人疱疹病毒6型感染对HSB2细胞周期和细胞凋亡的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类疱疹病毒6型(human herpesvirus 6, HHV-6)属于疱疹病毒β亚科,分为HHV-6A和B两个亚型。HHV-6是引起婴幼儿急疹(exanthem subitum, ES)的病原。文献报道HHV-6与淋巴系统增生性疾病、多发性硬化症(multiple sclerosis, MS)、急性脑炎、慢性疲劳综合症、病毒性心肌炎、器官移植后感染等多种疾病有关。HHV-6感染能影响宿主细胞周期进程甚至能诱导细胞凋亡,但其具体的分子机制目前还未进行过详细的研究。本课题以人T淋巴细胞系HSB2为研究对象,探讨HHV-6感染对HSB2细胞周期进程及细胞凋亡的影响及其分子机制。
     首先,我们大量收集HHV-6 GS标准株感染的CBMC细胞,反复冻融后,高速离心对病毒浓缩纯化。然后构建标准质粒,制作标准曲线,用实时荧光定量PCR的方法测定病毒滴度。
     其次,分别用细胞计数法和MTT法测定HHV-6感染对HSB2细胞增殖的影响,结果显示HHV-6感染能显著抑制细胞增殖,其作用具有时间依赖性;流式细胞术结果显示,感染细胞发生了G2/M期阻滞,进一步检测M期的标志分子磷酸化H3(Ser10),证明细胞周期停滞于G2期;实时荧光定量RT-PCR和Western blot结果显示,HHV-6感染使cyclinA2、cyclinB1、cyclinE1的蛋白水平和mRNA水平提高,cyclinD1的蛋白水平和mRNA水平均无明显变化;此外,Western blot和实时荧光定量PCR研究结果表明G2/M期细胞环境有利于病毒DNA复制和蛋白的表达。
     再次,本研究探讨了HHV-6诱导细胞G2阻滞的机制。体外激酶活性分析表明HHV-6感染抑制了cyclinB1-Cdk1(cdc2)激酶活性;Western blot结果显示磷酸化cdc2(Tyr15)表达量增加,总cdc2蛋白的表达也稍有增加;进一步研究表明HHV-6感染上调Weel蛋白表达,提高了Myt1激酶活性,并降低磷酸酶Cdc25C的活性。病毒感染使p53、p21、p27的蛋白和mRNA表达水平显著增加,并呈时间依赖性,并且磷酸化p53(Ser15)的表达也急剧增加;此外,HHV-6感染使磷酸化Chk2 (Thr68)和其下游分子磷酸化Cdc25C(Ser216)表达增加。以上结果提示,HHV-6感染可通过多途径,多分子协同诱导细胞G2阻滞。
     另外,在本研究中发现HHV-6感染导致G2期阻滞之后诱导了细胞凋亡,因此我们对其诱导凋亡的途径进行了探讨。流式细胞术PI单标法和Annexin V-FITC/PI双标检测均表明HHV-6在感染晚期可诱导凋亡。电子显微镜观察显示感染细胞染色质高度凝集、边缘化,细胞核碎裂呈碎片状,线粒体形态也发生了变化,表现为体积增大,肿胀,嵴紊乱、断裂; HHV-6感染后caspase-3,caspase-9活性显著升高,而caspase-8活性无变化;线粒体膜电位下降,Bcl-2蛋白表达水平下降,Bax表达水平增加。以上表明线粒体凋亡途径参与HHV-6诱导的细胞凋亡。
     综上所述,本研究结果提示HHV-6是通过多条途径、多种因子协同促进细胞的G2期阻滞,通过caspase依赖的线粒体途径诱导细胞凋亡。本研究为HHV-6感染相关疾病寻找新的治疗靶点提供了理论依据和新思路。
Human herpesvirus-6 belongs to the beta-herpes virus subfamily and can be further classified into two variants, A and B. It is identified as the causative agent of exanthem subitum, and also related with lymphoproliferative disease, multiple sclerosis, encephalitis, chronic fatigue syndrome, viral myocarditis and reactivation or reinfection in immunocompromised hosts. HHV-6 infection can influence cell cycle progression and induce cell apoptosis, however, the mechanism underlying its actions remain unclear. In this study, we try to elucidate some mechanisms of influencing cell cycle and apoptosis of HSB2 cells infected by HHV-6.
     Firstly, The GS strain of HHV-6 was propagated in CBMCs stimulated with PHA. HHV-6 infected and uninfected cells were collected and subjected to the freeze-thaw cycle. HHV-6 supernatant was concentrated by high speed centrifugation (80,000rpm 2h). The standard plasmid of pMD19T-U22 was constructed, then the virus titer was determined by real-time PCR.
     Secondly, we observed negative effect of HHV-6 on the proliferation of HSB2 cells in time-dependent manner through MTT assay and cell counting; Cell cycle profiles by flow cytometry showed that G2/M phase arrest was induced by HHV-6. The further study showed that G2 phase arrest was induced; Using immunoblotting analysis and real-time RT-PCR, we found mRNA and protein levels of cyclinA2,cyclinB1,cyclinE1 were increased in HHV-6 infected cell. But there was no change in cyclinD1. Moreover, it is suggested G2/M arrest promotes HHV-6 replication and protein expression.
     Thirdly, we further studied the mechanism of HHV-6 induced G2 arrest. In vitro kinase assay showed HHV-6 infection inhibited cyclin B1-Cdk1 kinase activity; After HHV-6 infection, total cdc2 and phospho-cdc2 (Tyr15) levels were increased in a time-dependent manner; The high level of phospho-cdc2 (Tyr15) was due to increase Wee1 protein level, Myt1 kinase activity and decrease Cdc25C activity; We also found the mRNA and protein levels of p53, p21 and p27 were increased markedly in HHV-6 infected cell, furthermore, the phospho-p53 (Ser15) were also increased, these results indicate that HHV-6 activates p53 and then induces p21 expression. Phospho-Chk2 (Thr68) and Phospho-Cdc25C(Ser216) was also induced after HHV-6 infection. These results suggest HHV-6 induced G2 arrest is associated with change of many kinds checkpoint regulatory protein.
     Lastly,we study the mechanism of HHV-6-induced apoptosis. Apoptosis was determined by staining cells with Annexin V- FITC/PI in flow cytometry; Chromatin condensation and nuclear fragmentation along with dramatic changes of mitochondria were observed by electron microscopy; The cell death was associated with activation of caspase 3, caspase 9, and cleavage of PARP, which is known to be an important substrate for activated caspase 3, but no change in caspase-8 activity; Moreover, HHV-6 infection increased Bax, decreased Bcl-2 protein levels. HHV-6 infection also induced disruption of mitochondrial transmembrane potential. Taken together, our present results suggest that HHV-6 infection induces apoptosis of the host cell through mitochondrion-mediated, caspase 3-dependent pathway.
     In summary, our observations highlight the presence of multiple distinct but interrelated mechanism to induce G2 arrest and apoptosis after infection with HHV-6. Understanding interactions between viruses and host cells provides new targets for treatment HHV-6 related diseases.
引文
1. Yamanishi, K., et al., Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet, 1988. 1(8594): p. 1065-7.
    2. Clark, D.A., Human herpesvirus 6. Rev Med Virol, 2000. 10(3): p. 155-73.
    3. De Bolle, L., L. Naesens, and E. De Clercq, Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev, 2005. 18(1): p. 217-45.
    4. Dockrell, D.H., Human herpesvirus 6: molecular biology and clinical features. J Med Microbiol, 2003. 52(Pt 1): p. 5-18.
    5. Lusso, P., et al., Human herpesvirus 6A accelerates AIDS progression in macaques. Proc Natl Acad Sci U S A, 2007. 104(12): p. 5067-72.
    6. Kashanchi, F., et al., Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene, 1997. 14(3): p. 359-67.
    7. Yadav, M., et al., Human herpesvirus-6 (HHV-6) DNA and virus-encoded antigen in oral lesions. J Oral Pathol Med, 1997. 26(9): p. 393-401.
    8. Valente, G., et al., Human herpesvirus 6 and Epstein-Barr virus in Hodgkin's disease: a controlled study by polymerase chain reaction and in situ hybridization. Am J Pathol, 1996. 149(5): p. 1501-10.
    9. Nguyen, D.X., T.F. Westbrook, and D.J. McCance, Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J Virol, 2002. 76(2): p. 619-32.
    10. Fortunato, E.A., et al., Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J Virol, 1997. 71(11): p. 8176-85.
    11. Lee, S.G. and H.M. Rho, Transcriptional repression of the human p53 gene byhepatitis B viral X protein. Oncogene, 2000. 19(3): p. 468-71.
    12. Davy, C. and J. Doorbar, G2/M cell cycle arrest in the life cycle of viruses. Virology, 2007. 368(2): p. 219-26.
    13. O'Shea, C.C., Viruses - seeking and destroying the tumor program. Oncogene, 2005. 24(52): p. 7640-55.
    14. Coleman, T.R. and W.G. Dunphy, Cdc2 regulatory factors. Curr Opin Cell Biol, 1994. 6(6): p. 877-82.
    15. Stark, G.R. and W.R. Taylor, Control of the G2/M transition. Mol Biotechnol, 2006. 32(3): p. 227-48.
    16. Hyun, J., et al., Control of G2/M transition by Drosophila Fos. Mol Cell Biol, 2006. 26(22): p. 8293-302.
    17. Brown, E.J. and D. Baltimore, Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev, 2003. 17(5): p. 615-28.
    18. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): p. 1803-15.
    19. Hirao, A., et al., DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science, 2000. 287(5459): p. 1824-7.
    20. Zhao, R.Y. and R.T. Elder, Viral infections and cell cycle G2/M regulation. Cell Res, 2005. 15(3): p. 143-9.
    21. O'Brien, V., Viruses and apoptosis. J Gen Virol, 1998. 79 ( Pt 8): p. 1833-45.
    22. Razvi, E.S. and R.M. Welsh, Apoptosis in viral infections. Adv Virus Res, 1995. 45: p. 1-60.
    23. Savill, J., et al., Phagocyte recognition of cells undergoing apoptosis. Immunol Today, 1993. 14(3): p. 131-6.
    24. Kumar, S., Caspase function in programmed cell death. Cell Death Differ, 2007. 14(1): p. 32-43.
    25. Tsujimoto, Y., Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol, 2003. 195(2): p. 158-67.
    26. Kroemer, G. and J.C. Reed, Mitochondrial control of cell death. Nat Med, 2000. 6(5): p. 513-9.
    27. Mlechkovich, G. and N. Frenkel, Human herpesvirus 6A (HHV-6A) and HHV-6B alter E2F1/Rb pathways and E2F1 localization and cause cell cycle arrest in infected T cells. J Virol, 2007. 81(24): p. 13499-508.
    28. Oster, B., et al., Human herpesvirus 6B inhibits cell proliferation by a p53-independent pathway. J Clin Virol, 2006. 37 Suppl 1: p. S63-8.
    29. Oster, B., B. Bundgaard, and P. Hollsberg, Human herpesvirus 6B induces cell cycle arrest concomitant with p53 phosphorylation and accumulation in T cells. J Virol, 2005. 79(3): p. 1961-5.
    30. De Bolle, L., et al., Human herpesvirus 6 infection arrests cord blood mononuclear cells in G(2) phase of the cell cycle. FEBS Lett, 2004. 560(1-3): p. 25-9.
    31. Ichimi, R., T. Jin-no, and M. Ito, Induction of apoptosis in cord blood lymphocytes by HHV-6. J Med Virol, 1999. 58(1): p. 63-8.
    32. Inoue, Y., M. Yasukawa, and S. Fujita, Induction of T-cell apoptosis by human herpesvirus 6. J Virol, 1997. 71(5): p. 3751-9.
    33. Yasukawa, M., et al., Apoptosis of CD4+ T lymphocytes in human herpesvirus-6 infection. J Gen Virol, 1998. 79 ( Pt 1): p. 143-7.
    1. Salahuddin, S.Z., et al., Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science, 1986. 234(4776): p. 596-601.
    2. Schirmer, E.C., et al., Differentiation between two distinct classes of viruses now classified as human herpesvirus 6. Proc Natl Acad Sci U S A, 1991. 88(13): p. 5922-6.
    3. Aubin, J.T., et al., Antigenic and genetic differentiation of the two putative types of human herpes virus 6. J Virol Methods, 1993. 41(2): p. 223-34.
    4. Gompels, U.A., et al., The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 1995. 209(1): p. 29-51.
    5. Ablashi, D.V., et al., Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates. Virology, 1991. 184(2): p. 545-52.
    6. Dominguez, G., et al., Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol, 1999. 73(10): p. 8040-52.
    7. Yamanishi, K., et al., Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet, 1988. 1(8594): p. 1065-7.
    8.姚堃,范.季.周.,人类疱疹病毒6型刺激人脐带血单个核细胞产生α-干扰素的研究.上海免疫学杂志, 1998(01).
    9.彭光勇,姚.任.季.,人类疱疹病毒6、7型体外感染淋巴细胞对四种细胞因子分泌的影响.中华微生物学和免疫学杂志, 2000(06).
    10. Flamand, L., et al., Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J Virol, 1991. 65(9): p. 5105-10.
    11. Gravel, A., J. Gosselin, and L. Flamand, Human Herpesvirus 6 immediate-early 1 protein is a sumoylated nuclear phosphoprotein colocalizing with promyelocytic leukemia protein-associated nuclear bodies. J Biol Chem, 2002. 277(22): p. 19679-87.
    12. Lo, H.R. and Y.C. Chao, Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog, 2004. 20(1): p. 354-60.
    13. Thomas, M.A., et al., A real-time PCR method to rapidly titer adenovirus stocks. Methods Mol Med, 2007. 130: p. 185-92.
    14. Lee, C.W. and D.L. Suarez, Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus. J Virol Methods, 2004. 119(2): p. 151-8.
    15. Ma, L., et al., Rapid determination of adenoviral vector titers by quantitative real-time PCR. J Virol Methods, 2001. 93(1-2): p. 181-8.
    1. Takahashi, K., et al., Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J Virol, 1989. 63(7): p. 3161-3.
    2. Minshull, J., et al., The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci Suppl, 1989. 12: p. 77-97.
    3. Chaurushiya, M.S. and M.D. Weitzman, Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst), 2009. 8(9): p. 1166-76.
    4. De Bolle, L., et al., Human herpesvirus 6 infection arrests cord blood mononuclear cells in G(2) phase of the cell cycle. FEBS Lett, 2004. 560(1-3): p. 25-9.
    5. Oster, B., B. Bundgaard, and P. Hollsberg, Human herpesvirus 6B induces cell cycle arrest concomitant with p53 phosphorylation and accumulation in T cells. J Virol, 2005. 79(3): p. 1961-5.
    6. Doree, M. and S. Galas, The cyclin-dependent protein kinases and the control of cell division. Faseb J, 1994. 8(14): p. 1114-21.
    7. Li, F.Q., J.P. Tam, and D.X. Liu, Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology, 2007. 365(2): p. 435-45.
    8. Groschel, B. and F. Bushman, Cell cycle arrest in G2/M promotes early steps of infection by human immunodeficiency virus. J Virol, 2005. 79(9): p. 5695-704.
    9. Evans, T., et al., Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 1983. 33(2): p. 389-96.
    10. Castillo, J.P. and T.F. Kowalik, Human cytomegalovirus immediate early proteins and cell growth control. Gene, 2002. 290(1-2): p. 19-34.
    11. Nguyen, D.X., T.F. Westbrook, and D.J. McCance, Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J Virol, 2002. 76(2): p. 619-32.
    12. Wise-Draper, T.M. and S.I. Wells, Papillomavirus E6 and E7 proteins andtheir cellular targets. Front Biosci, 2008. 13: p. 1003-17.
    13. Jault, F.M., et al., Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol, 1995. 69(11): p. 6697-704.
    14. Bresnahan, W.A., T. Albrecht, and E.A. Thompson, The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J Biol Chem, 1998. 273(34): p. 22075-82.
    15. Iwanaga, R., et al., Activation of the cyclin D2 and cdk6 genes through NF-kappaB is critical for cell-cycle progression induced by HTLV-I Tax. Oncogene, 2008.
    16. Klein, A., et al., HBX causes cyclin D1 overexpression and development of breast cancer in transgenic animals that are heterozygous for p53. Oncogene, 2003. 22(19): p. 2910-9.
    17. Sinclair, A.J., et al., EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. Embo J, 1994. 13(14): p. 3321-8.
    1. Nigg, E.A., Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol, 2001. 2(1): p. 21-32.
    2. Jin, S., et al., GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene, 2002. 21(57): p. 8696-704.
    3. Coleman, T.R. and W.G. Dunphy, Cdc2 regulatory factors. Curr Opin Cell Biol, 1994. 6(6): p. 877-82.
    4. Peng, C.Y., et al., Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 1997. 277(5331): p. 1501-5.
    5. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): p. 1803-15.
    6. Bunz, F., et al., Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 1998. 282(5393): p. 1497-501.
    7. Hermeking, H. and A. Benzinger, 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol, 2006. 16(3): p. 183-92.
    8. Taylor, W.R., et al., Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell, 1999. 10(11): p. 3607-22.
    9. Viallard, J.F., et al., [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]. Cancer Radiother, 2001. 5(2): p. 109-29.
    10. Li, J., A.N. Meyer, and D.J. Donoghue, Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci U S A, 1997. 94(2): p. 502-7.
    11. Takizawa, C.G. and D.O. Morgan, Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol, 2000. 12(6): p. 658-65.
    12. Morita, E., et al., Human parvovirus B19 induces cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. J Virol, 2001. 75(16): p. 7555-63.
    13. Poole, B.D., et al., Apoptosis of liver-derived cells induced by parvovirus B19 nonstructural protein. J Virol, 2006. 80(8): p. 4114-21.
    14. Davy, C.E., et al., Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol, 2005. 79(7): p. 3998-4011.
    15. Vogelstein, B., D. Lane, and A.J. Levine, Surfing the p53 network. Nature, 2000. 408(6810): p. 307-10.
    16. Nurse, P., Universal control mechanism regulating onset of M-phase. Nature, 1990. 344(6266): p. 503-8.
    17. Op De Beeck, A., et al., NS1- and minute virus of mice-induced cell cycle arrest: involvement of p53 and p21(cip1). J Virol, 2001. 75(22): p. 11071-8.
    18. Darbinyan, A., et al., Evidence for dysregulation of cell cycle by human polyomavirus, JCV, late auxiliary protein. Oncogene, 2002. 21(36): p. 5574-81.
    19. Knight, G.L., A.S. Turnell, and S. Roberts, Role for Wee1 in inhibition of G2-to-M transition through the cooperation of distinct human papillomavirus type 1 E4 proteins. J Virol, 2006. 80(15): p. 7416-26.
    20. Goh, W.C., N. Manel, and M. Emerman, The human immunodeficiency virus Vpr protein binds Cdc25C: implications for G2 arrest. Virology, 2004. 318(1): p. 337-49.
    21. Whittaker, G.R., M. Kann, and A. Helenius, Viral entry into the nucleus. Annu Rev Cell Dev Biol, 2000. 16: p. 627-51.
    22. Shi, Y., et al., Ataxia-telangiectasia-mutated (ATM) is a T-antigen kinase that controls SV40 viral replication in vivo. J Biol Chem, 2005. 280(48): p. 40195-200.
    23. Nunnari, G., et al., Inhibition of HIV-1 replication by caffeine and caffeine-related methylxanthines. Virology, 2005. 335(2): p. 177-84.
    1. O'Brien, V., Viruses and apoptosis. J Gen Virol, 1998. 79 ( Pt 8): p. 1833-45.
    2. Razvi, E.S. and R.M. Welsh, Apoptosis in viral infections. Adv Virus Res, 1995. 45: p. 1-60.
    3. Savill, J., et al., Phagocyte recognition of cells undergoing apoptosis. Immunol Today, 1993. 14(3): p. 131-6.
    4. Kumar, S., Caspase function in programmed cell death. Cell Death Differ, 2007. 14(1): p. 32-43.
    5. Tsujimoto, Y., Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol, 2003. 195(2): p. 158-67.
    6. Kroemer, G. and J.C. Reed, Mitochondrial control of cell death. Nat Med, 2000. 6(5): p. 513-9.
    7. Oliver, F.J., et al., Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem, 1998. 273(50): p. 33533-9.
    8. Zamzami, N. and G. Kroemer, Apoptosis: mitochondrial membrane permeabilization--the (w)hole story? Curr Biol, 2003. 13(2): p. R71-3.
    9. Safiulina, D., et al., Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J Cell Physiol, 2006. 206(2): p. 347-53.
    10. Earnshaw, W.C., L.M. Martins, and S.H. Kaufmann, Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem, 1999. 68: p. 383-424.
    11. Gupta, S., Molecular mechanisms of apoptosis in the cells of the immune system in human aging. Immunol Rev, 2005. 205: p. 114-29.
    12. Ichimi, R., T. Jin-no, and M. Ito, Induction of apoptosis in cord blood lymphocytes by HHV-6. J Med Virol, 1999. 58(1): p. 63-8.
    13. Inoue, Y., M. Yasukawa, and S. Fujita, Induction of T-cell apoptosis by human herpesvirus 6. J Virol, 1997. 71(5): p. 3751-9.
    1. Salahuddin, S.Z., et al., Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science, 1986. 234(4776): p. 596-601.
    2. Safronetz, D., A. Humar, and G.A. Tipples, Differentiation and quantitation of human herpesviruses 6A, 6B and 7 by real-time PCR. J Virol Methods, 2003. 112(1-2): p. 99-105.
    3. Dominguez, G., et al., Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol, 1999. 73(10): p. 8040-52.
    4. Gompels, U.A., et al., The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 1995. 209(1): p. 29-51.
    5. Ablashi, D.V., et al., Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates. Virology, 1991. 184(2): p. 545-52.
    6. Yamanishi, K., et al., Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet, 1988. 1(8594): p. 1065-7.
    7. Braun, D.K., G. Dominguez, and P.E. Pellett, Human herpesvirus 6. Clin Microbiol Rev, 1997. 10(3): p. 521-67.
    8. Lusso, P., et al., Human herpesvirus 6A accelerates AIDS progression in macaques. Proc Natl Acad Sci U S A, 2007. 104(12): p. 5067-72.
    9. Biberfeld, P., et al., Ultrastructural characterization of a new human B lymphotropic DNA virus (human herpesvirus 6) isolated from patients with lymphoproliferative disease. J Natl Cancer Inst, 1987. 79(5): p. 933-41.
    10. Gompels, U.A. and H.A. Macaulay, Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J Gen Virol, 1995. 76 ( Pt 2): p. 451-8.
    11. Thomson, B.J., S. Dewhurst, and D. Gray, Structure and heterogeneity of the asequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol, 1994. 68(5): p. 3007-14.
    12. Kempf, W., et al., CD68+ cells of monocyte/macrophage lineage in the environment of AIDS-associated and classic-sporadic Kaposi sarcoma are singly or doubly infected with human herpesviruses 7 and 6B. Proc Natl Acad Sci U S A, 1997. 94(14): p. 7600-5.
    13. Asada, H., et al., Human herpesvirus 6 infects dendritic cells and suppresses human immunodeficiency virus type 1 replication in coinfected cultures. J Virol, 1999. 73(5): p. 4019-28.
    14. Luppi, M., et al., Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J Virol, 1999. 73(1): p. 754-9.
    15. Lusso, P., et al., Infection of natural killer cells by human herpesvirus 6. Nature, 1993. 362(6419): p. 458-62.
    16. Chen, M., et al., Human herpesvirus 6 infects cervical epithelial cells and transactivates human papillomavirus gene expression. J Virol, 1994. 68(2): p. 1173-8.
    17. Luka, J., M. Okano, and G. Thiele, Isolation of human herpesvirus-6 from clinical specimens using human fibroblast cultures. J Clin Lab Anal, 1990. 4(6): p. 483-6.
    18. Takahashi, K., et al., Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J Virol, 1989. 63(7): p. 3161-3.
    19. Santoro, F., et al., CD46 is a cellular receptor for human herpesvirus 6. Cell, 1999. 99(7): p. 817-27.
    20. Clark, D.A., Human herpesvirus 6. Rev Med Virol, 2000. 10(3): p. 155-73.
    21. Gopal, M.R., et al., Detection by PCR of HHV-6 and EBV DNA in blood and oropharynx of healthy adults and HIV-seropositives. Lancet, 1990. 335(8705): p. 1598-9.
    22. Levy, J.A., et al., Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population. Lancet, 1990. 335(8697): p.1047-50.
    23. Kondo, K., et al., Latent human herpesvirus 6 infection of human monocytes/macrophages. J Gen Virol, 1991. 72 ( Pt 6): p. 1401-8.
    24. Thomson, B.J., S. Efstathiou, and R.W. Honess, Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature, 1991. 351(6321): p. 78-80.
    25. Thomson, B.J., et al., Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology, 1994. 204(1): p. 304-11.
    26. Araujo, J.C., et al., Human herpesvirus 6A ts suppresses both transformation by H-ras and transcription by the H-ras and human immunodeficiency virus type 1 promoters. J Virol, 1995. 69(8): p. 4933-40.
    27. Rotola, A., et al., U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc Natl Acad Sci U S A, 1998. 95(23): p. 13911-6.
    28. Rapp, J.C., et al., U94, the human herpesvirus 6 homolog of the parvovirus nonstructural gene, is highly conserved among isolates and is expressed at low mRNA levels as a spliced transcript. Virology, 2000. 268(2): p. 504-16.
    29. Kondo, K., et al., Identification of human herpesvirus 6 latency-associated transcripts. J Virol, 2002. 76(8): p. 4145-51.
    30. Daibata, M., et al., Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood, 1999. 94(5): p. 1545-9.
    31. Daibata, M., et al., Integration of human herpesvirus 6 in a Burkitt's lymphoma cell line. Br J Haematol, 1998. 102(5): p. 1307-13.
    32. Vossen, M.T., et al., Viral immune evasion: a masterpiece of evolution. Immunogenetics, 2002. 54(8): p. 527-42.
    33. Kikuta, H., et al., Interferon induction by human herpesvirus 6 in human mononuclear cells. J Infect Dis, 1990. 162(1): p. 35-8.
    34. Arena, A., et al., Altered cytokine production after human herpes virus type 6 infection. New Microbiol, 1999. 22(4): p. 293-300.
    35. Jaworska, J., et al., Inhibition of transcription of the beta interferon gene by the human herpesvirus 6 immediate-early 1 protein. J Virol, 2007. 81(11): p. 5737-48.
    36. Flamand, L., et al., Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J Virol, 1991. 65(9): p. 5105-10.
    37. Flamand, L., et al., Immunosuppressive effect of human herpesvirus 6 on T-cell functions: suppression of interleukin-2 synthesis and cell proliferation. Blood, 1995. 85(5): p. 1263-71.
    38. Mayne, M., et al., Gene expression profile of herpesvirus-infected T cells obtained using immunomicroarrays: induction of proinflammatory mechanisms. J Virol, 2001. 75(23): p. 11641-50.
    39. Li, C., J.M. Goodrich, and X. Yang, Interferon-gamma (IFN-gamma) regulates production of IL-10 and IL-12 in human herpesvirus-6 (HHV-6)-infected monocyte/macrophage lineage. Clin Exp Immunol, 1997. 109(3): p. 421-5.
    40. Smith, A., et al., Selective suppression of IL-12 production by human herpesvirus 6. Blood, 2003. 102(8): p. 2877-84.
    41. Hirata, Y., K. Kondo, and K. Yamanishi, Human herpesvirus 6 downregulates major histocompatibility complex class I in dendritic cells. J Med Virol, 2001. 65(3): p. 576-83.
    42. Kakimoto, M., et al., Phenotypic and functional alterations of dendritic cells induced by human herpesvirus 6 infection. J Virol, 2002. 76(20): p. 10338-45.
    43. Hasegawa, A., et al., Transcriptional down-regulation of CXC chemokine receptor 4 induced by impaired association of transcription regulator YY1 with c-Myc in human herpesvirus 6-infected cells. J Immunol, 2001. 166(2): p. 1125-31.
    44. De Bolle, L., L. Naesens, and E. De Clercq, Update on human herpesvirus 6biology, clinical features, and therapy. Clin Microbiol Rev, 2005. 18(1): p. 217-45.
    45. Dockrell, D.H., Human herpesvirus 6: molecular biology and clinical features. J Med Microbiol, 2003. 52(Pt 1): p. 5-18.
    46. Boeckh, M. and W.G. Nichols, Immunosuppressive effects of beta-herpesviruses. Herpes, 2003. 10(1): p. 12-6.
    47. Ichimi, R., T. Jin-no, and M. Ito, Induction of apoptosis in cord blood lymphocytes by HHV-6. J Med Virol, 1999. 58(1): p. 63-8.
    48. Inoue, Y., M. Yasukawa, and S. Fujita, Induction of T-cell apoptosis by human herpesvirus 6. J Virol, 1997. 71(5): p. 3751-9.
    49. Yasukawa, M., et al., Apoptosis of CD4+ T lymphocytes in human herpesvirus-6 infection. J Gen Virol, 1998. 79 ( Pt 1): p. 143-7.
    50. Kirn, E., et al., In vitro cytobiological effects of human herpesviruses 6 and 7: immunohistological monitoring of apoptosis, differentiation and cell proliferation. Anticancer Res, 1997. 17(6D): p. 4623-32.
    51. De Bolle, L., et al., Human herpesvirus 6 infection arrests cord blood mononuclear cells in G(2) phase of the cell cycle. FEBS Lett, 2004. 560(1-3): p. 25-9.
    52. Oster, B., B. Bundgaard, and P. Hollsberg, Human herpesvirus 6B induces cell cycle arrest concomitant with p53 phosphorylation and accumulation in T cells. J Virol, 2005. 79(3): p. 1961-5.
    53. Gupta, S., S. Agrawal, and S. Gollapudi, Differential effect of human herpesvirus 6A on cell division and apoptosis among naive and central and effector memory CD4+ and CD8+ T-cell subsets. J Virol, 2009. 83(11): p. 5442-50.
    54. Di Luca, D., et al., The replication of viral and cellular DNA in human herpesvirus 6-infected cells. Virology, 1990. 175(1): p. 199-210.
    55. Black, J.B., C. Lopez, and P.E. Pellett, Induction of host cell protein synthesis by human herpesvirus 6. Virus Res, 1992. 22(1): p. 13-23.
    56. Oster, B., et al., Human herpesvirus 6B inhibits cell proliferation by ap53-independent pathway. J Clin Virol, 2006. 37 Suppl 1: p. S63-8.
    57. Mlechkovich, G. and N. Frenkel, Human herpesvirus 6A (HHV-6A) and HHV-6B alter E2F1/Rb pathways and E2F1 localization and cause cell cycle arrest in infected T cells. J Virol, 2007. 81(24): p. 13499-508.
    58. Dietrich, J., et al., Infection with an endemic human herpesvirus disrupts critical glial precursor cell properties. J Neurosci, 2004. 24(20): p. 4875-83.
    59. Flamand, L. and J. Menezes, Cyclic AMP-responsive element-dependent activation of Epstein-Barr virus zebra promoter by human herpesvirus 6. J Virol, 1996. 70(3): p. 1784-91.
    60. Flamand, L., et al., Activation of the Epstein-Barr virus replicative cycle by human herpesvirus 6. J Virol, 1993. 67(11): p. 6768-77.
    61. Chan, P.K., et al., Association of human beta-herpesviruses with the development of cervical cancer: bystanders or cofactors. J Clin Pathol, 2001. 54(1): p. 48-53.
    62. Chen, M., et al., Detection of human herpesvirus 6 and human papillomavirus 16 in cervical carcinoma. Am J Pathol, 1994. 145(6): p. 1509-16.
    63. Lusso, P., et al., Productive dual infection of human CD4+ T lymphocytes by HIV-1 and HHV-6. Nature, 1989. 337(6205): p. 370-3.
    64. Kashanchi, F., et al., Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene, 1997. 14(3): p. 359-67.
    1. van den Heuvel, S., Cell-cycle regulation. WormBook, 2005: p. 1-16.
    2. Roberts, J.M., et al., Cyclins, Cdks, and cyclin kinase inhibitors. Cold Spring Harb Symp Quant Biol, 1994. 59: p. 31-8.
    3. Bloom, J. and F.R. Cross, Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol, 2007. 8(2): p. 149-60.
    4. John, P.C., M. Mews, and R. Moore, Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma, 2001. 216(3-4): p. 119-42.
    5. Doree, M. and S. Galas, The cyclin-dependent protein kinases and the control of cell division. Faseb J, 1994. 8(14): p. 1114-21.
    6. Viallard, J.F., et al., [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]. Cancer Radiother, 2001. 5(2): p. 109-29.
    7. Mandal, M., et al., Interferon-induces expression of cyclin-dependent kinase-inhibitors p21WAF1 and p27Kip1 that prevent activation of cyclin-dependent kinase by CDK-activating kinase (CAK). Oncogene, 1998. 16(2): p. 217-25.
    8. De Clercq, A. and D. Inze, Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol, 2006. 41(5): p. 293-313.
    9. Gitig, D.M. and A. Koff, Cdk pathway: cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Mol Biotechnol, 2001. 19(2): p. 179-88.
    10. Li, Y., et al., Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene, 1994. 9(8): p. 2261-8.
    11. Fukasawa, K., P53, cyclin-dependent kinase and abnormal amplification of centrosomes. Biochim Biophys Acta, 2008. 1786(1): p. 15-23.
    12. Carlson, C.A. and S.P. Ethier, Lack of RB protein correlates with increased sensitivity to UV-radiation-induced apoptosis in human breast cancer cells. Radiat Res, 2000. 154(5): p. 590-9.
    13. Russell, J.L., et al., ARF differentially modulates apoptosis induced by E2F1 and Myc. Mol Cell Biol, 2002. 22(5): p. 1360-8.
    14. Davy, C. and J. Doorbar, G2/M cell cycle arrest in the life cycle of viruses. Virology, 2007. 368(2): p. 219-26.
    15. O'Shea, C.C., Viruses - seeking and destroying the tumor program. Oncogene, 2005. 24(52): p. 7640-55.
    16. Reed, S.I., et al., G1 control in mammalian cells. J Cell Sci Suppl, 1994. 18: p. 69-73.
    17. DeGregori, J. and D.G. Johnson, Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr Mol Med, 2006. 6(7): p. 739-48.
    18. Giacinti, C. and A. Giordano, RB and cell cycle progression. Oncogene, 2006. 25(38): p. 5220-7.
    19. Castillo, J.P. and T.F. Kowalik, Human cytomegalovirus immediate early proteins and cell growth control. Gene, 2002. 290(1-2): p. 19-34.
    20. Godden-Kent, D., et al., The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol, 1997. 71(6): p. 4193-8.
    21. Swanton, C., et al., Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature, 1997. 390(6656): p. 184-7.
    22. Iwanaga, R., et al., Activation of the cyclin D2 and cdk6 genes through NF-kappaB is critical for cell-cycle progression induced by HTLV-I Tax. Oncogene, 2008.
    23. Klein, A., et al., HBX causes cyclin D1 overexpression and development of breast cancer in transgenic animals that are heterozygous for p53. Oncogene, 2003. 22(19): p. 2910-9.
    24. Sinclair, A.J., et al., EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. Embo J, 1994. 13(14): p. 3321-8.
    25. Nguyen, D.X., T.F. Westbrook, and D.J. McCance, Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J Virol, 2002. 76(2): p. 619-32.
    26. Choi, B.H., et al., Hepatitis B viral X protein overcomes inhibition of E2F1 activity by pRb on the human Rb gene promoter. DNA Cell Biol, 2001. 20(2): p. 75-80.
    27. Wise-Draper, T.M. and S.I. Wells, Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci, 2008. 13: p. 1003-17.
    28. White, M.K. and K. Khalili, Interaction of retinoblastoma protein family members with large T-antigen of primate polyomaviruses. Oncogene, 2006. 25(38): p. 5286-93.
    29. Radkov, S.A., P. Kellam, and C. Boshoff, The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med, 2000. 6(10): p. 1121-7.
    30. Knight, J.S., N. Sharma, and E.S. Robertson, Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18562-6.
    31. Ohtani, K., et al., Cell type-specific E2F activation and cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. J Biol Chem, 2000. 275(15): p. 11154-63.
    32. Helt, A.M. and D.A. Galloway, Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis, 2003.24(2): p. 159-69.
    33. Fortunato, E.A., et al., Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J Virol, 1997. 71(11): p. 8176-85.
    34. Scheffner, M., et al., The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 1993. 75(3): p. 495-505.
    35. Yew, P.R. and A.J. Berk, Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature, 1992. 357(6373): p. 82-5.
    36. Hsu, C.H., et al., HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. Embo J, 2004. 23(11): p. 2269-80.
    37. Lee, S.G. and H.M. Rho, Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene, 2000. 19(3): p. 468-71.
    38. Coleman, T.R. and W.G. Dunphy, Cdc2 regulatory factors. Curr Opin Cell Biol, 1994. 6(6): p. 877-82.
    39. Stark, G.R. and W.R. Taylor, Control of the G2/M transition. Mol Biotechnol, 2006. 32(3): p. 227-48.
    40. Hyun, J., et al., Control of G2/M transition by Drosophila Fos. Mol Cell Biol, 2006. 26(22): p. 8293-302.
    41. Rhind, N., B. Furnari, and P. Russell, Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev, 1997. 11(4): p. 504-11.
    42. Brown, E.J. and D. Baltimore, Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev, 2003. 17(5): p. 615-28.
    43. Furnari, B., N. Rhind, and P. Russell, Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science, 1997. 277(5331): p. 1495-7.
    44. Peng, C.Y., et al., Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 1997.277(5331): p. 1501-5.
    45. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): p. 1803-15.
    46. Hirao, A., et al., DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science, 2000. 287(5459): p. 1824-7.
    47. Fournier, N., et al., Expression of human papillomavirus 16 E2 protein in Schizosaccharomyces pombe delays the initiation of mitosis. Oncogene, 1999. 18(27): p. 4015-21.
    48. Op De Beeck, A., et al., NS1- and minute virus of mice-induced cell cycle arrest: involvement of p53 and p21(cip1). J Virol, 2001. 75(22): p. 11071-8.
    49. Planz, O., et al., Borna disease virus nucleoprotein interacts with the CDC2-cyclin B1 complex. J Virol, 2003. 77(20): p. 11186-92.
    50. Poggioli, G.J., T.S. Dermody, and K.L. Tyler, Reovirus-induced sigma1s-dependent G(2)/M phase cell cycle arrest is associated with inhibition of p34(cdc2). J Virol, 2001. 75(16): p. 7429-34.
    51. Darbinyan, A., et al., Evidence for dysregulation of cell cycle by human polyomavirus, JCV, late auxiliary protein. Oncogene, 2002. 21(36): p. 5574-81.
    52. Knight, G.L., A.S. Turnell, and S. Roberts, Role for Wee1 in inhibition of G2-to-M transition through the cooperation of distinct human papillomavirus type 1 E4 proteins. J Virol, 2006. 80(15): p. 7416-26.
    53. Morita, E., et al., Human parvovirus B19 induces cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. J Virol, 2001. 75(16): p. 7555-63.
    54. Poole, B.D., et al., Apoptosis of liver-derived cells induced by parvovirus B19 nonstructural protein. J Virol, 2006. 80(8): p. 4114-21.
    55. Davy, C.E., et al., Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol, 2005. 79(7): p. 3998-4011.
    56. Kim, S., et al., HBV X protein targets hBubR1, which induces dysregulation of the mitotic checkpoint. Oncogene, 2008. 27(24): p. 3457-64.
    57. Cotsiki, M., et al., Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci U S A, 2004. 101(4): p. 947-52.
    58. Everett, R.D., et al., Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. Embo J, 1999. 18(6): p. 1526-38.
    59. Lomonte, P., K.F. Sullivan, and R.D. Everett, Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. J Biol Chem, 2001. 276(8): p. 5829-35.
    60. Tran, K., et al., Accumulation of substrates of the anaphase-promoting complex (APC) during human cytomegalovirus infection is associated with the phosphorylation of Cdh1 and the dissociation and relocalization of APC subunits. J Virol, 2008. 82(1): p. 529-37.
    61. Liu, B., et al., HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. Proc Natl Acad Sci U S A, 2005. 102(1): p. 63-8.
    62. He, J., et al., Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol, 1995. 69(11): p. 6705-11.
    63. Re, F., et al., Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol, 1995. 69(11): p. 6859-64.
    64. Jowett, J.B., et al., The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol, 1995. 69(10): p. 6304-13.
    65. Lai, M., et al., Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo. J Virol, 2005. 79(24): p. 15443-51.
    66. Terada, Y. and Y. Yasuda, Human immunodeficiency virus type 1 Vpr inducesG2 checkpoint activation by interacting with the splicing factor SAP145. Mol Cell Biol, 2006. 26(21): p. 8149-58.
    67. Daniel, R., et al., Caffeine inhibits human immunodeficiency virus type 1 transduction of nondividing cells. J Virol, 2005. 79(4): p. 2058-65.
    68. Goh, W.C., N. Manel, and M. Emerman, The human immunodeficiency virus Vpr protein binds Cdc25C: implications for G2 arrest. Virology, 2004. 318(1): p. 337-49.
    69. Yuan, H., et al., Increased levels of Wee-1 kinase in G(2) are necessary for Vpr- and gamma irradiation-induced G(2) arrest. J Virol, 2004. 78(15): p. 8183-90.
    70. Kamata, M., et al., Human immunodeficiency virus type 1 Vpr binds to the N lobe of the Wee1 kinase domain and enhances kinase activity for CDC2. J Virol, 2008. 82(12): p. 5672-82.
    71. Elder, R.T., et al., HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25. Virology, 2001. 287(2): p. 359-70.
    72. Chowdhury, I.H., et al., HIV-1 Vpr activates cell cycle inhibitor p21/Waf1/Cip1: a potential mechanism of G2/M cell cycle arrest. Virology, 2003. 305(2): p. 371-7.
    73. Yoshizuka, N., et al., Human immunodeficiency virus type 1 Vpr-dependent cell cycle arrest through a mitogen-activated protein kinase signal transduction pathway. J Virol, 2005. 79(17): p. 11366-81.
    74. DeHart, J.L., et al., Human immunodeficiency virus type 1 Vif induces cell cycle delay via recruitment of the same E3 ubiquitin ligase complex that targets APOBEC3 proteins for degradation. J Virol, 2008. 82(18): p. 9265-72.
    75. Schrofelbauer, B., Y. Hakata, and N.R. Landau, HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1. Proc Natl Acad Sci U S A, 2007. 104(10): p. 4130-5.
    76. Lau, A., et al., Suppression of HIV-1 infection by a small molecule inhibitor ofthe ATM kinase. Nat Cell Biol, 2005. 7(5): p. 493-500.
    77. Nunnari, G., et al., Inhibition of HIV-1 replication by caffeine and caffeine-related methylxanthines. Virology, 2005. 335(2): p. 177-84.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.