南海沉降颗粒物的生物地球化学过程及其在古环境研究中的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据南海北部(SCS-N)、南海中部(SCS-C)、吕宋岸外(SCS-NE2)及越南岸外(SCS-SW1)时间系列的捕获器资料,对“南海沉降颗粒物的生物地球化学过程及其古环境意义”这一命题作了初步探索。主要包括两个方面的内容:(1)南海颗粒通量和“生物泵”结构的控制因素;(2)现代过程对部分地球化学古环境参数的改造。所取得的主要结果分以下三大部分。
     (1)在陆架以外的深海区,南海颗粒物年平均通量在100 mg m~(-2) d~(-1)左右,其空间变化从大到小依此为SCS-SW1>SCS-NE2>SCS-N>SCS-C。在季节变化上,颗粒通量受季风控制比较明显,高值主要出现在冬季或夏季;在年际变化上,E1 Ni(?)o暖事可以使通量减小20%。颗粒通量除了在少数时段上下变化比较一致外,大多数时侯上下变化并不一致,并经常出现下层通量反而比上层高的情况,这主要是由于水平流引起的颗粒物侧向运动比较频繁造成。沉降颗粒主要以生源物质为主,生源物质/岩屑的比值依此为SCS-C>SCS-NE2>SCS-N>SCS-SW1。在南海中部,生源物质一般在80%以上。生源颗粒中,钙质生物和硅质生物大致相当,表明在南海“碳酸盐泵”和“硅质泵”具有同等重要的地位。“生物泵”组成结构的时空变化并没有明显的季节性变化,但上升流区比非上升流区可能更有利于硅质生物的生长。在E1 Ni(?)o影响年,碳酸钙/蛋白石比值有明显的升高,表明暖事件可以抑制硅质生物的生长。南海作为典型的热带寡营养海,季风—上升流—营养盐供应和限制—风尘物质的触发—生物地球化学响应是一个比较典型的颗粒通量和“生物泵”结构控制过程,值得进一步研究。
     (2)南海初级生产力中仅有1-2%进入深海水柱,而在深海沉积物中积累的有机碳仅占0.26%以下,颗粒有机物通量改变主要发生在表层到1000m以及底层海水与沉积物界面之间,而在中下水层(1000m-3750m)变化较小。南海“生物泵”效率大约是同为季风影响区的西阿拉伯海的1/3,沉积有机碳的保存效率低一个数量级,这可能与南海初级生产力与前者相比要低,同时南海深层水的更新速率较快(底部不容易形成低氧环境)有关。由于南海初级生产力较低,颗粒有机物通量随水深减小的关系式(Martin曲线)可能会因为颗粒沉降速率、生物泵组成结构、颗粒物侧向运动等因素而失效。在颗粒物沉降到沉积物过程中,有机质的选择性降解可能会影响有机地球化学的一些整体指标(如有机碳、氮同位素)示踪的有效性。从颗粒物到沉积物,碳酸钙、蛋白石通量损失72-95%,其变化主要发生于深层捕获器与沉降物之间。另外,无论南海中部还是北部,水柱岩源物质通量反而小于全新世的沉积物积累率,表明南海海洋底部雾状层在重力流、等深流作用下引起的沉积物异地搬运是比较常见的。这种异地搬运作用对于古环境信号(如有机碳古生产力指标)在沉积物中的保存可能会有一定影响。
     (3)通过考察表层沉积有机碳、绿素、生物硅与上层海洋上升流、生产力等的关系发现,沉积有机碳含量高值与三个传统意义上的上升流区有比较好的对应,表明其是比较好的古生产力指标,但对于寡营养、低生产力,而且碳酸盐溶解作用、陆地稀释作用影响明显的南海,绿素、生物硅并不是好的古生产力指标。但这也不排除在某些海域(如水深不大、沉积速率高且稳定、有机质保存较好)利用通一钻孔的相关参数反映古生产力的可能性。沉降颗粒物中的U_(37)~K信号与表层卫星估算的SST在大多数时段不一致,在同一时段,上、下层位间也有很大的不同,这主要是由于颗粒物质的侧向运动所引起;此外,颗石藻的生长季节、层位(水深)的不一致也能引起上述不一致;沉降过程中U_(37)~K指数并没有引起明显的改变,表明南海降解过程对U_(37)~K温度估算影响较小;虽然沉降颗粒物的U_(37)~K温度信号与实测或遥感SST不一致,但表层沉积物U~k_(37)的分析结果再次证实了U_(37)~K温度与上层多年平均的实测温度有较好的相关性,这表明沉积物(代表几十—几百年)实际上对短时间和空间尺度的差异进行了“平滑”,也就是说,局部的差异并不与全局的趋势相矛盾。在南海颗粒物沉降过程中,C/N比呈增大趋势,这主要是由于早期降解过程中由于有机质的选择性降解作用所致;沉积碳同位素分布表明,陆源有机碳的输入(δ~(13)C轻值)主要出现在海盆周边的海域,尤其是珠江口、巽他陆架、湄公河口及南海东北部,而在海盆的中央,沉积有机质δ~(13)C较重,表明有机质主要是海洋自身来源;颗粒物中的有机质δ~(13)C“异常”可能是由于人类活动引起的pCO_2升高引起。南海沉降颗粒δ~(15)N大约在1.4-3.2‰之间变化,比其次表层-中层的源水—北太平洋中层水(NPIW)低2‰左右,这很可能是由于浮游植物对75m层上下营养盐的不完全利用所致;沉降颗粒δ~(15)N比沉积物的结果要低2‰左右,这是由有机质的选择性降解作用引起;表层沉积物δ~(15)N在巽他陆架和湄公河口也有比较低的值,这与现代海洋这些地区常常发育上升流一致,表沉积物δ~(15)N低值很可能可以作为南海上升流的一个指标。
In this thesis, the topic of "Biogeochemical process of particle settlement in theSouth China Sea and its significance for paleoenvironment studies" was discussedbased on results from time-series sediment trap experiments in the northern SouthChina Sea (SCS-N), central South China Sea (SCS-C), southwest South China Sea(SCS-SW1) and northeast South China Sea (SCS-NE2), which were carried out jointlybetween the Second Institute of Oceanography, SOA and the University of Hamburg,Germany. Two scientific questions are focused: (1) factors controlling the compositionof "biological pump" in the SCS; and (2) how modem processes affect geochemicalpaleo-proxies in the SCS. The results include the following three aspects:
     (1) The annual total flux was about 100 mg m~(-2) d~(-1) in the deep SCS, the spatialvariation order of the total flux was distinguished as SCS-SW1〉SCS-NE2〉SCS-N〉SCS-C. Higher fluxes appeared in winter or summer, suggesting the particleflux in the SCS is controlled by monsoons, while the E1 Nino event could reduce fluxto about 20%. There was decoupling of particle flux between upper and deep traps, andfurther more, some times deep trap collected more flux than shallower traps during thesame periods suggesting that advection was the main reason for this phenomenon.Biogenic material occupied the main part of bulk particles collected, up to 80%, andthe ratio of biogenic matter/lithogenic matter shows such an order: SCS-C〉SCS-NE2〉SCS-N〉SCS-SW1. Carbonate particles was equivalent to opal in the biogenicmatter which means that "carbonate pump" and "silica pump" are equally important inthe total "biological pump" in the SCS. There was no significant seasonal variations inthe "biological pump" structure. Although upwelling area was predominated by "silicapump" compared with non-upwelling areas, the "silica pump" could be suppressed inwarmer E1 Nifio years. As in an oligotrophic marginal sea, the sequence of monsoon-upwelling-nutrient supply (limitation)-dust trigger-biogeochemical response is thetypical "biological pump" process, which was worth further studies in the future.
     (2) Only about 1-2% of primary production (PP) sank into the deep SCS, and lessthan 0.26% of PP could ultimately be preserved as sediments. Remineralization anddissolution of biogenic matter as well as compositional alterations of organic mattermixtures appear to have taken place mainly in the upper layer of water column and atsediment/water interfaces, rather than in mid-waters between 1000m-3750m. Due tolower PP and faster turnover rate in deep waters, the biological pump efficiency in theSCS was about 1/3 of that in the Arabian Sea. The Martin curve of POC flux withdepth would be null because of low PP and advection of particulate matter. Selectivedecomposition of organic matter during settling and sedimentation of particles would affect reliability of some bulk paleo-proxies such asδ~(13)C_(org) andδ~(15) N_(org). The sedimentaccumulation rate of lithogenic matter was higher than water column lithogenic flux,suggesting that near bottom transportation such as nepheoid was quite frequent in theSCS, and this phenomenon may affect sediment organic carbon accumulation to beused as a paleo-production proxy (paleo-PP).
     (3) Comparisons between sedimentary organic carbon, chlorine and opal, and theupwelling area and upper layer PP indicate that organic carbon is a good paleo-PP, butchlorine and opal are not because sedimentary biogenic component is strongly affectedby carbonate dissolution and lithogenic dilution in this oligotrophic, low PP marginalsea. Exceptions may be found in areas with a relative shallow water depth, stablesedimentation rate and good organic mater preservation, where chlorine and opal couldalso be used as good paleo-PP proxies. In most cases, sea surface temperature (SST)measured by U~k37 in settling particulate matter differs from the upper layer remotesensing data, and there was also decoupling of particulate matter U~k37 signals betweenupper and deep traps during the same periods, all attributable to the advection ofparticles. On the other hand, the variation of coccolith bloom season as well as theirliving depth fluctuation in the euphotic layer could have also accounted for thisphenomenon. There was no significant change of U~k37 index during particle settling inthe water column. Although U~k37 temperature derived from settling particles disagreeswith remote sensing SST, a good correlation between the sediment U~k37 temperatureand the annual average temperature from the upper layer (30m) in the SCS confirmsthe empirical linear curve of U~k37 and SST, and suggests that a long term sedimentrecord (decadal to millennial) may smooth the short term fluctuations of environmentsignals. The increasing of C/N ratio from water column particles to sediment can beattributed to selective decomposition. The distribution ofδ~(13)C_(org) in surface sediments,which indicates more organic matter in the shallow area than in the deep sea basin, wasaffected by terrigenous input, especially in areas near the Pearl River Estuary,north-east comer of the SCS, the Mekong River Delta and Sunda shelf. Theabnormally lightδ~(13)C_(org) in these areas likely resulted from rapidly increasing pCO_2 dueto recent human activities, while the lowδ~(15)N_(org) compared with the nitrate record inthe North Pacific Intermediate Water was due to incomplete nitrate utilization ataround 75m water depth in the SCS with selective degradation accounted for 2%0δ~(15)N_(org) increase. The lowδ~(15)N_(org) content recorded from some upwelling areas suggestsit can be used as a good indicator of upwelling in the SCS.
引文
[1] Abraham E R, Law C S, Boyd P W et al, Importance of stirring in the development of an iron fertilized phytoplankton bloom. Nature, 2000,407:727-733
    
    [2] Alldredge A L, Silver M W, Characteristics dynamics and significance of marine snow. Progress in Oceanography, 1988,20:41 -82
    [3] Altabet M A and Francois, Sedimentary nitrogen isotope isotope ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles, 1994, 8(1): 103-116
    [4] Altabet M, Nitrogen and carbon isotopic tracers of the source and transforamtion of particles in the deep sea. In:Ittekkot V et al (eds.), Particle flux in the ocean. New York:John wiley & Sons, 1996,155-184
    [5] Armstrong R A, Lee C, Hedges J I et al., A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research II, 2002, 49(1-3):219-236
    [6] Asper V L, Smith W O. Abundance, distribution and sinking rates of aggregates in the Ros Sea, Antarctica. Deep-Sea Research(I), 2003,50(1): 131-150.
    [7] Barber R T, Murray J W, McCarthy J J, ^赤道太平洋中的生物地球化学相互作用. AMBIO (中文版). 1994, 23 (1), 62-66
    [8] Becquevort S, Smith W O, Aggregation, sedimentation and biodegradability of phytoplankton-derived material during spring in the Ross Sea, Antarctica. Deep-sea Research(II), 2001,48(19-20): 4155-4178.
    [9] Berger W H, Smetacek V S, Wefer G, Productivity of the ocean: present and past. Chichester, John Wiley & Sons, 1989,471 pp
    [10] Bezrukov P L, Distribution and rate of deposition of silicate sedimentations in the Sea of OkhotskfJ]. DoK1. Akad. Nauk SSSR 103, 1955, 473-476
    
    [11] Bidle K D, Azam F, Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 1999, 397:508-512
    
    [12] Bishop J K B, Davis R E and Sherman J T, Robotic Observations of Dust Storm Enhancement of Carbon Biomass in the North Pacific. Science, 2002, 298:817-821
    [13] Boyd P W, Watson A J, Law C S, et al, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 2000, 407:695-702
    [14] Brand L E, Physiological ecology of marine coccolithophores. In:Amos Winter &William G Siesser (eds.), Coccolithophores, New York:Cambridge University Press, 1994, 39-62
    [15] Brassell S C, Application of biomarkers for delineating marine paleoclimatic fluctuations during the pleistocene. In:Engel M H & Macko S A (eds.), Organic geochemistry:Principles and applications, New York and London:Plenum Press, 1993, 699-378
    [16] Brassell S C, Eglinton G, Marlowe I T et al, Molecular stratigraphy:A new tool for climatic assessment. Nature, 1986,320:129-133
    [17] Broecker W S, Patzert W C, Toggweilar J R, Stuiver M, Hydrography, chemistry and radio isotopes in the South-east Asian basins. J. Geophys. Res., 1986, 91: 14345-14354.
    [18] Broecker W S, Takahashi T, The relationship between lysocline depth and in situ carbonate ion concentration. Deep Sea Research, 1978,25:65-95
    [19] Buesseler K O, Do Upper-Ocean Sediment Traps Provide an Accurate Record of Particle Flux? Nature, 1991,353:420-423
    [20] Buesseler K, Bowled M and Joyce, K. A new wave of ocean science. JGOFS planning and data management office, Woods Hole, Massachusetts, 025-43 USA, http://usjgofs, whio. Edu, 2001
    [21] Buesseler K.O, Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from ~(234)Th-~(238)U disequilibrium. Deep-Sea Research, 1992,39:1115-1137
    [22] Buesseler K O, The de-coupling of production and particulate export in the surface ocean. Global Biogeochemical cycles, 1998, 12(2): 297-310
    [23] BuesseLer K O, Group-proposal: Vertical Transport in the Global Ocean (VERTIGO). WHOI proposal No. CH10883. 2002
    [24] Cai W J and Dai M H, comment on "enhanced open ocean storage of CO_2 from shelf sea pumping". Science, 2004, 306(26): 1477c.
    [25] Canuel E A and Martens C S, Seasonal variation in the sources and alteration of organic matter associated with recently-deposited sediments. Organic Geochemistry, 1993,20:563-577
    [26] Chao S Y, Shaw P T, Wu S Y, El Nino modulation of the South China Sea circulation. Progress In Oceanography, 1996, 38(1):51-93
    [27] Chen J F, Li Y, Yin K D, Jin H Y, Amino acids in the Pearl River Estuary and adjacent waters:origins, transformation and degradation. Continental Shelf Research, 2004,24(16): 1877-1894
    [28] Chen N H, Bianchi T S, Mckee B A and Bland, J M. Historical trends of hypoxia on the Louisiana shelf application of pigments as biomarkers. Organic Geochemistry, 2001, 32: 543-561
    [29] Chen Ronghua, Zheng Yulong, Jin Haiyan, et al., Seasonal variation of the planktonic foraminiferal flux in the Central South China Sea and its paleoceanographic significance. Oceanography in China, 2002:14:1-8.
    [30] Chen Y L, Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep Sea Research I, 2005, 52:319-340.
    
    [31] Chisholm S W, Stirring times in the Southern Ocean. Nature, 2000,407:685-687
    [32] Chu P C, Ma B B, Chen Y C, The South China Sea thermohaline structure and circulation. Acta Oceanologica Sinica, 2002,21(2):227-261
    [33] Chu P C, Wang G H, Seasonal Variability of Thermohaline Front in the Central South China Sea. Journal of Oceanography, 2003, 59:65-78
    [34] Chung Y, Chang H C, Hung G W, Particulate flux and ~(210)Pb determined on the sediment trap and core samples from the northern South China Sea. Continental Shelf Research, 2004, 24:673-691
    [35] Codispoti, L A, Primary productivity and carbon and nitrogen cycling in the Arabia Sea. In:Smith S L et al (eds.), US JGOFS-Arabian Sea Process Study, US JGOFS Planning Report, 1991, No. 13, pp.75-85.
    [36] Conte M H, Thompson A, Lesley D and Harris R P, Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica, Geochim. Cosmochim. Acta, 1998, 62: 51-68.
    [37] Cowie G L, Hedges J I, Sources and reactivities of amino acids in a coastal marine environment. Limnology and Oceanography, 1992, 37(4):703-724
    [38] Cowie G L and Hedges J I, Carbohydrate sources in coastal marine environment. Geochem. Cosmochim. Acta., 1984, 48:2075-2087
    [39] Degens E T, Behrendt M, Gotthardt B and Bradbury J P, Metabolic franctionation of carbon isotopes in marine plankton, part II. Deep Sea Research, 1968,15:11-20
    [40] Demaster D J, The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta, 1981,45:1715-1732
    [41] Duce R A, Liss P S, Merrill J T et al, The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycle, 1991, 191(5):193-259
    [42] Dudgale R C and Goering J J, Uptake of new and regenerated forms of nitrogen in primary prodcutivity. Liminology and Oceanography, 1967, 12:196-206
    [43] Eglinton T I, Conte M H, Eglinton G, Hayes J M, Proceedings of a workshop on alkenone-based paleoceanographic indicators. Geochemistry Geophysics Geosystems, 2001, vol 2, paper number:2000GC000122
    [44] Eppley R, Peterson B J, Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 1979, 282:677-680
    [45] Epstein B L, Hondt S D, Quinn J G, An effect of dissolved nutrient concentrations on alkenone based temperature estimates. Paleoceanography, 1998, 13(2):122-126
    [46] Fabry, Argonite production by pteropod mollusks in the subarctic Pacific. Deep Sea Research, 1989, 36:1735-1751
    [47] Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on oceanic primary production. Science, 1998, 281:200-205
    
    [48] Falkowski P G, The ocean's Invisible Forest. Scientific American, 2002, 287(4):38-45
    [49] Fang G H, Fang W D, Fang Y, Wang K, A Survey of Studies on the South China Sea Upper Ocean Circulation. Acta Oceanographica Taiwanica, 1998, 37(1): 1-16
    
    [50] Fang M, Zheng M, Wang F, Chim K S, Kot S C, The long-range transport of aerosols from northern China to Hong Kong—a multi-technique study. Atmospheric Environment, 1999,33:1803-1817
    
    [51] Fasham. Ocean Biogeochemistry, the role of the ocean carbon cycle in global change. Springer, 2003, 1-297
    [52] Forohich F, Deep-sea biogenic silica:New structural and analytical data from infrared analysis-geological implications[J] . Terra Research, 1989,1:267-273
    [53] Francois R S, Honjo S, Krishifield R and Manganini S, Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical Cycles, in press, 2002.
    [54] Freeman K H & Wakeham, Variations in the distributions and isotopic compositions of alkenones in Black Sea particles and sediments. Org. Geochem., 1992, 19 (1-3):277-285
    
    [55] Froelich P N, Analysis of organic carbon in marine sediments[J]. Limnol Oceanogr, 1980,25(3):564-572
    [56] Gong G C, Liu K K, Liu C T, Chemical hydrography of the South China Sea and a comparison with the West Philippine seas. TAO (Taiwan), 1992, 3:587-602
    [57] Goni M A, Hartz D M, Thunell R C, Tappa E, Oceanographic considerations for the application of the alkenone-based paleotemperature Uk37 index in the Gulf of California. Geochimica et Cosmochimica Acta, 2001, 65(4):545-557
    [58] Haake B, Ittekkot V, Honjo S, Manganini S, Amino acid, hexosamine and carbohydrate fluxes to the deep Subarctic Pacific (Station P). Deep Sea Research 1,1993, 40(3):547-560
    [59] Haake B, Ittekkot V, Rixen T, Ramaswamy V, Nair R R, Curry W B, Seasonality and interannual variability of particle fluxes to the deep Arabian Sea. Deep Sea Research 1,1993,40(7): 1323-1344
    [60] Harada N, Handa N, Harada K et al, Alkenones and particulate fluxes in sediment traps from the central equatorial pacific. Deep sea research I, 2001, 48(3):891-907
    [61] Harris P G, Maxwell J R, A novel method for the rapid determination of Chlorin concentrations at high stratigraphic resolution in marine sediments. Org.Geochem, 1995, 23(9):853-856
    [62] Harris P G, Zhao M, Rosell-Mele, Tiedemann R, Sarnthein M, Maxwell J R, Chlorin accumulation rate as a proxy for Quaternary marine primary productivity. Nature, 1996, 383(5):63-65
    [63] Harrison K G, Role of increased marine silica input on paleo-pCO_2 levels. Paleoceanography, 2000, 15(3):292-298
    [64] Hedges and Stern, Carbon and nitrogen determination of carbonate-containing solids. Liminology and Oceanography, 1984,29:657-663
    [65] Herbert T D, Review of alkenone calibrations(culture, water column, and sediments). Geochemistry Geophysics Geosystems, 2001, vol 2, paper number:2000GC000052
    [66] Heussner S, Rath C, Carbonne J, The PPS 3 time -series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment. Continental Shelf Research, 1990, 10:943-958
    [67] Higginson M J, Maxwell J R, Altabet M A, Nitrogen isotope and Chlorin paleoproductivituy records from the Northern South China Sea:remote vs. local forcing of millennial- and orbital-scale variability. Marine Geology, 2003, 201:223-250
    [68] Hoefs M J L, Versteegh G J M, Rijpstra W I C,de Leeuw J W and Sinninghe J S, Damste, postedepositional oxic degradation of alkenones: implications for the measurement of paleo sea surface temperatures, Paleoceanography, 1998, 13: 42-49
    [69] Honda M C, Imai K, Nojiri Y, Hoshi F, Sugauara T, Kusakabe M, The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997-2000). Deep-Sea Research II, 2002,49:5595-5625
    [70] Honjo and manganini, Annual biogenic partcile flux to the interior of the North Atlantic Ocean; studied at 34°N 21°W and 48°N 21°W. Deep sea Research II, 1993,40:587-607
    [71] Honjo S and Doherty K W, Large aperture time-series sediment traps:design objectives, construction and application. Deep Sea Research, 1988, 35:133-149
    [72] Honjo S, Dymond J, Collier R, Manganini S J, Export production of particles to the interior of equaterial Pacific Ocean during 1992 EqPac experiment. Deep Sea Research II, 1995, 42:831-870
    [73] Honjo S, Fluxes of particles to the interior of the open ocean. In:Ittekkot V et al (eds.), Particle flux in the ocean. New York: John wiley & Sons, 1996, 91-154
    
    [74] Honjo S, The rain of ocean particles and earth's carbon cycle. Oceanus, 1997, 40(2):4-7
    [75] Houghton R A, Counting terrestrial sources and sinks of Carbon. Climate Change, 2001, 48:525-534
    [76] Hutchins D A, Bruland K W, Iron-limited diatom growth and Si:N uptake ratios in coastal upwelling regime. Nature, 1998,393:561-564
    [77] Hutchins D A, Ditullio G R, Zhang Y et al, An iron limitation mosaic in the California upwelling regime. Limnology and Oceanography, 1998,43(6):1037-1054
    [78] Hwang C and Chen S, Circulation and eddies over South China Sea from TOPEX/poseidon altimetry. Journal Geophysical Research, vol 105(c10),2000,23943-23965
    [79] Ittekkot V, Deuser W G, Degens E T, Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean:Sargasso Sea. Deep Sea Research, 1984,31(9): 1057-1069
    [80] Ittekkot V, Research Highlights fromTropical Marine Ecosystems. 国家海洋局第二海洋研究所邀请报告, 2004年12月,杭州
    [81] Ittekkot, V, Nair R R, Honjo S et al, Enhanced particle fluxes in Bay of Bengal induced by injection of fresh water. Nature, 1991, 351:385-387
    [82] Jasper J P, Gagosian R B, Alkenone molecular stratigraphy in an oceanic environment affected by glacial freshwater events. Paleoceanography, 1989,4:603-614
    [83] Jasper J P, Hayes J M, A carbon isotope record of CO_2 levels during the Quaternary. Nature, 1990, 347:462-464
    [84] Jennerjahn T C, Ittekkot V, Organic matter in sediments in the mangrove areas and adjacent continental margins of Brazil: Amino acids and hexosamines. Oceanologia Acta 1997, 20:359-369
    [85] Jennerjahn T C, Liebezeit G, Kempe S, Particle flux in the northern South China Sea. In: Jin X, Kudrass H R, Pautot G (eds.), Marine geology and geophysics of South China Sea. Beijing:China Ocean Press, 1992, 228-235
    
    [86] JGOFS-IGBP, Ocean biogeochemistry and global changes. IGBP Science, 2001. No. 2
    [87] Kamatani A, Oku O, Measuring biogenic silica in marine sediment. Marine Chemistry, 2000, 68(3):219-229
    
    [88] Kandler O, Zellwandstrukturen bei Methan-Bakterien. Naturwissenschaften, 1979, 66:95-105
    [89] Karl D M, A Sea of change: biogeochemical variability in the north Pacific subtropical gyre. Ecosystem, 1999,2:181-214 (P44)
    [90] Karl D M, Bidigare R R and Letelier R M, Long-term changes in plankton community structure and productivity in the subtropical North Pacific Ocean: The domain shift hypothesis. Deep Sea Research II, 2001,48:1449-1470
    
    [91] Karl D M, Nutrients dynamics in the deep blue sea. Trends in Microbiology, 2002, 10(9):410-418
    [92] Karl D M, The role of nitrogen fixation in biogeochemical cycling in the subtropical cycling in the subtropical North Pacific Ocean. Nature, 1997, 388:533-538
    [93] Kawahata H, Suzuki A, Ohta H. Export fluxes in the Western Pacific Warm Pool. Deep Sea Research I, 2000, 47:2061-2091
    [94] Kawamura K, Ishiwatari R, Distribution of lipid-class compounds in bottom sediments of fresh water lakes with different tropic status in Japan. Chemical Geology, 1985, 51:123-133
    [95] Kennedy J A, Brassell S C, Molecular stratigraphy of the Santa Barbara Basin:Comparison with historical records of annual climate change. Org Geochem, 1992,19:235-244
    [96] Kienast M, Calvert S E, Pelejero C, Grimalt J O, A critical review of marine sedimentary ~(13)C_(org)-pCO_2 estimates:New palaeorecords form the South China Sea and a revisit of other low-latitude ~(13)C_(org)-pCO_2 records. Global Biogeochemical Cycles, 2001,15(1):113-127
    [97] Kienast M, Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography, 2000, 15(2):244-253
    [98] King P, Kennedy H, Newton P P et al, Analysis of total and organic carbon and total nitrogen in settling oceanic particles and a marine sediment: an interlaboratory comparison. Marine Chemistry, 1998, 60:203-216
    [99] Kumar N, Anderson R F, Mortlock P N et al, Increased biological productivity and export production in the glacial Southern Ocean. Nature, 1995, 378:675-680
    [100] Kuo N J, Zheng Q A, Ho C R, Response of Vietnam coastal upwelling to the 1997-1998 ENSO event observed by multisensor data. Remote Sensing Environment, 2004, 89:106-115
    
    [101] Lampitt R S, Antia A N, Particle flux in deep seas:regional characteristics and temporal variability. Deep Sea Research I, 1997,44(8): 1377-1403
    [102] Lee C, Cronin C, The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. Journal of Marine Research, 1982,40:227-251
    [103] Liu C T and Liu R J. The deep current in the Bashi Channel. Acta Oceanorgr. Taiwanica, 1988, 20: 107-116
    [104] Liu K K and Kaplan I R, The eastern tropical Pacific as a source of ~(15)N-enriched nitrate in seawater off southern California. Limnology and Oceanpgraphy, 1989, 34(5):820-830
    [105] Liu K K, Chao S Y, Shaw P T, Gong G C, Chen C C, Tang T Y, Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research I, 2002,49:1387-1412
    [106] Liu K K, Su M J, Hsueh C R and Gong G C, The nitrogen isotope composition of nitrate in the Kuroshio water northeast of Taiwan:Evidence for nitrogen fixation as a source of isotopically light nitrate. Marine Chemistry, 1996, 54:273-292
    [107] Longhurst A, Seasonal cycles of pelagic production and consumption. Progress in Oceanography, 1995, 36(2):77-167
    [108] Martin J H, Knauer G A, Karl D M and Broenkow W W, VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research, 1987, 34:267-285
    [109] McCafferey M A, Farrington J W, Repeta D J, The organic geochemistry of Peru margin surface sediment:I. A comparison of the C37 alkenone and historical El Nifio records. Geochim. Cosmochim. Acta, 1990, 54:1671-1682
    [110] Metzger E J, Hurlburt H E, Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 1996, 101:12331-12352
    [111] Meyers P A, Eadie B J, Sources, degradation and resynthesis of organic matter on sinking particles in Lake Michigan. Organic Geochemistry, 1993, 20:47-56
    [112] Meyers P A, Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem, 1997, 27(5/6):213-250
    [113] Meyers P A, Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 1994,144:289-302
    [114] Michaelis W, Ittekkot V, Biogeochemistry of river: field and analytical techniques. SCOPE/UNEP Sounderband, 1982, 52:68-89
    [115] Michaels A F, Does biological community structure influence biogeochemical flux? JGOFS Says Yes! Keynote Speech in JGOFS final open science meeting, Washington D C, USA, 2003
    [116] Mortlock P A, Froelich P N, A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep SeaResearch, 1989, 36(9):1415-1426
    [117] Muller P J, C/N ratios in Pacific deep-sea sediments:Effect of inorganic ammonium and organic nitrogen compounds sorbed in clays. Geochim. Cosmochim. Acta, 1977,41:765-776
    [118] Muller P J, Fischer G, C37-Alkenones as Paleotemperature Tool:Fundamentals Based on Sediment Traps and Surface Sediments from the South in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Springer, Berlin, Heidelberg, New York, 2004, 167-193
    [119] Muller P J, Kirst G, Ruhland G, Von S I, Rosell-Mele A, Calibration of the alkenone Paleotemperature index UK37 based on cor-tops from the eastern South Atlantic and the global ocean (60°S-60°N). Geochimica et Cosmochimica Acta, 1998, 62(10):1757-1772, doi: 10.1016/s0016-7037(98)00097-0
    [120] Miiller P J, Suess E, Ungerer C A, Amino acids and hexosamines of particulate and sediment trap material from waters of the Scotia Sea. Deep Sea Research, 1986, 33:819-838
    [121] Nair R R, Ittekkot V, Manganini S J et al, Increased partcile flux to the deep ocean related to monsoons. Nature, 1989,338:749-751.
    [122] Nelson D M, Tregure P, Brezinski M A. et al. Production and dissolution of biogenic silica in the ocean: regional data and relationship to biogenic sedimentation[J]. Global Biogeochem. Cycles, 1995. 9: 359-372
    [123] Ning X, Chai F, Xue H, Chai Y, Liu C, Shi J, Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research, 2004, 109, C10005, doi:10.1029/2004JC002365
    [124] O'Leary M H, Carbon isotopes in photosynthesis[J]. Bioscience, 1988, 38:328-336
    [125] Paerl H W, Prufert-Bebout L E, Guo C, Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol., 1994, 60:1044-1047
    
    [126] Pakulski et al, Iron stimulation of Antarctic bacteria, Nature, 1996,383:133-134
    [127] Paytan A, Kastner, M, Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle. Earth and Planetary Science Letters, 1996,142(3-4):439-450
    [128] Pearl H W, Coastal eutrophication and harmful algal blooms:Importance of atmospheric deposition. Limnology and Oceanography, 1997, 42:1154-1165
    [129] Pelejero C, Grimalt J O, Heilig S, Kienast M and Wang L, High resolution Uk'37 temperature reconstructions in the South China Sea over the last 220 kyrs, Paleoceanography, 1999,14: 224-231
    [130] Pelejero C, Grimalt J O, The correlation between the Uk37 index and sea surface temperature in the warm boundary: the South China Sea. Geochim. Cosmochim. Acta, 1997, 61:4789-4797
    [131] Peters K E, Sweeney R E, Kaplan I R, Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter[J]. Limnology and Oceanography, 1978, 23:598-604
    [132] Pilskaln C H, Manganini S J, Trull T W et al, Geochemical particle fluxes in the Southern Indian Ocean seasonal ice zone: Prydz Bay region, East Antarctica. Deep Sea Research I, 2004, 51:307-332
    [133] Popp B N, Laws E A, Bidigare R R, Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica Cosmochimica Acta, 1998,62:69-77
    [134] Prahl F G, De Lange G J, Lyle M et al, Post-depositional stability of long-chain alkenones under contrasting redox conditions. Nature, 1989, 341:434-437
    [135] Prahl F G, Wakeham S G, Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 1987, 330:367-369
    [136] Ragueneau O, Treguer P, Leynaert A, A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as paleoproductivity proxy. Global and Planetary Change, 2000,26:317-365
    [137] Ramaswamy, Lithogenic fluxes to the northern Indian Ocean-an overview. In:Ittekkot V and Nair R R (eds.), Monsoon Biogeochemistry, SCOPE/UNEP sonderband, 1993, 76: 97-113
    [138] Redfield A C, Ketchum B H, Richards F A, The influence of organisms on the composition of seawater. In:The Sea, vol. 2, Edited by Hill M N, Interscience, New York, 1963, 26-77
    [139] Riebesell U, Zondervan I, Rost B, Tortell P D, Zeebe R E, Morel F M, Reduced calcification of marine plankton in response to increased atmospheric CO_2. Nature, 2000, 407:364-367
    [140] Rixen and Haake, Fluxes and decomposition of organic matter in the western Arabian Sea:amino acids and hexosamines. In:Ittekkot V and Nair RR (eds.), Monsoon Biogeochemistry, SCOPE/UNEP sonderband, 1993, heft 76, 113-130
    [141] Sarmiento J L, Slater R D, Fasham M J R, Ducklow H W, Toggweiler J R, Evans G T, A three dimensional model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem. Cycles, 1993, 7:417-450
    [142] Sarnthein et al, Global variations of surface ocean productivity in low and mid latitudes: influence on CO_2 reservoirs of the deep ocean and atmosphere during the last 21000 years. Paleoceanography, 1988, 3:361-399
    [143] Schafer P, Ittekkot V, Isotopic biogeochemistry of nitrogen in the northern Indian Ocean. Hamburg: Heft 78, 1995, 67-93
    
    [144] Schluter M and Richert D, Effect of pH on the measurement of biogenic silica. Mar Chem, 1998, 63:81-92
    [145] Schubert C J, Calvert S E, Nitrogen and carbon isotopic compositon of marine and terrestrial organic matter in Arctic Ocean sediments:implications for nutrient utilization and organic matter composition. Deep Sea Research 1,2001,48:789-810
    [146] Schubert C J, Villanueva J, Calvert SE, et al, Stable phytoplankton community structure in the Arabian Sea over the past 200, 000 years. Nature, 1998, 394(6693):563-566
    [147] Seiter K, Christian H, Jurgen S, Matthias Z, Organic carbon content in surface sediments-defining regional provinces. Deep sea Research I, 2004, 51:2001-2026
    [148] Shackleton N J, The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 2000, 289:1897-1902
    [149] Shankle A M, Goericke R, Franks P J S et al, Chlorin distribution and degradation in sediments within and below the Arabian Sea oxygen minimum zone. Deep Sea Research I, 2002, 49:953-969
    [150] Shaw P T, Chao S Y, Liu K K, Pai S C, Liu C T, Winter upwelling off Luzon in the northeastern South China Sea. Journal of Geophysical Research, 1996,101(C7):16435-16448
    
    [151] Shaw P T, Chao S Y, Surface circulation in the South China Sea. Deep Sea Research 1,1994,41:1633-1683
    [152] Shaw P T, The intrusion of water massers into the sea southwest of Taiwan. J. Geophys. Res., 1989, 94:18213-18226
    [153] Seki O., Kawamura K., Ikehara M., Nakatsuka T., Oba T, Variation of alkenone sea surface temperature in the sea of Okhotsk over the last 85 kyrs. Organic geochemistry, 2004, 35:347-354
    [154] Sikes E L, Farrington J W, Keigwin L D, Use of alkenone unsaturation ratios (Uk37) to determine past sea surface temperature:Core top SST calibrations and methodology considerations. Earth. Planet. Sci. Lett., 1991,104:36-47
    [155] Sikes E L, Keigwin L D, A reexamination of northeast Atlantic sea surface temperature and salinity over the last 16 kyr. Paleoceanography, 1996, 3:327-342
    [156] Sikes E L, Volkman J K, Calibration of alkenone unsaturation ratio (Uk37) for paleotemperature estimation in cold waters. Geochemica et Cosmochemica Acta, 1993, 57:1883-1889
    [157] Sikes E L, Keigwin L D, Equaterial Atlantic sea surface temperature for the last 30 kyr: A comparison of Uk37, δ~(18)O and foramineriferal assemblage temperature estimates. Paleoceanography, 1994, 9:31-45
    [158] Smetacek V, Diatoms and the silicate factor. Nature, 1999, 391:224-225
    [159] Sun M Y, Lee C, Aller R C, Anoxic and oxicdegradation of ~(14)C-labeled chloropigments and a ~(14)C-labeled diatom in Long Island Sound sediments. Limnol. Oceanogr., 1993, 38:1438-1451
    [160] Suthhof A, Jennerjahn T C, Schafer P and Ittekkot V, Nature of organic matter in surface sediments from the Pakistan continental margin and the deep Arabian Sea:amino acids. Deep Sea Research II, 2000, 47:329-351.
    [161] Sawada K., Handa N., Shiraiwa Y., Danbara A., Montani S, Long chain Alkenones and alkyl alkenoates in the coastal and pelagic sediments of the northwest North Pacific, with special reference to reconstruction of Emiliania huxleyi and Gephyrocapsa oceanica ratios. Organic geochemiatry, 24,751-764
    [162] Takahashi T, Sutherland S C, Sweeney C, Poisson A, Metzl N, Tilbrook B et al., Global sea-air CO_2 flux based on climatological surface ocean pCO_2, and seasonal biological and temperature effects. Deep Sea Research II, 2002, 49:1601-1622
    [163] Takeda S, Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 1998, 393:774-777
    [164] Ternois Y, Sicre A A, Boireau M H, et al., Evaluation of long-chain alkenones as paleotemperature indicators in the Mediterranean Sea. Deep Sea Research, 44, 1997,271-286
    [165] Tregure P, Pondaven P, Silica control of carbon dioxide. Nature, 2000, 406:358-359
    [166] Udarbe-Walker M J B, Villanoy C L, Structure of potential upwelling areas in the Philippines. Deep Sea Research I, 2001, 48:1499-1518
    [167] Valdes J R, Price J F, A Neutrally Buoyant, Upper Ocean Sediment Trap. Journal of Atmospheric and Oceanographic Technology, 2000,17( 1 ):62-68
    [168] Villanueva J, Pelejero C and Grimalt J, Clean-up procedures for the unbiased estimation of C37 alkenone sea surface temperatures and terrigenous n-alkane imputs in paleoceanography. J. Chromatogr. 1997, 757: 145-15
    [169] Volkman J K, Barrett S M, Blackburn S I and Sikes E L. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochimica & Cosmochimica Acta. 1995, 59(3): 513-520
    [170] Wang P X, Clemens S C, Beaufort L, et al., Evolution and variability of the Asian monsoom system: state of the art and outstanding issues. Quaternary Science Review, 2005,24:595-629.
    [171] Wang P X, Clemens S C, Liu P, contrasting the Indian and East Asian monsoons: implications on geologic timescales. Marine Geology, 2003, 201: 5-21.
    [172] Wang P X, Tian J, Cheng X R, Liu C L, Xu J, Major Pleistocene stages in a carbon perspective:The South China Sea record and its global comparison. Paleoceanography, 2004, 19, PA4005, doi: 10.1029/2003PA000991
    [173] Wefer G and Fisher G, Seasonal patterns of vertical particle flux in equatorial and coastal upwelling areas of the eastern Atlantic.Deep Sea Research I, 1993, 40(8):1613-1645.
    [174] Wefer G, Fisher G, Fuetterer D et al, Seasonal particle flux in the Bransfield Strait, Antarctica.Deep Sea Research, 1988, 35:891-898
    [175] Wiesner M G, Tephra Sedimentation In the deep South China Sea.国家海洋局第二海洋研究所邀请报告,2005年2月,杭州
    [176] Wiesner M G, Zheng L, Wong H K, Fluxes of particulate matter in the South China Sea.In:Ittekkot V, Honjo S (eds.), Particle flux in the ocean.New York:John wiley & Sons, 1996, 293-312
    [177] Winn K, Zheng L, Erlenkeuser H and Stoffers P, Oxygen/carbon isotopes and paleoproductivity in the South China Sea during the past 110000 years.In:Jin X and Kudrass G P (eds.), Marine Geology and Geophysics of the South China Sea.Beijing:China Ocean Press, 1992, 154-166
    [178] Wong H K, Wiesner M G, Steurungsmechanismen der Partikelsedimentation im Sudchinesischen Meer.A report to MBFT of Germany, October, 1994
    [179] WorldOcean Atlas 1998 Figures(WOA98F).http://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html
    [180] Wu J F, Chung S W, Wen L S, Liu K K, Chen Y L, Chen H Y, Karl D M, Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea.Global Biogeochemical Cycles, 2003, 17(1), 1008, doi:10.1029/2002GB001924
    [181] Wu J, Sunda W, Boyle E A, Karl D M, Phosphate depletion in the Western North Atlantic Ocean.Science, 2000, 289:759-762
    [182] Xue H J, Chai F, Pettigrew N, Xu D Y, Shi M C, Xu J P, Kuroshio intrusion and the circulation in the South China Sea Journal of Geophysical Research, 2004, 109, C02017, doi: 10.1029/2002C001724
    [183] Yamamoto M, Shiraiwa Y, Inouye I, Physiological responses of lipids in Emiliania Huxleyi and Gephyrocapsa oceanica (Haptophyceae) to growth status and their implications for alkenone paleothermometry.Organic Geochemistry, 2000, 31:799-811
    [184] Yin K, Qian P Y, Chen Jet al, Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation.Marine Ecology Progress Series, 2000, 194:295-305
    [185] You Y Z, The South China Sea, a cul-de-sac of North Pacific Intermediate Water.国家海洋局第二海洋研究所邀请报告,2003年10月, 杭州
    [186] Zheng Lianfu, Zheng Yu Long, Erlenkeuser H., et al., Seasonal variation in the flux and isotopic composition of planktonic foraminifera in the Northern South China Sea.Oceanography in China, 2002,14: 17-22
    [187] Zullig H, On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton.Limnology and Oceanography, 1981, 26(5):970-976
    [188] 陈芳,黄永样,段威武,陆钧.南海西部表层沉积中的钙质超微化石.海洋地质与第四纪地质,2002,22(3):35-39
    [189] 陈建芳,Wiesner M G等.南海水柱微体生物壳体中氨基酸、氨基糖与糖类物质的检出及意义.海洋与湖沼,2000,31(6):596-603
    [190] 陈建芳,徐鲁强,郑连福。南海北部时间系列沉降颗粒的有机地球化学特征及意义.地球化学,1997,26(6):47-56
    [191] 陈建芳,郑连福,Wiesner M G,陈荣华,郑玉龙,Wong H K.基于沉积物捕获器的南海表层初级生产力及输出生产力估算.科学通报,1998,43(6):639-64l
    [192] 陈建芳,郑连福,陈荣华,郑玉龙,陈文斌.南海颗粒物质的通量、组成及其与沉积物积累率的关系初探.沉积学报,1998,16(3):14-19
    [193] 陈建芳,郑连福.沉积物捕获器与全球变化研究.海洋通报,1996,15(1):41-47
    [194] 陈建芳.古海洋研究中的地球化学新指标.地球科学进展,2002,17(3):402-410
    [195] 陈建芳等.南海颗粒有机碳通量的垂向变化及早期降解作用的标志物.中国科学(D辑),1999,29(4):372-378
    [196] 陈荣华,翦知湣,郑玉龙,陈建芳.南海中部浮游有孔虫通量的季节变化.同济大学学报,2000,28(1):73-77
    [197] 陈文斌,徐鲁强.南海北部颗粒通量初步研究.见:郑连福,陈文斌主编:南海海洋沉积作用过程与地球化学研究.北京:海洋出版社,1993,191-201
    [198] 陈镇东.南海海洋学.台北:渤海堂文化事业有限公司,2001,1-506
    [199] 戴民汉,翟惟东,鲁中明,蔡平河,蔡卫君,洪华生.中国区域碳循环研究进展与展望.地球科学进展,2004,19(1):120-130
    [200] 国家海洋局.南海中部海域环境资源综合调查报告.北京:海洋出版社,1988,1-419
    [201] 何有海,关翠华,甘子钧.南海南部海洋上层的热振荡.海洋学报,1992,14(3):19-28
    [202] 胡建芳,彭平安.一种适用于高分辨分子地层学研究的有机质分离及定量方法.分析化学,2000,28(3):283-287
    [203] 黄维,冰期旋回中南海深水沉积作用的定量研究,同济大学硕士学位论文.1997,1-65.
    [204] 黄维,汪品先.末次冰期以来南海深水区的沉积速率.中国科学(D辑),1998,28(1):13-17
    [205] 李立,吴日升,孙湘平,南海上升流.见苏纪兰,袁业立主编,中国近海水文,北京:海洋出版社,2005,272-278.
    [206] 刘传联,邵磊,陈荣华,成鑫荣,张富元.南海东北部表层沉积中钙质超微化石的分布.海洋地质与第四纪地质,2001,21(3):24-28
    [207] 刘秦玉,杨海军,贾英来。南海上层海洋环流和热结构季节变化特征及其形成机制研究综述.见:苏纪兰主编,南海环境与资源基础研究前瞻。北京:海洋出版社,2001,22-31
    [208] 马金龙,韦刚健,贾国东.碱提取法分析海洋沉积物中生物硅方法中碎屑组份污染的评估及校正.地球化学(in press)
    [209] 钮智旺.南海表层水温的长周期振荡及其与El Niflo的关系.海洋学报,1994,16(2):43-49
    [210] 苏纪兰,许建平,蔡树群,王欧.见:丁一江,李崇银主编:南海季风爆发和演变及其与海洋的相互作用.北京:气象出版社,1999,66-75
    [211] 苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(4):1-16
    [212] 唐运干.南海沉积物中的糖类物质,见:郑连福,陈文斌主编.南诲海洋沉积作用过程与地球化学研究.北京:海洋出版社,1993,168—176
    [213] 汪品先,田军,成鑫荣,刘传联,徐建.探索大洋碳储库的演变周期.科学通报,2003,48(21):2216-2227
    [214] 汪品先.气候演变中的冰与碳.地学前缘,2002,9(1):85-93
    [215] 汪品先等.十五万年来的南海—南海晚第四纪古海洋学研究阶段报告.上海:同济大学出版社,1995,1-172
    [216] 王东晓,谢强,杜岩,王卫强,陈举.1997-1998年南海暖事件.科学通报,2002,47(9):711-716
    [217] 王桂华.南海中尺度涡的运动规律探讨.中国海洋大学博士学位论文,2004
    [218] 王汝建,林隽,郑连福,陈荣华,陈建芳.1993-1995年南海中部的硅质生物通量及其季节性变化:季风气候和El Nino的响应.科学通报,2000,45(9):974-978
    [219] 徐杰.浙江沿海富营养化与赤潮历史的沉积记录研究.浙江大学环资学院/国家海洋局第二海洋研究所硕士论文,2004
    [220] 徐鲁强,陈建芳,唐运千.南海北部沉降颗粒氨基酸通量及生物地球化学意义.海洋学报,1997,19(2):57-64
    [221] 徐锡祯,邱章,龙小敏.南海温跃层基本特征及一维预报模式.海洋与湖沼,1993,24(5):494-502
    [222] 徐征宇,王星福,钱江初.南海中部沉积速率初步研究.见:郑连福,陈文斌主编.南海海洋沉积作用过程与地球化学研究.北京:海洋出版社,1993,85-92
    [223] 许建平等,南海海域物理海洋.见:郭炳火等编:中国近海及邻近海域海洋环境(第三篇).北京:海洋出版社,2004,189-239
    [224] 郑玉龙,王汝建,郑连福,陈荣华,陈建芳.南海北部1987-1988年颗粒物质和硅藻通量的季节性变化:季风气候与El Nino的响应.第四纪研究,2001,21(4):359-365
    [225] 中国科学院南海海洋研究所.南海海区综合调查研究报告(二).北京:科学出版社.1985
    [226] 中国科学院南海海洋研究所.南海海区综合调查研究报告(一).北京:科学出版社.1982
    [227] 中国科学院南沙综合科学考察队,南沙群岛及其邻近海区沉积图集,湖北科学技术出版社,1993
    [228] 周发锈,于慎余.南海表层水温的低频振荡.海洋学报,1991,13(2):43-49
    [229] 郑连福,郭育廷,Winn K,Storfferss P,南海北部晚第四纪碳酸盐旋回及其地层学意义,见:郑连福,陈文斌主编:南海海洋沉积作用过程与地球化学研究.北京:海洋出版社,1993,109-123
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.