长江口潮滩湿地生物硅分布与富集机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Si是海洋初级生产力主要贡献者——硅藻生长所必须的营养元素。生物硅(BSi)主要由海洋真光层硅质浮游生物(硅藻等)产生,沉积物中BSi的积累能够反映上层水体生产力的时空变化,它的赋存与分解对滨岸地区富营养化问题的发生影响巨大。本文以长江口滨岸潮滩为典型对象,研究沉积物中BSi的时空分布规律,分析了沉积过程中BSi的转化和积累效应,并结合盐沼植物分析植物对BSi的富集作用,试图阐述BSi在长江口潮滩湿地的分布及富集机制。取得了以下研究成果:
     长江口滨岸潮滩表层沉积物中BSi的含量具有明显的时空变化差异:边滩表层沉积物二月份BSi的含量在0.46%~1.61%之间,总体上具有自陆向海逐渐增加的趋势,八月份BSi的含量在0.39%~1.36%之间,其沿程分布模式与二月份相反;沙洲沉积物中BSi含量的变化范围为0.47%~1.02%,向口门方向具有逐渐增加的变化趋势,且不同沙洲高、中、低潮滩BSi含量变化存在显著性差异。沉积物理化性质与BSi之间的相关分析揭示,BSi含量与沉积物机械组成、有机质含量有密切关系,在细颗粒且富含有机质的沉积物中易于BSi的累积和赋存。此外,底栖硅藻可能是潮滩表层沉积物中BSi的重要来源。
     利用弱酸弱碱分级提取法测定柱状沉积物BSi含量发现:来自氧化外壳的Si-HCl含量明显低于内部的Si-Alk,与以前的研究结果相比,弱酸前处理显著提高BSi的提取量。粒径效应分析显示:不同粒径下BSi的垂向变化趋势也不一样,在125-250μm和63-125μm粒径下沉积物中BSi都随深度呈现逐渐增加的变化趋势,而在<63μm粒径下则是逐渐降低,并且Si-HCl和Si-Alk平均含量随粒径的减小逐渐降低;受植物生长影响高潮滩和中潮滩30cm柱状沉积物中BSi含量都显著高于低潮滩,最高值都是在植物生长最旺盛的八月份达到,并且在不同的月份下Si-HCl和Si-Alk都有不同的变化规律。分析显示,无论是Si-HCl还是Si-Alk都与有机碳、有机氮含量存在非常明显的线性相关关系,暗示了BSi在沉积埋藏过程中与有机质之间存在密切关系。
     盐沼植物芦苇和海三棱蔗草生长季过程中对BSi表现为强富集作用,尤其是芦苇叶BSi含量在生长过程中几乎线性累积,生长季末期高达4.86%。互花米草各组织内BSi含量都很低,生长过程中未发现对BSi的累积效应,对芦苇和海三棱蔗草在Si素吸收上并不存在竞争。芦苇在生长季内BSi容量最高,其次为互花米草,海三棱蔗草最低。通过估算得出崇明东滩盐沼植物地上部分BSi总储量高达406.18t,仅芦苇就占了53%,对长江口潮滩湿地BSi储量起着巨大贡献。植株体内BSi含量与根际沉积物BSi含量和C/N值之间都存在显著的正相关关系,证明了沉积物影响植物对BSi的吸收累积,而植株体内BSi含量与C/N值存在的显著正相关关系,原因可能在于植株体内高的C/N值可能加速植株体内BSi的富集作用。
Silica is an essential element for diatom growth, which is the principal contributor of primary productivity. Biogenic silica is produced in the euphotic zone of the ocean by siliceous plankton such as diatoms, whose accumulation in the sediment can reflect the spatial and temporal distribution of productivity, in addition, the preservation and dissolution of biogenic silica played an important role in influencing the occurrence of eutrophication problems in the coastal zone. Takeing the Yangtze estuarine and coastal ecosystem as an example, this article discussed the temporal and spatial distribution of biogenic silica in the sediments, and the transfer and accumulation effects of biogenic silica had also been analyzed. Meanwhile, the accumulation mechanism of salt marsh vegetation had also been discussed.
     The main results are as follows:
     The significant seasonal variations of biogenic silica contents in surface sediments were observed along the coastal zone of the Yangtze Estuary: The biogenic silica contents in the nearshore sediments varied from 0.46% to 1.61% and gradually increased from land to sea in February, while in August they were in the range of 0.39%~1.36% and had the opposite spatial distribution pattern to February; Biogenic silica contents in surface sediments from the shoals varied from 0.47% to 1.02%, and had the similar spatial distribution pattern with the nearshore sediment in February, besides, the significant differences in biogenic silica contents were observed in high, middle and low intertidal flats of different shoals. The relation analysis of the sediment physico-chemical property and biogenic silica announced that biogenic silica contents had close correlation with sediment types and organic matter. In general, biogenic silica was apt to accumulate in the fine fractions of sediments rich in organic matter. Additionally, it was found that benthic diatoms might be an important source of biogenic silica in surface sediments.
     The biogenic silica buried in the sediment cores were analyzed by a mild acid-mild alkaline sequential extraction method. Results showed that: biogenic silica extracted by mild acid (Si-HCl) was much lower than that extracted by mild alkaline (Si-Alk). Compared to previous study, mild acid pretreatment can markedly increase the biogenic silica content extracted from the core sediment. Sediments with different particle size had different vertical distributions. For example, the Si-HCl and Si-Alk contents in the sediments 125-250μm and 63-125μm gradually decreased with the depth increased, while the sediment with particle size <63μm had the opposite spatial distribution pattern, furthermore, their mean cotents reduced with the particle size decreasing. Under the influence of plant growth, the biogenic silica contents in the 30cm sediments of the high and middle intertidal flats were much higher than that of the low intertidal flat, and the highest contents were all found in August, in which the most biomass obtained. Meanwhile, different variations were found in different month. The relation analysis announced that both of Si-HCl and Si-Alk contents correlated closely with organic carbon and organic nitrogen, suggesting the close relationship between biogenic silica and organic matter during sedimentation process.
     Strong enrichment of biogenic silica were found in Phragmites astralis and Scirpus mariqueter during their growing seasons, especially for P. astralis reeds in which a linear cumulation was found, and the biogenic silica content reached 4.86% at The end of growing season. However, biogenic silica content in Spartina alterniflora was much lower and no cumulation was found during the growing seasons. As thus, compared to Phragmites astralis and Scirpus mariqueter, S. alterniflora had no competitive ability in silica uptake. In addition, biogenic silica capability of the three plants were also analyzed, result suggested that P. astralis had the highest capability and S. alterniflora takes the second place while S. mariqueter had the lowest capability. The biogenic silica storage of salt marsh plants in Chongming Dongtan was estimated to 406.18t, of which P. astralis accounted for 53%, making magnitude contribution for biogenic silica storage in the intertidal wetland of the Yangtze Estuary. The relation analysis of the biogenic silica and organic nitrogen contents in rhizosphere sediment with biogenic silica contents in plant suggested that sediment effected biogenic silica enrichment in plant, and furthermore, the significant correlation with C/N ratio in plant showed that high C/N ratio may accelerate biogenic silica accumulation in plant.
引文
Acquaye D, Tinsley J. Soluble silica in soils. Experimental Pedology Butterworths London, 1964.
    Admiraal W, Breugem P, Jacobs DM et al. Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower Rhine during diatom blooms [J]. Biogeochemistry, 1990,9:175-185.
    Alexandre A, Meunier JD, Colin F, et al. Plant impact on the biochemical cycle of silica and related weathering processed [J]. Geochemica et cosmochimica Acta, 1997,61:677-682.
    Allen JT, Brown L, Sanders R, et al. Diatom carbon export enhanced by silica upwelling in the northeast Atlantic [J].Nature, 2005,437:728-732.
    Archer D, Emerson S, Powell T, et al. Numerical hindcasting of sea surface pCO_2 at weathership Station Papa [J]. Progressin Oceanography, 1993, 32(1-4):319-351.
    Arrouays D, Pelissier P. Modeling carbon storage profiles intemperate forest humic loamy soils of France [J]. Soil Sci, 1994,157:185-192.
    Bareille G, Labracherie M, Labeyrie L, Pichon JJ, Turon J. Biogenic silica accumulation rate during the Holocene in the southeastern Indian Ocean [J]. Mar. Chem. 1991,35:537-551.
    Basile-Doelsch I, Meunier JD, Parron C.Another continental pool in the terrestrial Silica cycle[J]. Nature, 2005,433:399-402.
    Bernardez P, Frances G, Prego R. Benthic-pelagic coupling and postdepositional processes as revealed by the distribution of opal in sediments:The case of the Riade Vigo (NW Iberian Peninsula) [J].Estuarine Coastal and Shelf Science, 2006,68:271-281.
    Biermans V, Baert L. Selective extraction of the amorphous Al, Fe and Si oxides using an alkaline Tiron solution [J]. Clay Minerals, 1977,12:127-135.
    
    Boynton WR, Kemp WM, Keefe CW. A comparative analysis of nutrients and other factors influencing estuarine phytoplank ton production In: Kennedy Victor S, ed. Estuarine Comparisons. New York: academic Press, Inc, 1982. 69-90
    Brewster NA. The determination of biogenic opal in high latitude deep-sea sediments.In: Iijima A., Hein J. R., Siever, et al. Siliceous deposits in the Pacific region: developments in sediment logy [J]. Elsevier, New York, 1983,17-331.
    Buesseler KO. The decoupling of production and particulate export in the surface ocean[J].Glob. Biogeochem.Cycles, 1998,12:297-310.
    Calvert SE. Sedimentary geochemistry of silicon.In Silicon Geochemistry and Biogeo- chemistry (ed. S. R. Aston)[J]. Acad. Press. London, 1983:14-186.
    Cappellen PV, Qiu L. Biogenic silica dissolution in sediments of the Southern Ocean I.Solubility [J]. Deep-Sea Research II, 1997, 44:1109-1128.
    Chester R, Elderfield H. The infrared determination of opal in siliceous deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1968, 32:1128-1140.
    Conley DJ.An interlaboratory comparison for the measurement of biogenic silica in sediments. Marine Chemistry, 1998, 63:39-48.
    De La Rocha CL, Brezinski MA, DeNiro MJ. A first look at the distribution of the stable isotopes of silicon in natural waters.Geochimica et Cosmochimica Acta, 2000,64:2467-2477.
    De Lima Rodrigues L, Daroub SH, Rice WR, Snyder GH. Comparison of three soil test methods for estimating plantavailable silicon [J]. Communications in Soil Science and Plant Analysis, 2003, 34:2059-2071.
    DeMaster DJ. The supply and accumulation of silica in the marine environment [J]. Geochimica et Cosmochimica Acta, 1981,45:1715-1732.
    DeMaster D J, Ragueneau O, Nittouer C A. Preservation and accumulation rates for biogenic silica and organic C, N and P in high-latitude sediments: The Ross Sea. J Geophys Res, 1996,101 (8):18501-18518.
    DeMaster DJ. The accumulation and cycling of biogenic silica in the Southern Ocean: Revisiting the marine silica budget [J]. Deep-Sea Res II, 2002,49:3155-3167.
    Dixit S, Van Cappellen P. Surface chemistry and reactivity of biogenic silica [J]. Geochim. Cosmochim. Acta, 2002, 66:2559-2568.
    
    Dixit S, Van Cappellen P, Van Bennekom AJ. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments [J]. Marine Chemistry, 2001, 73:333-352.
    Eggimann DW, Manhiem FT, Betzer PR. Dissolution and analysis of amorphous silica in marine sediments [J]. J-Sediment Petrol, 1980, 50:215-225.
    Ehrenhauss S, Witte U, Janssen F, et al. Decomposition of diatom and nutrient dynamics in permeable North Sea sediments [J]. Continental Shelf Research, 2004,24:721-737
    Eisma D, Van Der Gaast SJ. Determination of opal in marine sediments by X-ray diffraction [J]. Netherlands Journal of Sea Research, 1971, 5:382-389.
    Ellis DB, Moore TC. Calcium carbonate,opal and quartz in Holocene pelagic sediments and the calcite compensation level in the South Atlantic Ocean [J]. Journal of Marine Research, 1973, 31:210-227.
    Epstein E. The anomaly of silicon in plant biology [J]. Pro-ceedings of the National Academy of Sciences, 1994, 91:11-17.
    Eric Struyf, Stefan VD, Britta G, Jack JM, et al. Biogenic silica in tidal freshwater mash sediments and vegetation (Schelde estuary,Belgium) [J]. Marine ecology progress series, 2005,303:51-60.
    Foster M D. The determination of free silica and free alumina in montmorillonites [J]. Geochimica et Cosmochimica Acta, 1953, 3:143-154.
    Fox RL, Silva JA, Younge OR, Pluncknett DL, Sherman GD. Soil and plant silicon and silicate response by sugarcane. Soil Science Society of America Proceedings [J], 1967,31:775-779.
    Friedl G, Dinkel C, Wehrli B. Benthic fluxes of nutrients in the Northwestern Black Sea[J]. Marine Chemistry, 1998,62:77-88.
    Giblin AE, Hopkinson CS, Tucker J. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts [J]. Estuaries, 1997,20:346-364.
    Jacques Roy, Bernard Saugier, Harold A. Mooney.MS/cm global productidty. San Diego, California: Academic Press, 2001.
    Kang S. Nitrogen removal from a riverine wetland: a field survey and simulation study of Phragmites japonica [J]. Ecological Engineering, 2002,18(4): 467-475.
    Koning E, Brummer GJ, Van Raaphorst W, Van Bennekom AJ, Helder W, Van Iperen J. Settling dissolution and burial of biogenic silica in the sediments off Somalia-northwestern Indian Ocean [J].Deep-Sea Res, 1997,44:1341-1360.
    Lee JS, Park JH, Han KS. Effects of potassium silicate on growth, photosynthesis and inorganicion absorption in cucumber hydroponics [J]. Journal of the Korean Society of Horticultural Science, 2000, 41(5):480-484.
    Leinen M. A normative calculation technique for determining opal in deep-sea sediments [J]. Geochimica et Cosmochimica Acta, 1977,41(5):671-676.
    
    Li ZJ, Lin P, He JY, et al. The organic pool and bioloical cycle of silicon in moso bamboo community inWuyihan Biosphere Reserve.Journal of Zhejiang University (Science B), 2006, 7: 849-857.
    Lisitzin AP. Sedimentation in the world ocean[J]. Soc.Eco.Min.Paleo. 1972, 17-218 (special issue).
    Liu SM,Zhang J,Chen HT,Wu Y,Xiong H,Zhang ZF,.Nutrients in the Changjiang and its tributaries[J].Biogeochemistry,2003,62:1-18.
    Lucas Y,Luizao FJ,ChauvelA,et al.The relation be-tween biological activity of the rain forest andmineral corn-position[J].Science,1993,260:521-523.
    Ma JF,Miyake Y,Takahashi E.Silica as a beneficial element for crop plants.In:Datnoff LE,Snyder GH,KomdOrfer GH(eds)Sillica in agriculture.Studies in plant science,Elsevier,Amsterdam,2001,8:17-39.
    Ma JF,Takahashi I.Soil Fertilizer and PlantSilicon Research in Japan[M],Elsevier,2002.
    Maestrini SY,Breret M,Berland B R,et al.Nutrients limiting the algal growth potential(AGP)in the Po River Plume and an adjacent area,Northweast Adriatic Sea:Enrichment bioassays with the test algae.Nitzschia closterium and Thalassiosira Pseudonana[J].Estuaries,1997,20(2):416-429.
    Marschner H.高等植物的矿质营养[M].李春俭,王震宇,张福锁,等译.北京:中国农业大学出版社,2001.289-306
    Martin JH,Fitzwater SE.Iron deficiency limits phytoplankton growth in the northeast Pacific subartic[J].Nature,1988,331(28):341-343.
    Meunier JD,Colin F,Alarcon C.Biogenic silica storage in soils.Geology,1999,27:835-838.
    Meyers PA.Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter[J].Chemical Geology,1994,144:289-302.
    Michalopoulos P,Aller CR.Early diagenesis of biogenic silica in the Amazon delta:alteration,authigenic clay formation and storage[J].Geochimica et Cosmochimica Acta,2004,68(5):1061-1085.
    Mitseh WJ.Wetlands[M].New York:Van Nostmnd Reinhold Company lnc,1986:89-125.
    Mortlock RA,Froelich PN.A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J].Deep-Sea Research,1989,36(9):1415-1426.
    Mortlock RA,Charles CD,Froelich PN,Zibello MA,Saltzmann J,Hays JD,Burckle LH.Evidence for lower productivity in the Antarctic Ocean during the last glaciation[J].Nature,London,1991,351:220-222.
    Moulton KL,West J,Berner RA.Solute flux andmineral mass balance approaches to the quantification of plant effects on silicate weathering[J].American Journal of Science, 2000, 300: 539-570.
    Nelson DM, Treguer P, et al. Production and dissolution of biodenic silica in the ocean:revised global estimates, comparison with regional data and relationship tobiogenic sedimentation [J].Global Biogeochemistry Cycle, 1995, 9:359-372.
    Norris AR, Hackney CT. Silica content of a mesohaline tidalmarsh in North Carolina [J].Estuarine, Coastaland Shelf Science, 1999,49: 597-605.
    Parry D W,Hodson M J, Sangster A G.Some recent advances in studies of silicon in higher plants [J]. Phil.Trans.R.Soc.Lond.B.Biol.Sci., 1984, 304:537-549.
    Pokras E. Preservation of fossil diatoms in Atlantic sediment by supply rate [J]. Deep-Sea Research, 1986,33:893-902.
    Queguiner B. Brzezinski M. A. Biogenic silica production rates and particulate organic matter distribution in the Atlantic sector of the Southern Ocean during austral spring 1992 [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002,49(9-10):765-1786.
    Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy [J]. Global and Planetary Change, 2000,26(4):317-65.
    Raven JA. Cycling silica -The role of accumulation in plants [J].New Phytol, 2003, 158:179-207.
    Redfield AC, Ketchum BH, Richards FA. The composition of seawater. In: Hill M. N. (Ed.). Now York, 1963,pp. 26-77.
    
    Rickert D, Schluter M, Wallmann K.Dissolution kinetics of biogenic silica from the water column to the sediments [J]. Geochim.Cosmochim. Acta, 2002, 66:439-455.
    Romero O, Hebbeln D. Biogenic silica and diatom thanatocoenosis in surface sediments below the Peru-Chile Current: ontrolling mechanisms and relationship with productivity of surface waters [J]. Marine Micropaleontology, 2003, 48:71-90.
    Saccone L, Conley DJ, Sauer D. Methodologies for amorphous silica analysis [J]. Journal of Geochemical Exploration, 2006, 88:235-238.
    Sauer D, Burghardt W. Chemical processes in soils on artificial materials: silicate dissolution, occurrence of amorphous silica and zeolites [J]. Proceedings of the First International Conference on Soils of Urban, Industrial, Traffic and Mining Areas, Essen, 2000,339-346.
    Schelske CL, Conley DJ, Stoermer EF, et al. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes [J]. Hydrobiologia., 1986,143:79-86.
    Simmonsson M, Berggren D, Gustafson JP. Solubility of aluminium and silica in spodic horizons as affected by drying and freezing [J]. Soil Science Society of America Journal, 1999, 63:1116-1123.
    Soetaert K, Hoffmann M, et al. Modeling growth and carbon allocation in two reed beds (Phragmites astralis) in the Scheldt [J]. Acquat bot., 2004, 79:211-234.
    Stein R. Accumulation of Organic Carbon in Marine Sediments [J]. Springer-Verlag, Berlin, 1991,217.
    Steven M. Colman, John A. Peck, Josephine Hatton, et al.Biogenic silica records from the BDP93 drill site and adjacent areas of the Selenga Delta, Lake Baikal, Siberia [J]. Journal of Paleolimnology, 1999, 21:9-17.
    Stoermer E F, Kociolek J P, Schelske CL, et al. Siliceous microfossol succession in the recent history of Lake Superior.Proc.Acad.nat.Sci.Philad, 1985,137:106-118.
    Takahashi E, Tanaka H, Mayake. Distribution of silicon accumulating plants in the plant kingdom [J].J.Soil Sci.Plant Nutr., 1981, 52:511-515.
    Treguer P, Nelson DM, Van Bennekom AJ, DeMaster D J, Leynaert A, Queguiner B.The silica balance in the world ocean: A reestimate [J]. Science, 1995, 268: 375-379.
    Van Bennekom AJ, Salomons W. Pathways of nutrients and organic matter from land to ocean through rivers.In: Martine JM, Burton JD, Eisma D ed. River inputs to ocean systems [J]. UNEP/UNESCO, Rome, 1981:33-51.
    Van Bennekom AJ, Berger GW, Van Der Gaast SJ, De Vries RTP. Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector) [J]. Paleoceanogr. Paleoclimatol. Paleoecol., 1988, 67:19-30.
    Van Cappellen P, Qiu L.Biogenic silica dissolution in sediments of the Southern Ocean.I. Solubility.Deep-Sea Research II, 1997,44:1109-1128.
    Wahby SD, Bishara NF. The effect of the River Nile on Mediterranean water, before and after the construction of the High Dam at Aswan.In: Matin J M, Burton J D, Eisma D, eds. Proceedings of a SCOR workshop on river inputs to ocean system.26-30 March 1979, Rome, Italy [J]. UNESCO, Paris: 1980:311-318.
    Weijden AJ, Weijden CH. Silica fluxes and opal dissolution rates in the northern Arabian Sea. Deep-Sea Research I, 2002,49:157-17..
    Xiao Jule,Yoshio Inouchi,Hisao Kumai,et al.Biogenic silica record in lake Biwa of central Japan over the past 145 000 years[J].Quatern Res,1997,47:277-283
    Yoshida S,Ohnishi Y,Kitagishi K.Histohemistry of siliconin the rice plant[J].Soil Sic.Plant Nutr.,1962,8(1):15-21.
    Yang SL.The role of Scirpus Marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary[J].Estuarine,Coastal and Shelf Science,1998,47:227-233.
    鲍志娟,盖平.吉林省西部地区芦苇地上部生物量季节动态的研究[J].吉林农业大学学报,2002,24(5):31-34.
    陈中义,李博,陈家宽.互花米草与海三棱蔗草的生长特征和相对竞争能力海三棱蔗草种群的密度与生物量动态.生物多样性,2005,13(2):130-136.
    陈小华,李九发,万新宁.长江河口水下沙洲类型及典型水下沙洲的推移规律.海洋通报,2004,23(1):1-7.
    范代读,李从先,陈美发,等.长江三角洲泥质潮坪沉积间断的定量分析[J].海洋地质与第四纪地质,2(14):1-6.
    方晰,田大伦,项文化等.种植园的土壤有机碳的垂直分布[J].浙江林学院学报,2004,21(4):418-423.
    盖平,鲍志娟,张结军.环境因素对芦苇地上部生物量影响的灰色分析[J].东北师大学报(自然科学版.2002,34(3):87-91
    高磊,李道季,王延明,等.长江口最大混浊带潮滩沉积物间隙水营养盐剖面研究[J].环境科学,2006a,27:1744-1752.
    高磊.长江口潮滩湿地主要生源要素的动力学过程研究.2006b.(博士学位论文)
    韩舞鹰编.海水化学要素调查手册.北京:海洋出版社.1986.
    何电源.土壤和植物中的Si[J].土壤学进展,1980,5(6):1-10.
    侯立军,刘敏,闫慧敏,许世远,欧冬妮,林啸.长江口潮滩沉积物表层生物硅的分布及影响因素[J].中国环境科学,2007,27(5):665-669.
    扈传昱,姚梅,于培松,潘建明,张海生.大洋普里兹湾沉积物中生物硅含量与分布[J].海洋学报,2007,29(5):49-54.
    黄华梅,张利权,袁琳.崇明东滩自然保护区盐沼植被的时空动态[J].生态学报,2007,27(10):4166-4172.
    黄亮,吴莹,张经,李伟,周菊珍.长江中游若干湖泊水生植物体内C、N,、P及δ13C 分布.地球学报,2003,24(6):515-518
    李海英,彭红春,王启基.高寒矮嵩草草甸不同退化演替阶段植物地上部氮磷元素比较[J].西北植物学报,2004,24(11):2069-2074.
    李建,王汝建.南海北部一百万年以来的表层古生产力变化:来自ODP1144站的蛋白石记录[J].地质学报,2004,78(2):228-233.
    李九发,万新宁,陈小华.上海滩涂后备土地资源及其可持续开发途径[J].长江流域资源与环境,2003,12(1):17-22.
    李清芳,周秀杰,马成仓.Si对小麦幼苗几项生理生化性质的影响[J].作物学报,2002,(9):665-669.
    李学刚,宋金明,袁华茂,等.胶州湾沉积物中高生源Si含量的发现——胶州湾浮游植物生长Si限制的证据[J].海洋与湖沼,2005,36(6):572-579.
    刘敏,侯立军,许世远,等.长江口潮滩有机质来源的C、N稳定同位素示踪[J].地理学报,2004,59(6):918-926.
    刘晓丹.Si在海洋浮游植物群落演替过程中的作用[J].海洋环境科学,1996,15(2):38-43.
    吕晓霞,翟世奎,牛丽风.长江口柱状沉积物中有机质C/N比的研究[J].环境化学,2005,24(3):255-259.
    马成仓,李清芳,束良佐,等.Si对玉米种子萌发和幼苗生长作用机制初探[J],作物学报,2002,28(5):665-669.
    潘建明,周怀阳,扈传昱,等.东海长江口特定海区沉积物生物源Si的分布和积累及其环境意义[J].海洋学报,2000,22:153-159.
    蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究——春季的营养限制情况[J].海洋学报,2001,23(3):57-65.
    秦亚超.珠江口沉积Si的生物地球化学研究.2006.(博士学位论文)
    上海科学院编著.上海植物志(下卷).上海:上海科学技术文献出版社.1999.pp.596.
    沈焕庭著.长江河口物质通量.北京:海洋出版社.2001.
    施玉麒,王寒梅,李金柱.2003.上海市海岸带资源现状与未来趋势[J].上海地质,2003,8-16.
    宋健民,田纪春,赵世杰.植物光合作用碳和氮代谢之间的关系及其调节[J].植物生理学通讯,1998,34(3):230-238.
    宋金明,中国近海生物地球化学[M].山东科学技术出版社,2004.
    唐承佳,陆健健.长江口九段沙植物群落研究[J].生态学报,2003,23(2):399-403.
    王金辉.长江口3个不同生态系的浮游植物群落[J].青岛海洋大学学报,2002,32(3):422-428.
    王立宝.河北省南大港湿地生态系统植被生态及芦苇生物量的研究[D].河北师范大学,2003.(硕士学位论文)
    王其兵,李凌浩,刘先华等.内蒙古锡林河流域土壤有机碳和总氮的空间异质性[J]. 植物生态学报,1998.22(5):409-414.
    王文远,刘嘉麒,彭平安.湖泊沉积物生物硅的测定与应用:以湖光岩玛班湖为例[J].地球化学,2000,327-330.
    汪秀芳,陈圣宾,宋爱琴,叶文,李振基.植物在Si生物地球化学循环过程中的作用[J].生态学杂志,2007,26(4):595-600.
    刑雪荣,张蕾.植物的Si素营养研究综述[J].植物学通报.1998,15(2):33-44.
    许曼丽,范晓晖.营养胁迫下不同植物根系的反应和根际效应.土壤,1997,3:137-141.
    闫慧敏,刘敏,侯立军,许世远,林啸.长江口沙洲表层沉积物生物硅分布特征[J].环境科学,2008,29(1):164-169.
    闫芊,崇明东滩湿地植被的生态演替[D].华东师范大学,2006.硕士学位论文)
    杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律[J].海洋与湖沼,1999,30(6):764-769.
    杨世伦,陈吉余.试论植物在潮滩发育演变中的作用[J].海洋与湖沼,1994,25(6):631-635.
    杨景成,韩兴国,黄建辉等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390.
    叶曦雯,刘素美,赵颖翡,张经.东、黄海沉积物中生物硅的分布及其环境意义[J].中国环境科学2004,24(3):265-269.
    叶曦雯,胶州湾中生物硅的研究.2003.(硕士学位论文)袁华茂,吕晓霞,李学刚等.自然粒度下渤海沉积物中有机地球化学特征[J].环境化学,2003,22(2):115-120.
    袁兴中,陆健健,刘红.河口盐沼植物对大型底栖动物群落的影响[J].生态学报,2002,22(3):326-333.
    张国良,戴其根,张洪程,等.水稻Si素营养研究进展[J],江苏农业科学,2003,(3):6-12.
    张兰兰,陈木宏,向荣,陆钧,张丽丽.南海南部表层沉积物中生物硅的分布及其环境意义[J].热带海洋学报,2007,26(3):24-29.
    张利权,雍学葵.海三棱蔗草种群的密度与生物量动态[J].植物生态学报,1992,16(4):317-325.
    张修峰,梅雪英,童春富,等.长江口岛屿沙洲湿地陆向发育过程中表层沉积物氮营养盐的变化[J].生态学报,2006,26(4):1116-1121.
    赵平,葛振明,王天厚,汤臣栋.崇明东滩芦苇的生态特征及其演替过程的分析.华东师范大学学报,2005,3:98-104.
    周启星,黄国宏.环境生物地球化学和全球环境变化[M].北京:科学出版社.2001:113-127.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.