越南冷涡及其上升流的观测与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过2007年8月15日至2007年9月6日对越南东部11°N~15°N,110°E~114°E海域观测获得的温、盐、密度和流速资料,结合Jason-1卫星高度计日平均资料对越南东部海域夏季的中尺度现象进行了分析和计算。
     首先利用卫星高度计资料发现并分析该海区8月15日到9月6日之间出现的中尺度涡A、B的位置、范围和生消过程。冷涡A从8月15日出现到9月6日基本消失,中心位置在13.75°N,112.25°E,直径约120千米;冷涡B从8月26日开始到9月6日依然存在,中心位置在11.75°N,110.5°E,直径约150千米。进一步分析温、盐、密度和流速场的空间结构和分布特点,从而更全面阐明以上中尺度现象特征。
     其次利用观测得到的空间3维密度场和绝对流速场,采用数值方法求解纽曼边界条件下的2维Omega方程,求得参考面上的绝对动力高度。对其进行垂向积分得到3维空间的绝对动力高度场,从而根据地转关系计算出整个计算空间的地转流场。冷涡A、B海区地转流场大体呈现气旋形态,在冷涡外沿地转流速可达1m/s。在地转流场中,根据狄利克雷边界条件下3维的Omega方程,可以诊断出相关海域的垂向流速大小和分布。一般来说,大洋内区的垂向流速量级约为O(10-2)m d-1。通过计算,发现由于中尺度现象的存在,使得相应海域的升降流场的强度大大增加。其中,冷涡A所在海域的垂向流速最大可以达到6m d-1;冷涡B的所在海域最大垂向流速最大可达15m d-1。数值求解Omega方程得到的垂向流速准确程度通常受到以下因素如:准地转关系假设;CTD数据处理过程中插值过程对密度场的影响;边界条件的选取和定义;海上调查观测过程的不同步性以及分辨率不够高等的影响。
Analysis and calculation were given based on Jason-1 satellite altimetry, CTD and ADCP data, which were sampled from Aug. 15 to Sept. 6 in the 2007 Summer Cruise within the area 11°N~15°N, 110°E~114°E.
     Satellite altimetry data were used to determine the locations, scales and life-spans of the mesoscale eddy A and B, respectively. Cold eddy A which lasted from Aug. 15 to Sept. 6, merged at 13.75°N, 112.25°E with a diameter around 120km. On Aug. 26, cold eddy B show up at 11.75°N, 110.5°E with a diameter about 150km. Further description to the characteristics of those two mesoscale eddies were carried out based on the analysis of spatial structures of temperature, salinity, density and absolute velocity fields.
     3-D density and absolute velocity field were used to obtain the absolute dynamic height field via the numerical solution of 2-D Omega equation. The geostrophic velocity field was calculated due to the geostrophic balance. Geostrophic velocity field is generally cyclonic pattern. At the outskirt of gyre, geostrophic velocity was up to approximately 1m/s. Given the 3-D geostrophic velocity field, velocity of vertical circulation could be diagnosed using 3-D Omega equation. Usually vertical velocity in the inner ocean owned the magnitude of O(10-2 ) m d-1. But due to the presence of mesoscale eddies, vertical velocity here was up to 6m d-1 and 15m d-1 at cold eddy A and B, respectively. The accuracy of the vertical velocity could be impact by following aspects, such as, the assumption of quasi-geostrophic balance, the interpolation of raw density data, the choice of boundary conditions and the assumption that each survey was a synoptic one with high resolution.
引文
1. J. T. ALLEN and D. A. SMEED, Potential Vorticity and Vertical Velocity at the Iceland-Faeroes Front. J. Phys. Oceanogr., 1996, 26: 2611-2634
    2. R. T. POLLARD and L. A. REGIER, Vorticity and Vertical Circulation at an Ocean Front. J. Phys. Oceanogr., 1992, 22: 609-625
    3. V. FIEKAS, H. LEACH, K. J. MIRBACH and J. D. WOODS, Mesoscale Instability and Upwelling. Part 1: Observations at the North Atlantic Intergyre Front. J. Phys. Oceanogr., 1994, 24: 1750-1758
    4. VOLKER H. STRASS, Mesoscale Instability and Upwelling. Part 2: Testing the Diagnostics of Vertical Motion with a Three-Dimensional Ocean Front Model. J. Phys. Oceanogr., 1994, 24: 1759-1767
    5. SCOTT S. LINDSTROM and D. RANDOLPH WATTS, Vertical Motion in the Gulf Stream Near 68°W. J. Phys. Oceanogr., 1994, 24: 2321-2333
    6. JOAQUIN TINTORE, DAMIA GOMIS and SERGIO ALONSO, Mesoscale Dynamics and Vertical Motion in the Alboran Sea. J. Phys. Oceanogr., 1991, 21: 811-823
    7. M. E. FIADEIRO and GEORGE VERONIS, Circulation and Heat Flux in the Bermuda Triangle. J. Phys. Oceanogr., 1983, 13: 1158-1169
    8. Shang-Ping Xie, Qiang Xie, Dongxiao Wang and W. Timothy Liu, Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 2003, 108: 17,1-17,13
    9. Ken O. Buesseler, Craig A. Carlson, Cabell S. Davis, Courtney Ewart, Paul G. Falkowski, Sarah A. Goldthwait, Dennis A. Hansell, William J. Jenkins, Rodney Johnson, Valery K. Kosnyrev, James R. Ledwell, Qian P. Li, David A. Siegel Deborah K. Steinberg, Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. SCIENCE, 2007, 316: 1021-1025
    10. Claudia R. Benitez-Nelson,1* Robert R. Bidigare, Tommy D. Dickey, Michael R. Landry, Carrie L. Leonard, Susan L. Brown, Francesco Nencioli, Yoshimi M. Rii, Kanchan Maiti, Jamie W. Becker, Thomas S. Bibby, Wil Black, Wei-Jun Cai, Craig A. Carlson, Feizhou Chen, Victor S. Kuwahara, Claire Mahaffey, Patricia M. McAndrew, Paul D. Quay, Michael S. Rappé, Karen E. Selph, Melinda P. Simmons, Eun Jin Yang, Mesoscale Eddies DriveIncreased Silica Export in the Subtropical Pacific Ocean. SCIENCE, 2007, 316: 1017-1021
    11. B. J. Hoskins, I. Draghici, and H. C. davies, A new look at theω-equation. Quart. J. Roy. Meteor. Soc., 1978, 104: 31-38
    12. H. L. Bryden, Hrizontal advection of temperature for low-frequency motion. Deep-Sea Res., 41, 51-79
    13. J. Candela, R. C. Beardsley, and R. limeburner, Separation of tidal and subtidal currents in ship-mounted Acoustic Doppler Current Profiler observations. J. Geophys. Res., 97: 769-788
    14. J. M. Pinot, J. Tintore, and D. P. Wang, A study of the omega equation for diagnosing vertical motions at ocean fronts. J. Mar. Res., 54:239-259
    15. Read, J. F., and R. T. Pollard, Water masses in the region of the Iceland-Faeroes Front. J. Phys. Oceanogr., 22: 1365-1378
    16. Chew, F., J. M. Bane, and D. A. Brooks, On vertical motion, divergence, and the thermal wind balance in cold-dome meanders: a diagnostic study. J. Geophys. Res., 90: 3173-3183
    17. Bower, A. S., Potential vorticity balances and horizontal divergence along particle trajectories in Gulf Stream meanders east of Cape Hatteras. J. Phys. Oceanogr., 19: 1669-1681
    18. Hallock, Z. R., Variability of frontal structure in the southern Norwegian Sea. J. Phys. Oceanogr., 15: 1245-1254
    19. Hansen, B., and J. Meincke, Eddies and meanders in the Iceland-Faeroes Ridge area. Deep-Sea Res., 26A: 1067-1082
    20. Weller, R. A., D. L. Rudnick, C. C. Eriksen, K. L. Polzin, N. S. Oakey, J. W. Toole, R. W. Schmitt, and R. T. Pollard, Force ocean response during the Frontal Air-Sea Interaction Experiment(FASINEX), J. Geophys. Res., 96: 8611-8638
    21. R. L. Wiley, and M. G. Briscoe, Vertical circulation at fronts in the upper ocean. Deep-Sea Res.(Suppl: A Voyage of Discovery), 24:253-275
    22. Reiger, L., Mesoscale current fields observed with a shipboard profiling acoustic current meter. J. Phys. Oceanogr., 12: 880-886
    23. Pollard, R. T., Properties of near-surface inertial oscillations. J. Phys. Oceanogr., 10: 385-398
    24. Leach, H. The diagnosis of synoptic-scale vertical motion in the seasonal thermocline. Deep-Sea Res., 34: 2005-2017
    25. Bleck, R., R. Onken, and J. D. Woods, A two-dimensional model of mesoscale frontogenesisin the ocean. Quart. J. Roy. Meteor. Soc., 114: 347-371
    26. Allen, J. T., D. Smeed, A. Nurser, J. Zhang, and M. Rixen, Diagnosing vertical velocities using the QG Omega equation: An examination of the errors due to sampling strategy, Deep-Sea Res., 2001, 48: 315– 346
    27. Gomis, D., S. Ruiz, and M. Pedder, Diagnostic analysis of the 3D ageostrophic circulation from a multivariate spatial interpolation of CTD and ADCP data, Deep-Sea Res., 2001, 48: 269– 295
    28. Rixen, M., J. T. Allen, and J.-M. Beckers, Diagnosing vertical velocities using the QG omega equation: A relocation method to obtain pseudosynoptic data sets, Deep-Sea Res., 2001a, 48: 1347– 1373
    29. Robinson, A., A. Hecht, N. Pinardi, J. Bishop, W. Leslie, Y. Rosentraub, A. Mariano, and S. Brenner, Small synoptic/mesoscale eddies: The energetic variability of the Eastern Levantine basin, Nature, 1987, 327: 131–134
    30. Mooers, C. N. K., and A. R. Robinson, Turbulent jets and eddies in the California Current and inerred cross-shore Transports. Science, 1984 223: 51-53
    31. Pedlosky, J., Geophysical Fluid Dynamics, 2nd ed. Springer-Verlag.
    32. Robinson, A. R., Eddies in Marine Sciences. Springer Verlag.
    33. A. Hecht, N. Pinardi, J. Bishop, W. G. Leslie, Z. Rosentroub, A. J. Mariano and S. Brenner, Small synoptic/mesoscale eddies and energetic variability of the eastern Levantine basin, Nature, 1987, 327, No, 6118, 131-134
    34. Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, 1982, 662 pp.
    35. Holton, J. R., An Introduction to Dynamic Meteorology, 2ded. Academic Press, 391pp.
    36. Onken, R., Mesoscale upwelling and density finestructure in the seasonal thermocline-A dynamical model. J. Phys. Oceanogr., 1992, 22:1257-1273
    37. Kielmann, J., and R.H. Kase, Numerical modeling of meander and eddy formation in the Azores Current frontal zone. J. Phys. Oceanogr., 1987, 17: 529-541
    38. Woods, J. D., R. Onken, and J. Fischer, Thermohaline intrusions created isopycnically at oceanic fronts are inclined to isopycnals. Nature, 1986, 322: 446-449
    39. Bower, A. S., Potential vorticity balances and horizontal divergence along particle trajectories in Gulf Stream meanders east of Cape Hatteras. J. Phys. Oceanogr., 1989, 19: 1669-1681
    40. Bower, A. S., A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J. Phys. Oceanogr., 1991, 21: 173-180
    41. Hall, M. M., Energetics of the Kuroshio extension at 35°N, 152°E. J. Phys. Oceanogr., 1989, 21: 958-975
    42. Osgood, K. E., J. M. Bane Jr., and W. K. Dewar, Vertical velocities and dynamical balances in Gulf Stream meanders. J. Geophys. Res., 1987, 92(C): 13 029- 13 040
    43. Hwang, C., and S.-A. Chen, Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry, J. Geophys. Res., 2001, 105, 23,943– 23,965
    44. Ho, C.-R., Q. Zheng, Y. S. Soong, N.-J. Kuo, and J.-H. Hu, Seasonal variability of sea surface height in the South China Sea observed with TOPEX/POSEIDON altimeter data, J. Geophys. Res., 2000b, 105: 13,981–13,990
    45. Qu, T., Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature, J. Geophys. Res., 2001, 106: 6943–6955
    46. Shaw, P.-T., and S.-Y. Chao, Surface circulation in the South China Sea, Deep Sea Res., Part I, 1994, 41: 1663– 1683
    47.叶安乐,李凤歧,物理海洋学,中国海洋大学出版社,1992,183-187
    48.杨海军,刘秦玉,南海海洋环流研究综述,地球科学进展,1998,Vol.13,No.4: 364-368
    49.王桂华,苏纪兰,齐义泉,南海中尺度涡研究进展,地球科学进展,2005, Vol.20,No.8: 882-886
    50.李立,南海中尺度海洋现象研究概述,台湾海峡,2002,Vol. No.2: 265-274
    51.柴扉,薛惠洁,侍茂崇,南海上升流区域分布及形成机制,中国海洋学文集,2001,13:117-128
    52.孙志忠,偏微分方程的数值解法,科学出版社,2005,28-62
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.