Jackson D., Jones L. M., Kaerst U., Kreft J., Kuhn M., Kunst F., Kurapkat G., Madueno E., Maitournam A., Vicente J. M., Ng E., Nedjari H., Nordsiek G., Novella S., de Pablos B., Perez-Diaz J. C., Purcell R., Remmel B., Rose M., Schlueter T., Simoes N., Tierrez A., Vazquez-Boland J. A., Voss H., Wehland J., and Cossart P. (2001). Comparative genomics of Listeria species. Science 294: 849-52.
    
    Gonzalez J. M., Jr., Brown B. J., and Carlton B. C. (1982). Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A 79: 6951-5.
    
    Gonzalez J. M., Jr., and Carlton B. C. (1980). Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3: 92-8.
    
    Gordon D., Abajian C., and Green P. (1998). Consed: a graphical tool for sequence finishing. Genome Res 8: 195-202.
    
    Gordon D., Desmarais C., and Green P. (2001). Automated finishing with autofinish. Genome Res 11: 614-25.
    
    Green B. D., Battisti L., and Thorne C. B. (1989). Involvement of Tn4430 in transfer of Bacillus anthracis plasmids mediated by Bacillus thuringiensis plasmid pXO12. J Bacteriol 171: 104-13.
    
    Grigoriev A. (1998). Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26: 2286-90.
    
    Guenzi E., Gasc A. M., Sicard M. A., and Hakenbeck R. (1994). A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 12: 505-15.
    
    Guttmann D. M., and Ellar D. J. (2000). Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative B. thuringiensis virulence factors. FEMS Microbiol Lett 188: 7-13.
    
    Hajaij-Ellouze M., Fedhila S., Lereclus D., and Nielsen-LeRoux C. (2006). The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PlcR but is not essential for larvicidal activity. FEMS Microbiol Lett 260: 9-16.
    
    Han C. S., Xie G., Challacombe J. F., Altherr M. R., Bhotika S. S., Brown N., Bruce D., Campbell C. S., Campbell M. L., Chen J., Chertkov O., Cleland C., Dimitrijevic M., Doggett N. A., Fawcett J. J., Glavina T., Goodwin L. A., Green L. D., Hill K. K., Hitchcock P., Jackson P. J., Keim P., Kewalramani A. R., Longmire J., Lucas S., Malfatti S., McMurry K., Meincke L. J., Misra M., Moseman B. L., Mundt M., Munk A. C., Okinaka R. T., Parson-Quintana B., Reilly L. P., Richardson P., Robinson D. L., Rubin E., Saunders E., Tapia R., Tesmer J. G., Thayer N., Thompson L. S., Tice H., Ticknor L. O., Wills P. L., Brettin T. S., and Gilna P. (2006). Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188: 3382-90.
    
    HannayCL(1953). Crystalline inclusions in aerobic spore-forming bacteria. Nat ure 172 -1004.
    
    Helgason E., Okstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., and Kolsto A. B. (2000). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl Environ Microbiol 66: 2627-30.
    
    Helgason E., Tourasse N. J., Meisal R., Caugant D. A., and Kolsto A. B. (2004). Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70: 191-201.
    
    Hernandez C. S., and Ferre J. (2005). Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Appl Environ Microbiol 71: 5627-9.
    
    Hernandez E., Ramisse F., Ducoureau J. P., Cruel T., and Cavallo J. D. (1998). Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36: 2138-9.
    
    Hilbert D. W., and Piggot P. J. (2004). Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68: 234-62.
    
    Hobman J. L. (2007). MerR family transcription activators: similar designs, different specificities. Mol Microbiol 63:1275-8.
    
    Hoffmaster A. R., Hill K. K., Gee J. E., Marston C. K., De B. K., Popovic T., Sue D., Wilkins P. P., Avashia S. B., Drumgoole R., Helma C. H., Ticknor L. O., Okinaka R. T., and Jackson P. J. (2006). Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol 44: 3352-60.
    
    Hoffmaster A. R., Ravel J., Rasko D. A., Chapman G. D., Chute M. D., Marston C. K., De B. K., Sacchi C. T., Fitzgerald C., Mayer L. W., Maiden M. C., Priest F. G., Barker M., Jiang L., Cer R. Z., Rilstone J., Peterson S. N., Weyant R. S., Galloway D. R., Read T. D., Popovic T., and Fraser C. M. (2004). Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci U S A 101: 8449-54.
    
    Hoflack L., Wilcks A., Andrup L., and Mahillon J. (1999). Functional insights into pGI2, a cryptic rolling-circle replicating plasmid from Bacillus thuringiensis. Microbiology 145 (Pt 7): 1519-30.
    
    Hood D. W., Deadman M. E., Allen T., Masoud H., Martin A., Brisson J. R., Fleischmann R., Venter J. C., Richards J. C., and Moxon E. R. (1996a). Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis. Mol Microbiol 22: 951-65.
    
    Hood D. W., Deadman M. E., Jennings M. P., Bisercic M., Fleischmann R. D., Venter J. G., and Moxon E. R. (1996b). DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc Natl Acad Sci U S A 93:11121-5.
    
    Hunding A., Ebersbach G., and Gerdes K. (2003). A mechanism for ParB-dependent waves of ParA, a protein related to DNA segregation during cell division in prokaryotes. J Mol Biol 329: 35-43.
    
    Huson D. H., Auch A. F., Qi J., and Schuster S. C. (2007). MEGAN analysis of metagenomic data. Genome Res 17: 377-86.
    
    Ichiyanagi K., Beauregard A., and Belfort M. (2003). A bacterial group II intron favors retrotransposition into plasmid targets. Proc Natl Acad Sci U S A 100: 15742-7.
    
    IHGSC (2004). Finishing the euchromatic sequence of the human genome. Nature 431: 931-45.
    
    Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N., Lapidus A., Chu L., Mazur M., Goltsman E., Larsen N., D'Souza M., Walunas T., Grechkin Y., Pusch G., Haselkorn R., Fonstein M., Ehrlich S. D., Overbeek R., and Kyrpides N. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91.
    
    J. Craig Venter, Hamilton O. Smith, and Fraser C. M. (1999). Microbial Genomics: in the Beginning ASM News 65: 322-327.
    
    Jaluria P., Konstantopoulos K., Betenbaugh M., and Shiloach J. (2007). A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 6: 4.
    
    Jensen G. B., Hansen B. M., Eilenberg J., and Mahillon J. (2003). The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5: 631-40.
    Jiang M., Shao W., Perego M., and Hoch J. A. (2000). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38:535-42.
    
    Jin Q., Yuan Z., Xu J., Wang Y., Shen Y., Lu W., Wang J., Liu H., Yang J., Yang F., Zhang X., Zhang J., Yang G., Wu H., Qu D., Dong J., Sun L., Xue Y., Zhao A., Gao Y., Zhu J., Kan B., Ding K., Chen S., Cheng H., Yao Z., He B., Chen R., Ma D., Qiang B., Wen Y., Hou Y., and Yu J. (2002). Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30: 4432-41.
    
    Johnson P. L., and Slatkin M. (2006). Inference of population genetic parameters in metagenomics: a clean look at messy data. Genome Res 16: 1320-7.
    
    Kanehisa M., Goto S., Hattori M., Aoki-Kinoshita K. F., Itoh M., Kawashima S., Katayama T., Araki M., and Hirakawa M. (2006). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34: D354-7.
    
    Kaspar R. L., and Robertson D. L. (1987). Purification and physical analysis of Bacillus anthracis plasmids pXO1 and pXO2. Biochem Biophys Res Commun 149: 362-8.
    
    Keim P., Price L. B., Klevytska A. M., Smith K. L., Schupp J. M., Okinaka R., Jackson P. J., and Hugh-Jones M. E. (2000). Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182: 2928-36.
    
    Kholodii G., Yurieva O., Mindlin S., Gorlenko Z., Rybochkin V., and Nikiforov V. (2000). Tn5044, a novel Tn3 family transposon coding for temperature-sensitive mercury resistance. Res Microbiol 151: 291-302.
    
    Kidwell M. G., and Lisch D. R. (2001). Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int J Org Evolution 55: 1-24.
    
    Klade C. S. (2002). Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther 4: 216-23.
    
    Klein J. R., and Dunny G. M. (2002). Bacterial group II introns and their association with mobile genetic elements. Front Biosci 7: d1843-56.
    
    Ko K. S., Kim J. W., Kim J. M., Kim W., Chung S. I., Kim I. J., and Kook Y. H. (2004). Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR Gene. Infect Immun 72: 5253-61.
    Koetje E. J., Hajdo-Milasinovic A., Kiewiet R., Bron S., and Tjalsma H. (2003). A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology 149:19-28.
    
    Koonin E. V., Makarova K. S., and Aravind L. (2001). Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55: 709-42.
    
    Kosono S., Haga K., Tomizawa R., Kajiyama Y., Hatano K., Takeda S., Wakai Y., Hino M., and Kudo T. (2005). Characterization of a multigene-encoded sodium/hydrogen antiporter (sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol 187: 5242-8.
    
    Krishnakumar R., Kim B., Mollo E. A., Imlay J. A., and Slauch J. M. (2007). Structural properties of periplasmic SodCI that conelate with virulence in Salmonella enterica serovaT Typhimurium. J Bacteriol 189: 4343-52.
    
    Kristoffersen S. M., Ravnum S., Tourasse N. J., Okstad O. A., Kolsto A. B., and Davies W. (2007). Low Concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14570. J Bacteriol 189: 5302-13.
    
    Krogh A., Larsson B., von Heijne G., and Sonnhammer E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567-80.
    
    Krulwich T. A. (1983). Na+/H+ antiporters. Biochim Biophys Acta 116: 245-64.
    
    Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessieres P., Bolotin A., Borchert S., Borriss R., Boursier L., Brans A., Braun M., Brignell S. C., Bron S., Brouillet S., Bruschi C. V., Caldwell B., Capuano V., Carter N. M., Choi S. K., Codani J. J., Connerton I. F., Danchin A., and et al. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-56.
    
    Kurokawa K., Itoh T., Kuwahara T., Oshima K., Toh H., Toyoda A., Takami H., Morita H., Sharma V. K., Srivastava T. P., Taylor T. D., Noguchi H., Mori H., Ogura Y., Ehrlich D. S., Itoh K., Takagi T., Sakaki Y., Hayashi T., and Hattori M. (2007). Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14: 169-81.
    
    Kuznetsova E., Proudfoot M., Sanders S. A., Reinking J., Savchenko A., Arrowsmith C. H., Edwards A. M., and Yakunin A. F. (2005). Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29: 263-79.
    
    Laddaga R. A., Chu L., Misra T. K., and Silver S. (1987). Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci U S A 84: 5106-10.
    
    Lawrence J. G., Ochman H., and Hartl D. L. (1992). The evolution of insertion sequences within enteric bacteria. Genetics 131: 9-20.
    
    Lecadet M. M., Frachon E., Dumanoir V. C., Ripouteau H., Hamon S., Laurent P., and Thiery I. (1999). Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86: 660-72.
    
    Lee S. J., Park S. Y., Lee J. J., Yum D. Y., Koo B. T., and Lee J. K. (2002). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68: 3919-24.
    
    Leonard C., Chen Y, and Mahillon J. (1997). Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology 143 (Pt 8): 2537-47.
    
    Lerat E., Daubin V., and Moran N. A. (2003). From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria. PLoS Biol 1: E19.
    
    Lereclus D., Vallade M., Chaufaux J., Arantes O., and Rambaud S. (1992). Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Biotechnology (N Y) 10: 418-21.
    
    Lertcanawanichakul M., Wiwat C., Bhumiratana A., and Dean D. H. (2004). Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae. Curr Microbiol 48: 175-81.
    
    Li J. D., Carroll J., and Ellar D. J. (1991). Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353: 815-21.
    
    Li L., Bannantine J. P., Zhang Q., Amonsin A., May B. J., Alt D., Banerji N., Kanjilal S., and Kapur V. (2005). The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 102:12344-9.
    
    Li Z., Hiasa H., Kumar U., and DiGate R. J. (1997). The traE gene of plasmid RP4 encodes a homologue of Escherichia coli DNA topoisomerase III. J Biol Chem 272: 19582-7.
    Lin Y., and Xiong G. (2004). Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti. Biotechnol Lett 26: 635-9.
    
    Lista F., Faggioni G., Valjevac S., Ciammaruconi A., Vaissaire J., le Doujet C., Gorge O., De Santis R., Carattoli A., Ciervo A., Fasanella A., Orsini F., D'Amelio R., Pourcel C., Cassone A., and Vergnaud G. (2006). Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable-number tandem repeats analysis. BMC Microbiol 6: 33.
    
    Liu M., Cai Q. X., Liu H. Z., Zhang B. H., Yan J. P., and Yuan Z. M. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 93: 374-9.
    
    Lorenz P., and Eck J. (2005). Metagenomics and industrial applications. Nat Rev Microbiol 3: 510-6.
    
    Lovgren A., Zhang M., Engstrom A., Dalhammar G., and Landen R. (1990). Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. Mol Microbiol 4: 2137-46.
    
    Lowe T. M., and Eddy S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955-64.
    
    Mahillon J., Rezsohazy R., Hallet B., and Delcour J. (1994). IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93:13-26.
    
    Maione D., Margarit I., Rinaudo C. D., Masignani V., Mora M., Scarselli M., Tettelin H., Brettoni C., Iacobini E. T., Rosini R., D'Agostino N., Miorin L., Buccato S., Mariani M., Galli G., Nogarotto R., Nardi Dei V., Vegni F., Fraser C., Mancuso G., Teti G., Madoff L. C., Paoletti L. C., Rappuoli R., Kasper D. L., Telford J. L., and Grandi G. (2005). Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309: 148-50.
    
    Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., and Daly M. J. (2001). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65: 44-79.
    
    Manasherob R., Zaritsky A., Ben-Dov E., Saxena D., Barak Z., and Einav M. (2001). Effect of accessory proteins P19 and P20 on cytolytic activity of CytlAa from Bacillus thuringiensis subsp. israelensis in Escherichia coli. Curr Microbiol 43: 355-64.
    
    Maor-Shoshani A., Reuven N. B., Tomer G., and Livneh Z. (2000). Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis. Proc Natl Acad Sci U S A 97: 565-70.
    
    Marahiel M. A., Nakano M. M., and Zuber P. (1993). Regulation of peptide antibiotic production in Bacillus. Mol Microbiol 7:631-6.
    
    Martin-Cuadrado A. B., Lopez-Garcia P., Alba J. C., Moreira D., Monticelli L, Strittmatter A., Gottschalk G., and Rodriguez-Valera F. (2007). Metagenomics of the deep mediterranean, a warm bathypelagic habitat. PLoS ONE 2: e914.
    
    Mascher T., Zahner D., Merai M., Balmelle N., de Saizieu A. B., and Hakenbeck R. (2003). The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 185:60-70.
    
    McClelland M., Sanderson K. E., Clifton S. W., Latreille P., Porwollik S., Sabo A., Meyer R., Bieri T., Ozersky P., McLellan M., Harkins C. R., Wang C., Nguyen C., Berghoff A., Elliott G., Kohlberg S., Strong C., Du F., Carter J., Kremizki C., Layman D., Leonard S., Sun H., Fulton L., Nash W., Miner T., Minx P., Delehaunty K., Fronick C., Magrini V., Nhan M., Warren W., Florea L., Spieth J., and Wilson R. K. (2004). Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36:1268-74.
    
    McDonnell G. E., and McConnell D. J. (1994). Overproduction, isolation, and DNA-binding characteristics of Xre, the repressor protein from the Bacillus subtilis defective prophage PBSX. J Bacteriol 176: 5831-4.
    
    McKusick V. A. (1997). Genomics: structural and functional studies of genomes. Genomics 45: 244-9.
    
    McNall R. J., and Adang M. J. (2003). Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol 33: 999-1010.
    
    Mignot T., Couture-Tosi E., Mesnage S., Mock M., and Fouet A. (2004). In vivo Bacillus anthracis gene expression requires PagR as an intermediate effector of the AtxA signalling cascade. Int J Med Microbiol 293: 619-24.
    
    Mignot T., Mock M., and Fouet A. (2003). A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol 47: 917-27.
    Mignot T., Mock M., Robichon D., Landier A., Lereclus D., and Fouet A. (2001). The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol 42:1189-98.
    
    Mizuki E., Ohba M., Akao T., Yamashita S., Saitoh H., and Park Y. S. (1999). Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. J Appl Microbiol 86: 477-86.
    
    Mock M., and Fouet A. (2001). Anthrax. Annu Rev Microbiol 55: 647-71.
    
    Mohedano M. L., Overweg K., de la Fuente A., Reuter M., Altabe S., Mulholland F., de Mendoza D., Lopez P., and Wells J. M. (2005). Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. J Bacteriol 187: 2357-67.
    
    Moran N. A., and Wernegreen J. J. (2000). Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15: 321-326.
    
    Morse R. J., Yamamoto T., and Stroud R. M. (2001). Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409-17.
    
    Mulder N. J., Apweiler R., Attwood T. K., Bairoch A., Bateman A., Binns D., Bork P., Buillard V., Cerutti L., Copley R., Courcelle E., Das U., Daugherty L., Dibley M., Finn R., Fleischmann W., Gough J., Haft D., Hulo N., Hunter S., Kahn D., Kanapin A., Kejariwal A., Labarga A., Langendijk-Genevaux P. S., Lonsdale D., Lopez R., Letunic I., Madera M., Maslen J., McAnulla C., McDowall J., Mistry J., Mitchell A., Nikolskaya A. N., Orchard S., Orengo C., Petryszak R., Selengut J. D., Sigrist C. J., Thomas P. D., Valentin F., Wilson D., Wu C. H., and Yeats C. (2007). New developments in the InterPro database. Nucleic Acids Res 35: D224-8.
    
    Nakano M. M., Zuber P., Glaser P., Danchin A., and Hulett F. M. (1996). Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. J Bacteriol 178: 3796-802.
    
    Ng W. V., Kennedy S. P., Mahairas G. G., Berquist B., Pan M., Shukla H. D., Lasky S. R., Baliga N. S., Thorsson V., Sbrogna J., Swartzell S., Weir D., Hall J., Dahl T. A., Welti R., Goo Y. A., Leithauser B., Keller K., Cruz R., Danson M. J., Hough D. W., Maddocks D. G., Jablonski P. E., Krebs M. P., Angevine C. M., Dale H., Isenbarger T. A., Peck R. F., Pohlschroder M., Spudich J. L., Jung K. W., Alam M., Freitas T., Hou S., Daniels C. J., Dennis P. P., Omer A. D., Ebhardt H., Lowe T. M., Liang P., Riley M., Hood L., and DasSanna S. (2000). Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97:12176-81.
    
    Nierman W. C., DeShazer D., Kim H. S., Tettelin H., Nelson K. E., Feldblyum T., Ulrich R. L., Ronning C. M., Brinkac L. M., Daugherty S. C., Davidsen T. D., Deboy R. T., Dimitrov G., Dodson R. J., Durkin A. S., Gwinn M. L., Haft D. H., Khouri H., Kolonay J. F., Madupu R., Mohammoud Y., Nelson W. C., Radune D., Romero C. M., Sania S., Selengut J., Shamblin C., Sullivan S. A., White O., Yu Y., Zafar N., Zhou L., and Fraser C. M. (2004). Structural flexibility in the Burkholderia mallei genome. Proc NatlAcad Sci U S A 101:14246-51.
    
    Nolling J., Breton G., Omelchenko M. V., Makarova K. S., Zeng Q., Gibson R., Lee H. M., Dubois J., Qiu D., Hitti J., Wolf Y. I., Tatusov R. L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M. J., Bennett G. N., Koonin E. V., and Smith D. R. (2001). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183: 4823-38.
    
    Nubel U., Schmidt P. M., Reiss E., Bier F., Beyer W., and Naumann D. (2004). Oligonucleotide microanay for identification of Bacillus anthracis based on intergenic transcribed spacers in ribosomal DNA. FEMS Microbiol Lett 240: 215-23.
    
    Ochman H., and Davalos L. M. (2006). The nature and dynamics of bacterial genomes. Science 311:1730-3.
    
    Ochman H., Lawrence J. G., and Groisman E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304.
    
    Ochman H., and Moran N. A. (2001). Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292: 1096-9.
    
    Oh J. D., Kling-Backhed H., Giannakis M., Xu J., Fulton R. S., Fulton L. A., Cordum H. S., Wang C., Elliott G., Edwards J., Mardis E. R., Engstrand L. G., and Gordon J. I. (2006). The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc NatlAcad Sci USA 103: 9999-10004.
    
    Ohgushi A., Saitoh H., Wasano N., Uemori A., and Ohba M. (2005). Cloning and characterization of two novel genes, cry24B and slorf2, from a mosquitocidal strain of Bacillus thuringiensis serovar sotto. Curr Microbiol 51: 131-6.
    Ohmori H., Friedberg E. C., Fuchs R. P., Goodman M. F., Hanaoka F., Hinkle D., Kunkel T. A., Lawrence C. W., Livneh Z., Nohmi T., Prakash L., Prakash S., Todo T., Walker G. C., Wang Z., and Woodgate R. (2001). The Y-family of DNA polymerases. Mol Cell 8: 7-8.
    
    Okinaka R. T., Cloud K., Hampton O., Hoffmaster A. R., Hill K. K., Keim P., Koehler T. M., Lamke G., Kumano S., Mahillon J., Manter D., Martinez Y., Ricke D., Svensson R., and Jackson P. J. (1999). Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181:6509-15.
    
    Olasz F., Kiss J., Konig P., Buzas Z., Stalder R., and Arber W. (1998). Target specificity of insertion element IS30. Mol Microbiol 28: 691-704.
    
    Oosthuizen M. C., Steyn B., Theron J., Cosette P., Lindsay D., Von Holy A., and Brozel V. S. (2002). Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 68: 2770-80.
    
    Pena G., Miranda-Rios J., de la Riva G., Pardo-Lopez L., Soberon M., and Bravo A. (2006). A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera: Coccinellidae). Appl Environ Microbiol 72: 353-60.
    
    Pennisi E. (2007). Metagenomics. Massive microbial sequence project proposed. Science 315: 1781.
    
    Perego M. (2001). A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor SpoOA of Bacillus subtilis. Mol Microbiol 42:133-43.
    
    Perego M., Spiegelman G. B., and Hoch J. A. (1988). Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spoOA sporulation gene in Bacillus subtilis. Mol Microbiol 2: 689-99.
    
    Peschel A., Jack R. W., Otto M., Collins L. V., Staubitz P., Nicholson G., Kalbacher H., Nieuwenhuizen W. F., Jung G., Tarkowski A., van Kessel K. P., and van Strijp J. A. (2001). Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with 1-lysine. J Exp Med 193: 1067-76.
    
    Phillips Z. E., and Strauch M. A. (2002). Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59: 392-402.
    Pizza M., Scarlato V., Masignani V., Giuliani M. M., Arico B., Comanducci M., Jennings G. T., Baldi L., Bartolini E., Capecchi B., Galeotti C. L., Luzzi E., Manetti R., Marchetti E., Mora M., Nuti S., Ratti G., Santini L., Savino S., Scarselli M., Storni E., Zuo P., Broeker M., Hundt E., Knapp B., Blair E., Mason T., Tettelin H., Hood D. W., Jeffries A. C., Saunders N. J., Granoff D. M., Venter J. C., Moxon E. R., Grandi G., and Rappuoli R. (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287: 1816-20.
    
    Poinar H. N., Schwarz C., Qi J., Shapiro B., Macphee R. D., Buigues B., Tikhonov A., Huson D. H., Tomsho L. P., Auch A., Rampp M., Miller W., and Schuster S. C. (2006). Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311: 392-4.
    
    Priest F. G. (1981). "DNA homology in the genus Bacillus In:Aerobic Endospore-forming Bacteria," Academic Press, London.
    
    Priest F. G., Barker M., Baillie L. W., Holmes E. C., and Maiden M. C. (2004). Population structure and evolution of the Bacillus cereus group. J Bacteriol 186: 7959-70.
    
    Qian W., Jia Y., Ren S. X., He Y. Q., Feng J. X., Lu L. F., Sun Q., Ying G., Tang D. J., Tang H., Wu W., Hao P., Wang L., Jiang B. L., Zeng S., Gu W. Y., Lu G., Rong L., Tian Y., Yao Z., Fu G., Chen B., Fang R., Qiang B., Chen Z., Zhao G. P., Tang J. L., and He C. (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15: 757-67.
    
    Radnedge L., Agron P. G., Hill K. K., Jackson P. J., Ticknor L. O., Keim P., and Andersen G. L. (2003). Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 69: 2755-64.
    
    Rahman S. M., Pu M. Y., Yi H., Ohkusu K., Kato M., Isobe K., Taguchi R., Ikezawa H., and Nakashima I. (1995). Promotion of cytotoxic T-cell generation in mixed leukocyte culture by phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis. Infect Immun 63: 259-63.
    
    Rahme L. G., Ausubel F. M., Cao H., Drenkard E., Goumnerov B. C., Lau G. W., Mahajan-Miklos S., Plotnikova J., Tan M. W., Tsongalis J., Walendziewicz C. L., and Tompkins R. G. (2000). Plants and animals share functionally common bacterial virulence factors. Proc NatlAcad Sci USA 97: 8815-21.
    
    Rangarajan S., Gudmundsson G., Qiu Z., Foster P. L., and Goodman M. F. (1997). Escherichia coli DNA polymerase II catalyzes chromosomal and episomal DNA synthesis in vivo. Proc Natl Acad Sci U S A 94: 946-51.
    
    Rasko D. A., Altherr M. R., Han C. S., and Ravel J. (2005). Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29: 303-29.
    
    Rasko D. A., Ravel J., Okstad O. A., Helgason E., Cer R. Z., Jiang L., Shores K. A., Fouts D. E., Tourasse N. J., Angiuoli S. V., Kolonay J., Nelson W. C., Kolsto A. B., Fraser C. M., and Read T. D. (2004). The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32: 977-88.
    
    Rasko D. A., Rosovitz M. J., Okstad O. A., Fouts D. E., Jiang L., Cer R. Z., Kolsto A. B., Gill S. R., and Ravel J. (2007). Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXOl. J Bacteriol 189: 52-64.
    
    Rattray A. J., and Strathern J. N. (2003). Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37: 31-66.
    
    Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A., Gill S. R., Holtzapple E. K., Okstad O. A., Helgason E., Rilstone J., Wu M., Kolonay J. F., Beanan M. J., Dodson R. J., Brinkac L. M., Gwinn M., DeBoy R. T., Madpu R., Daugherty S. C., Durkin A. S., Haft D. H., Nelson W. C., Peterson J. D., Pop M., Khouri H. M., Radune D., Benton J. L., Mahamoud Y., Jiang L., Hance I. R., Weidman J. F., Berry K. J., Plaut R. D., Wolf A. M., Watkins K. L., Nierman W. C., Hazen A., Cline R., Redmond C., Thwaite J. E., White O., Salzberg S. L., Thomason B., Friedlander A. M., Koehler T. M., Hanna P. C., Kolsto A. B., and Fraser C. M. (2003). The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423: 81-6.
    
    Reddy A., Battisti L., and Thorne C. B. (1987). Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169: 5263-70.
    
    Ren S. X., Fu G., Jiang X. G., Zeng R., Miao Y. G., Xu H., Zhang Y. X., Xiong H., Lu G., Lu L. F., Jiang H. Q., Jia J., Tu Y. F., Jiang J. X., Gu W. Y., Zhang Y. Q., Cai Z., Sheng H. H., Yin H. F., Zhang Y., Zhu G. F., Wan M., Huang H. L., Qian Z., Wang S. Y., Ma W., Yao Z. J., Shen Y., Qiang B. Q., Xia Q. C., Guo X. K., Danchin A., Saint Girons I., Somerville R. L., Wen Y. M., Shi M. H., Chen Z., Xu J. G., and Zhao G. P. (2003). Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422: 888-93.
    
    Reyes-Ramirez A., and Ibarra J. E. (2005). Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl Environ Microbiol 71:1346-55.
    
    Robb F. T., Maeder D. L., Brown J. R., DiRuggiero J., Stump M. D., Yeh R. K., Weiss R. B., and Dunn D. M. (2001). Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134-57.
    
    Roelofs J., and Van Haastert P. J. (2001). Genes lost during evolution. Nature 411: 1013-4.
    
    Rosso M. L., and Delecluse A. (1997). Distribution of the insertion element IS240 among Bacillus thuringiensis strains. Curr Microbiol 34: 348-53.
    
    Saile E., and Koehler T. M. (2002). Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol 184: 370-80.
    
    Salamitou S., Ramisse F., Brehelin M., Bourguet D., Gilois N., Gominet M., Hernandez E., and Lereclus D. (2000). The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146 (Pt 11): 2825-32.
    
    Sanchis V., Agaisse H., Chaufaux J., and Lereclus D. (1997). A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63: 779-84.
    
    Santos M. A., Almeida J., de Lencastre H., Morelli G., Kamke M., and Trautner T. A. (1986). Genomic organization of the related Bacillus subtilis bacteriophages SPP1, 41c, rho 15, and SF6. J Virol 60: 702-7.
    
    Saunders N. J., Peden J. F., Hood D. W., and Moxon E. R. (1998). Simple sequence repeats in the Helicobacter pylori genome. Mol Microbiol 27: 1091-8.
    
    Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., and Dean D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 775-806.
    
    Sebaihia M., Peck M. W., Minton N. P., Thomson N. R., Holden M. T., Mitchell W. J., Carter A. T., Bentley S. D., Mason D. R., Crossman L., Paul C. J., Ivens A., Wells-Bennik M. H., Davis I. J., Cerdeno-Tarraga A. M., Churcher C., Quail M. A., Chillingworth T., Feltwell T., Fraser A., Goodhead I., Hance Z., Jagels K., Larke N., Maddison M., Moule S., Mungall K., Norbertczak H., Rabbinowitsch E., Sanders M., Simmonds M., White B., Whithead S., and Parkhill J. (2007). Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17:1082-92.
    
    Shafikhani S. H., and Leighton T. (2004). AbrB and SpoOE control the proper timing of sporulation in Bacillus subtilis. Curr Microbiol 48: 262-9.
    
    Shao Z., Liu Z., and Yu Z. (2001). Effects of the 20-kilodalton helper protein on Cry1Ac production and spore formation in Bacillus thuringiensis. Appl Environ Microbiol 67: 5362-9.
    
    Shao Z., and Yu Z. (2004). Enhanced expression of insecticidal crystal proteins in wild Bacillus thuringiensis strains by a heterogeneous protein P20. Curr Microbiol 48: 321-6.
    
    Shi Y. X., Zeng S. L., Yuan M. J., Sun F., and Pang Y. (2006). [Influence of accessory protein P19 from Bacillus thuringiensis on insecticidal crystal protein Cry11Aa]. Wei Sheng Wu Xue Bao 46: 353-7.
    Siden I., Dalhammar G., Telander B., Boman H. G., and Somerville H. (1979). Virulence factors in Bacillus thuringiensis: purification and properties of a protein inhibitor of immunity in insects. J Gen Microbiol 114: 45-52.
    
    Siegel J. P. (2001). The mammalian safety of Bacillus thuringiensis-based insecticides. J Invertebr Pathol 77:13-21.
    
    Slamti L., and Lereclus D. (2002). A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. Embo J 21: 4550-9.
    
    Smoot J. C., Barbian K. D., Van Gompel J. J., Smoot L. M., Chaussee M. S., Sylva G. L., Sturdevant D. E., Ricklefs S. M., Porcella S. F., Parkins L. D., Beres S. B., Campbell D. S., Smith T. M., Zhang Q., Kapur V., Daly J. A., Veasy L. G., and Musser J. M. (2002). Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 99: 4668-73.
    
    Snyder A. K., Williams C. R., Johnson A., O'Donnell M., and Bloom L. B. (2004). Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the beta and DNA binding activities of the gamma complex. J Biol Chem 279: 4386-93.
    
    Snyder L. A., Butcher S. A., and Saunders N. J. (2001a). Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147: 2321-32.
    
    Snyder L. A., Saunders N. J., and Shafer W. M. (2001b). A putatively phase variable gene (dca) required for natural competence in Neisseria gonorrhoeae but not Neisseria meningitidis is located within the division cell wall (dcw) gene cluster. J Bacteriol 183: 1233-41.
    
    Sorokin A., Candelon B., Guilloux K., Galleron N., Wackerow-Kouzova N., Ehrlich S. D., Bourguet D., and Sanchis V. (2006). Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl Environ Microbiol 72:1569-78.
    
    Strauch M. A. (1993). Regulation of Bacillus subtilis gene expression during the transition from exponential growth to stationary phase. Prog Nucleic Acid Res Mol Biol 46:121-53.
    
    Strauch M. A., Ballar P., Rowshan A. J., and Zoller K. L. (2005). The DNA-binding specificity of the Bacillus anthracis AbrB protein. Microbiology 151: 1751-9.
    
    Strauch M. A., Bobay B. G., Cavanagh J., Yao F., Wilson A., and Le Breton Y. (2007). Abh and AbrB Control of Bacillus subtilis Antimicrobial Gene Expression. J Bacteriol 189: 7720-32.
    
    Suzek B. E., Ermolaeva M. D., Schreiber M., and Salzberg S. L. (2001). A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics 17:1123-30.
    
    Szurmant H., Mohan M. A., Imus P. M., and Hoch J. A. (2007). YycH and YycI interact to regulate the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 189: 3280-9.
    
    Szurmant H., and Ordal G. W. (2004). Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68: 301-19.
    
    Tabashnik B. E., Liu Y. B., de Maagd R. A., and Dennehy T. J. (2000). Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Appl Environ Microbiol 66: 4582-4.
    
    Tanaka K., Kobayashi K., and Ogasawara N. (2003). The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. Microbiology 149: 2317-29.
    
    Tang C. M., and Moxon E. R. (2001). The impact of microbial genomics on antimicrobial drug development. Annu Rev Genomics Hum Genet 2: 259-69.
    
    Tang M., Bideshi D. K., Park H. W., and Federici B. A. (2006). Minireplicon from pBtoxis of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 72: 6948-54.
    
    Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., and Koonin E. V. (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29: 22-8.
    
    Tavladoraki P., Benvenuto E., Trinca S., De Martinis D., Cattaneo A., and Galeffi P. (1993). Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366: 469-72.
    
    Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H., Dodson R. J., Durkin A. S., Gwinn M., Kolonay J. F., Nelson W. C., Peterson J. D., Umayam L. A., White O., Salzberg S. L., Lewis M. R., Radune D., Holtzapple E., Khouri H., Wolf A. M., Utterback T. R., Hansen C. L., McDonald L. A., Feldblyum T. V., Angiuoli S., Dickinson T., Hickey E. K., Holt I. E., Loftus B. J., Yang F., Smith H. O., Venter J. C., Dougherty B. A., Morrison D. A., Hollingshead S. K., and Fraser C. M. (2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498-506.
    
    Thamthiankul S., Suan-Ngay S., Tantimavanich S., and Panbangred W. (2001). Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56: 395-401.
    
    Throup J. P., Koretke K. K., Bryant A. P., Ingraham K. A., Chalker A. F., Ge Y., Marra A., Wallis N. G., Brown J. R., Holmes D. J., Rosenberg M., and Burnham M. K. (2000). A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 35: 566-76.
    
    Ticknor L. O., Kolsto A. B., Hill K. K., Keim P., Laker M. T., Tonks M., and Jackson P. J. (2001). Fluorescent Amplified Fragment Length Polymorphism Analysis of Norwegian Bacillus cereus and Bacillus thuringiensis Soil Isolates. Appl Environ Microbiol 67: 4863-73.
    
    Tillier E. R., and Collins R. A. (2000). Genome rearrangement by replication-directed translocation. Nat Genet 26: 195-7.
    
    Tinsley E., and Khan S. A. (2006). A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J Bacteriol 188: 2829-35.
    
    Tourasse N. J., Stabell F. B., Reiter L., and Kolsto A. B. (2005). Unusual group II introns in bacteria of the Bacillus cereus group. J Bacteriol 187: 5437-51.
    Tringe S. G., von Mering C., Kobayashi A., Salamov A. A., Chen K., Chang H. W., Podar M., Short J. M., Mathur E. J., Detter J. C., Bork P., Hugenholtz P., and Rubin E. M. (2005). Comparative metagenomics of microbial communities. Science 308: 554-7.
    
    Trowsdale J., Chen S. M., and Hoch J. A. (1979). Genetic analysis of a class of polymyxin resistant partial revertants of stage O sporulation mutants of Bacillus subtilis: map of the chromosome region near the origin of replication. Mol Gen Genet 173: 61-70.
    
    Tsuda M., Karita M., Morshed M. G., Okita K., and Nakazawa T. (1994). A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect Immun 62: 3586-9.
    
    Turnbull P. C. (1999). Definitive identification of Bacillus anthracis-a review. J Appl Microbiol 87: 237-40.
    
    Twellmeyer J., Wende A., Wolfertz J., Pfeiffer F., Panhuysen M., Zaigler A., Soppa J., Welzl G., and Oesterhelt D. (2007). Microarray Analysis in the Archaeon Halobacterium salinarum Strain R1. PLoS ONE 2: e1064.
    
    Van der Auwera G. A., Andrup L., and Mahillon J. (2005). Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6: 103.
    
    Van Ert M. N., Easterday W. R., Huynh L. Y., Okinaka R. T., Hugh-Jones M. E., Ravel J., Zanecki S. R., Pearson T., Simonson T. S., U'Ren J. M., Kachur S. M., Leadem-Dougherty R. R., Rhoton S. D., Zinser G., Farlow J., Coker P. R., Smith K. L., Wang B., Kenefic L. J., Fraser-Liggett C. M., Wagner D. M., and Keim P. (2007). Global genetic population structure of Bacillus anthracis. PLoS ONE 2: e461.
    
    van Schaik W., Tempelaars M. H., Zwietering M. H., de Vos W. M., and Abee T. (2005). Analysis of the role of RsbV, RsbW, and RsbY in regulating {sigma}B activity in Bacillus cereus. J Bacteriol 187: 5846-51.
    
    Vilas-Boas G., Sanchis V., Lereclus D., Lemos M. V., and Bourguet D. (2002). Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 68: 1414-24.
    
    Volokhov D., Pomerantsev A., Kivovich V., Rasooly A., and Chizhikov V. (2004). Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn Microbiol Infect Dis 49: 163-71.
    Wadhams G. H., and Armitage J. P. (2004). Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024-37.
    
    West A. H., and Stock A. M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26: 369-76.
    
    Whiteley H. R., and Schnepf H. E. (1986). The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu Rev Microbiol 40: 549-76.
    
    Widner W. R., and Whiteley H. R. (1989). Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J Bacteriol 171: 965-74.
    
    Xu J. (2006). Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713-31.
    
    Yamamoto H., Murata M., and Sekiguchi J. (2000). The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis. Mol Microbiol 37: 898-912.
    
    Yang F., Yang J., Zhang X., Chen L., Jiang Y., Yan Y., Tang X., Wang J., Xiong Z., Dong J., Xue Y., Zhu Y., Xu X., Sun L., Chen S., Nie H., Peng J., Xu J., Wang Y., Yuan Z., Wen Y., Yao Z., Shen Y., Qiang B., Hou Y., Yu J., and Jin Q. (2005). Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33: 6445-58.
    
    Yarwood J. M., McCormick J. K., and Schlievert P. M. (2001). Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus.J Bacteriol 183:1113-23.
    
    Yu C. G., Mullins M. A., Warren G. W., Koziel M. G., and Estruch J. J. (1997). The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63: 532-6.
    
    Yue C., Sun M., and Yu Z. (2005). Improved production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crylC gene in its chromosome. Biotechnol Bioeng 92: 1-7.
    
    Zimmer M., Scherer S., and Loessner M. J. (2002). Genomic analysis of Clostridium perfringens bacteriophage phi3626, which integrates into guaA and possibly affects sporulation. J Bacteriol 184: 4359-68.
    
    Zuber P., and Losick R. (1987). Role of AbrB in SpoOA- and SpoOB-dependent utilization of a sporulation promoter in Bacillus subtilis. J Bacteriol 169: 2223-30.
    Zwick M.E.,McAfee E,Cutler D.J.,Read T.D.,Ravel J.,Bowman G.R.,Galloway D.R.,and
    Mateczun A.(2005).Microarray-based resequencing of multiple Bacillus anthracis isolates.Genome
    Biol 6:R10.
    
    李海涛,姚江,郭巍,宋福平,高继国,黄大防,and张杰(2005).苏云金芽孢杆菌cry2Aa基因的克隆、表达与活性.农业生物技术学报6.
    程萍,王清锋,and俞子牛(1997).苏云金芽孢杆菌转座因子的类群和结构.生命科学9:123-128.
    郑大胜,闫建平,罗绍彬,and袁志明(2002),.新型杀虫蛋白VIPs研究进展.微生物学杂志,22(3):35-37.
    龙小山,刘汉军,丁学知,孙运军,胡胜标,and夏立秋(2005).苏云金芽孢杆菌Ⅱ类转座因子的应用与研究进展.生命科学研究12:292-295.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.