长江口及邻近海域颗粒态及溶解态硅稳定同位素的ICP-MS测定及分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过Mg(OH)2-阳离子交换树脂法对样品中的硅元素进行富集分离,并采用单接收器电感耦合等离子质谱仪测定了长江口及邻近东海区域中溶解态和颗粒态样品中硅稳定同位素的组成。通过以上研究,初步认识研究区域内硅稳定同位素的分布特征及其与相关生物化学因子之间的联系,为今后深入研究长江口及邻近海区的初级生产力变化、水团运动等生物地球化学过程提供一些帮助。
     在质谱仪中分辨率工作条件下,硅同位素质量峰可以和相邻多原子干扰峰完全分开,确保了测量信号的准确性。通过对质谱仪进样条件、检测条件和数据处理条件的选择,采取增加测量次数的方法抵偿系统瞬间波动造成的偏差,通过增加质量窗口扫描范围可以避免质量漂移对测量信号的影响。在最佳分析条件下,硅同位素标准物质的比值重复测量精密度RSD小于0.05%,硅同位素标准物质GBW04421和GBW04422的δ29Si和δ30Si值长期重现性分析结果分别为-0.04±0.04%。,-0.06±0.06‰和-1.42±0.12%。,-2.71±0.1‰(1σ),与相关文献中报道的结果范围一致(Ding et al.,2005)。
     完善了溶解态样品的Mg(OH)2-阳离子交换树脂的预处理方法,对共沉淀引发剂加入量、沉淀离心条件和样品体积等条件进行优化选择。结果表明通过该预处理方法可以将样品中存在大量杂质离子与硅元素分离开来,并且对硅进行有效富集,富集倍数可达50倍。不同基体水样加标回收率均在99~105%之间,方法检出限为0.16μmol/L(3σ,n=8)。实验结果表明,本方法中的各个步骤不会引起硅同位素分馏的发生。
     2006.08至2007.03月份间徐六泾定点站溶解态硅δ30Si值的月季变化范围在+1.25‰~+3.17%。,平均值为+2.17±0.73‰,高于世界其他淡水河流的溶解态δ30Si值。δ30Si与DSi含量之间具有显著正相关性,可能与长江流域岩石化学风化条件以及支流对干流的贡献程度有一定的关系。
     在2005年8月长江口航次调查范围内,浮游植物生长吸收所需要的溶解态硅酸盐主要来自于长江冲淡水的输送。浮游植物生长吸收对硅同位素的分馏作用,导致表层溶解态硅同位素δ30Si值高于底层。由于影响硅同位素组成δ30Si的因素较为复杂,溶解态δ30Si与DSi之间未显示具有相关性。悬浮颗粒物样品δ30Si值与DSi之间显著的正相关性表明浮游植物对硅酸盐的吸收利用水平越高,硅同位素在生源硅体内的分馏程度越大。根据理想条件下的开阔稳态模型计算,长江口区域生源硅的分馏因子ε=1.95±0.73‰。
     2006年8月长江口及邻近东海区域调查结果发现,表层溶解态δ30Si与硅藻类浮游植物的生长水平有关,同时表明,在整个区域的表层存在不同来源水团对当地溶解态硅的持续输送。在低氧区由于生源颗粒物在底层的降解程度较高,引起的硅同位素δ30Si值升高的程度也越明显。在浮游植物生长水平较低的区域,溶
    解态硅同位素组成可能能够用于指示水团特征。总体来水,外海水的溶解态硅同
    位素组成δ30Si值较低,为+0.6‰~+1.5%。;沿岸淡水系的溶解态硅同位素δ30Si较
    高,约在为±2.89‰~+3.21‰。
In the present thesis, a method based on Mg(OH)_2 coprecipitation followed by cation-exchange separation for the determination of stable silicon isotopic compositions in natural waters by single-collector inductively coupled plasma mass spectrometry (SC-ICPMS, Finnigan Element 2) was developed. The dissolved and particulate silicon isotope samples were collected from sample locations in Xuliujing, Yangtze River estuary and its adjacent East China Sea. The main purposes of this study are to elucidate the distribution of the silicon isotopes and their relationships with the other biogeochemical factors in the study area. Hoping to provide some basic helps in the further studies of chemical weathering, primary production and water mass transportation in the Yangtze River estuary and its adjacent East China Sea.
    The use of medium resolution (R=4000) of single-collector inductively coupled plasma mass spectrometry allows polyatomic ion interference-free measurements of silicon isotopes using conventional nebulization sample introduction without aerosol desolvation. Studies on the parameters of sample introduction, signal detection setting and date acquisition indicate that the variation caused by instant fluctuating ion currents could be compensated by increasing the scan numbers, and a large mass window scale setting might minimize the potential effect from mass shift. Three kinds of Si isotopic standard reference materials, NBS28, GBW04421 and GBW04422, were used to evaluate the potential availabilities of determination of silicon isotopic ratios by SC-ICPMS. Optimization of scanning condition led to a relative standard deviation for 19 consecutive ratio measurements of 0.012~0.045%. The δ~(29,30) Si of GBW04421 and GBW04422 were -0.04±0.04 ‰, -0.06±0.06 ‰ and -1.42±0.12 ‰, -2.71±0.1 ‰, respectively. The long-term reproducibilities would reach the value of 0.1 ‰ for δ~(29,30)Si analysis. These results showed a good consistency with previous study (Ding et al., 2006).
    A pretreatment method based on Mg(OH)_2 coprecipitation followed by cation exchange separation for natural water was also established. Studies on the procedure parameters of coprecipitation procedure indicate that dissolved Si could be quantitatively removed from solution by the formation of brucite Mg(OH)_2, initiated by the addition of NaOH, and the separation of Si from Mg~(2+) was achieved by using cation-exchange resin with 98% yields. The optimized procedure provides Si recovery between 96%~105% among various natural water samples. The detection limit (3 a, n=8) of dissolved Si is 0.16μmol/L. The reproducibility (n=8) of the present study is less than 3%. This procedure is effective for quantitative removal of Si from samples as large as 200ml, and a concentration factor of 50 can be reached. Furthermore, no isotopic fractionation was observed at each step of this sample pretreatment method.
    The seasonal variation of dissolved silicon isotope δ~(30)Si value of Xuliujing is from +1.25 ‰ to +3.17 ‰, the average value is 2.17±0.73 ‰. The δ~(30)Si value is much higher than that of other riverine water in the world. It was found that a positive relationship between the concentration (DSi) and isotopic composition of dissolved silicon, and the discharge is inversely related to the δ~(30)Si composition. These trend mainly was controlled by the extent of chemical weathering of crustal rocks along the Yangtze River mainstream and the amount of water and δ~(30)Si value of DSi from tributaries.
    Dissolved and particulate silicon isotope samples collected in the Yangtze River estuary in 2005 were analyzed. The dissolved silicate uptaken by phytoplankton growth was mainly contributed by Changjiang River diluted water. Due to the silicon isotopic fractionation during opal biomineralizaion, the dissolved δ~(30)Si value in surface water were found higher than that in bottom water. However, there was no correlation between silicon isotope composition and DSi, for the processes controlling the dissolved Si isotope composition within this area were complex. The δ~(30)Si value of particulate matters showed a positive linear relationship with the AOU in surface water. It might show a potential correlation between the fractionation of silicon isotope in biogenic matter and the nutrient utilization. The silicon biological fractionation factor ε=1.95±0.73 ‰ was calculated on the assumption of open-system model in this study area.
    The variations of the dissolved silicon isotopic composition of oxygen-deficient zone in the Yangtze River estuary and its adjacent East China Sea in 2006 were also examined. The dissolved silicate δ~(30)Si value in surface water vary from +0.94 ‰ to +3.21 ‰.The distribution δ~(30)Si in surface water of was consistent with DSi and fucoxanthin, respectively, which showed that high level of phytoplankton growth might lead the increasing of dissolved δ~(30)Si value, and the study area was undergone the consecutive transportation of dissolved silicate from different water masses. The high value of δ~(30)Si at bottom water in the oxygen-deficient zone was due to the high decomposition and dissolution of biogenic particles. In the low primary production area, the characters of δ~(30)Si value of different water mass were more distinguishable. Based on this study, the δ~(30)Si values of sea water were between +0.6 to +1.5 ‰, which are comparable with the value of open ocean water, and the fresh water source showed higher δ~(30)Si values relative to the ocean.
引文
1.陈吉余,陈祥禄,杨启伦.上海海岸带和海涂资源综合调查报告.上海:上海科技出版社,1988,114-116
    2.陈静生,王飞越,夏星辉.长江水质地球化学.地学前缘,2006,13:74-85
    3.陈沈良,张国安,杨世伦等.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报,2003,59:260-266
    4.冯士笮,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999,435
    5.郭玉洁,杨则禹.长江口区浮游植物的数量变动及生态分析.海洋科学集刊,1992,33:167-189
    6.胡方西,胡辉,谷国传等.长江口锋面研究.2002,上海:华东师范大学出版社,16-21
    7.孔亚珍,贺松林,丁平兴等.长江口盐度的时空变化特征及其指示意义.海洋学报,2004,26:9-18
    8.李茂田,程和琴.近50年来长江入海溶解硅通量变化及影响.中国环境科学,2001,21:193-197
    9.林承坤.长江口泥沙的数量与输移.中国科学,1988,1:104-112
    10.李道季,张经,黄大吉等.长江口外氧地亏损.中国科学(D),2002,32:686-694
    11.李凤歧,王凤钦,苏育嵩等.黄、东海域春季水团的划分、判别与分析.青岛海洋大学学报,1989a,19:22-34
    12.李凤歧,王凤钦,苏育嵩等.黄、东海域春季水团的模糊分析.青岛海洋大学学报,1989b,19:35-46
    13.李键庸.长江河口段徐六泾节点演变规律.人民长江,2000,31:32-34
    14.刘兴泉,候一筠,尹宝树.东海沿岸海区垂直环流及其温盐结构动力学过程研究Ⅰ.环流的基本特征.海洋与湖沼,2004,35:393-403
    15.吕华庆.东海1999年夏、冬上层水团的温、盐分布及其与历史平均状况的比较.海洋学研究,2006,24:28-36
    16.戚艳平.长江及其邻近海域中颗粒态及溶解态正构烷烃得分布.2006,华东师范大学硕士毕业论文
    17.任慧军,詹杰民.黄海冷水团的季节变化特征及其形成机制研究.水动力学研究与进展,2005,20:887-896
    18.贠湛海.长江口徐六泾站潮流测验资料分析方法探讨.人民长江,1999,30:23-34
    19.邵秘华,李炎,王正方等 长江口海域悬浮物的分布时空变化特征,海洋环境科学,1996,15:36-40
    20.沈焕庭,胡辉.长江口门附近的水流与混合.陈吉余,等.长江河口动力地貌和沉积过程.上海:上海科学技术出版社,1988,131-144.
    21.唐晓辉,王凡.长江口邻近海域夏、冬季水文特征分析.海洋科学集刊,2004,46:42-66
    22.王保栋.长江冲淡水的扩展及其营养盐的输运.黄渤海海洋,1998,16:41-47
    23.王保栋,战闰,藏家业.长江口及其邻近海域营养盐的分布特征和输运途径.海洋学报,2002,24:53-58
    24.汪亚平,潘少明,Wang H V 等.长江口水沙入海通量的观测与分析.地理学报,2006,61:35-46
    25.翁学传,王从敏 台湾暖流深层水变化特征的分析.海洋与湖沼,1983,14:357-366
    26.翁学传,王从敏 台湾暖流水(团)夏季T-S特征和来源的初步分析.海洋科学集刊,1984,21:113-134
    27.吴玉霖,傅月娜,张永山等 长江口海域浮游植物分布及其与径流的关系,海洋与湖沼,2004,35:246-251
    28.余立华,李道季,方涛等.三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化.生态学报,2006,26:2817-1826
    29.袁文志,高正荣,谢瑞.长江徐六泾河段北岸岸线整治工程探讨.水利水运科学研究,1999,3:41-49
    30.张恩仁,高磊,张经.长江口主要阳离子随盐度变化的研究.水科学进展,2003,14:442-446
    31.张立诚,佘中盛,章申等.水环境化学元素研究.中国环境科学出版社,1996
    32.张绪东,张国友,佟凯等 黑潮源区海域水团分析.海洋通报,2004,23:15-21
    33.朱建荣,丁平兴,胡敦欣.2000年8月长江口外冲淡水和羽状锋的观测.海洋与湖沼,2003,34:249-255
    34.邹娥梅,熊学军,郭炳火等.黄、东海温盐跃层的分布特征及季节变化.黄渤海海洋,2001,19:8-18
    35. Albarede F, Telouk P, Blichert-Toft J, et al. Geochim. Cosmochim. Acta, 2004, 68, 2725-2744
    36. Allenby R. J. Determination of the isotopic rations of silicon in rocks. Geochimica et Cosmochimica Acta, 1954, 5: 40-48
    37. Archer D., Lyle M., Rodgers K., et al. What controls opal preservation in tropical deep-sea sediments? Paleoceanography, 1993, 8: 7-21
    38. Basile-Doelsch I., Meunier J. D., Parron C. Another continental pool in the terrestrial silicon cycle. Nature, 2005, 433: 399-402
    39. Brzezinski M. A. The Si: C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 1985, 21: 347-357
    40. Brzezinski M. A., Olson R. J., Chisholm S. W. Silicon availability and cell-cycle progression in marine diatom. Mar. Ecol.: Prog. Ser. 1990, 67: 83-96
    41. Broecker W. S., Maier-Reimer E. The influence of air and sea exchange on the carbon isotope distribution in the sea. Global. Biogeochem. Cycles. 1992,6: 315-320
    
    42. Brzezinski M. A., Nelson D. M. Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep-Sea Res. 1989,36: 1009-1030
    43. Brzezinski M. A., Jones J. L. The balance between silica production and silica dissolution in the sea: Insights from Monterey Bay, California, applied to the global data set. Limnology and Oceanngraphy. 2003,48: 1846-1854
    44. Buesseler K. O. The decoupling of production and particulate export in the surface ocean. Global Biogeochem. Cycles, 1998,167: 297-310
    45. Cardinal, D., Alleman, L., De Jong, J., et al. Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. Journal of analytical atomic spectrometry. 2003,18: 213-218
    46. Cardinal D., Alleman L. Y., Dehairs F., et al. Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochenmical Cycles, 2005,19: GB2007
    47. Corvaisier R., Treguer P., Beucher C, et al. Determination of the rate of production and dissolution of biosilican in marine waters by thermal ionisation mass spectrometry. Analytica Chimica Acta, 2005,534: 149-155
    48. Criss R. E., Principles of Stable Isotope Distribution, Oxford Univ. Press, New York, 1999.
    49. Cufrie L A. Nomenclature in evaluation of analytical methods includingdetection and quantification capabilities (IUPAC Recommendations 1995). Analytica Chimica Acta, 1999,391:105-126.
    50. De La Rocha C. L., Brzezinski M. Purification, recovery, and laser-driven fluorination of silicon from dissolved and particulate silica for the measurement of natural stable isotope abundance. Analytical Chemistry, 1996,68: 3746-3750
    51. De La Rocha C. L., Brzezinski M., DeNiro M. J. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochimica et Cosmochimica Acta, 1997,61: 5051-5056
    52. De La Rocha C. L., Brzezinski M., DeNiro M. J. et al. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 1998,395: 680-683
    53. De La Rocha C. L., Brzezinski M., DeNiro M. J. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta, 2000,64: 2467-2477
    54. De La Rocha D. L. Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochemistry Geophysics Geosystems. 2002,3:10.1029/2002GC000310
    55. De La Rocha C. L. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology, 2003,31: 423-426
    56. De La Rcocha C. L., Bickle M. J. Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology, 2005,217: 267-282
    57. Ding T., Jiang S., Wang D., et al. Silicon isotope geochemistry. Geological Publishing House, Beijing. 1996
    58. Ding T., Wan D., Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochimica et Cosmochimica Acta, 2004,68: 205-216
    59. Ding T. P., Ma G. R., Shui M. X., et al. Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology, 2005a,218: 41-50
    60. Ding T. P., Wan D., Bai R., et al., Silicon isotope abundance ratios and atomic weights of NBS-28 and other reference materials. Geochimica et Cosmochimica Acta, 2005b,69: 5487-5494
    61. Dombovari J., Becker J. S., Dietze H. -J. Isotope ratio measurements of magnesium and determination of magnesium concentration by reverse isotope dilution technique on small amount of 26Mg-spiked nutrient solutions with inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry, 2000,202: 231-240
    62. Douthitt C. B. The geochemistry of the stable isotopes of silicon. Geochimica et Cosmochimica Acta., 1982,46: 1449-1458
    63. Dymond J., Collier R., McManus M., et al., Can the aluminum and titanium contens of ocean sediments be used to determine the paleoproductivity of the ocean? Paleoceanography, 1997, 12: 586-593
    64. Elderfield H., Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci., 1996,24: 191-224
    65. Engstrom E., Rodushkin L., Baxter D. C, et al. Chromatographic purification for thr determination of dissolved silicon isotopic compositions in natural waters by high-resolution multicollector inductively coupled plasma mass spectrometry. Analytical Chemistry, 2005, ASAP Article, DOI: 10.1021 /ac051246v
    66. Epstein S. and Taylor H. P. 18O/16O,30Si/28Si D/H and 13C/12C studies of lunar rocks and minerals. Science., 1970,167: 533-535
    67. Fanning K. A., Pilson M. E. Q. Interstital silica and pH in marine sediments: some effects of sampling procedure. Science., 1971,17: 1228
    68. Franck P. and Siv Hiorth D. Direct isotope ratio measurement of ultra-trace lead in waters by double focusing inductively coupled plasma mass spectrometry with an ultrasonic nebuliser and a desolvation unit. Journal of Analytical Atomic Spectrometry, 1999,14: 1573-1577
    69. Georg R B, Reynolds B C, Frank M, et al. Mechanisms controlling the silicon isotopic compositions of river waters. Earth and Planetary Science Letters, 2006,249: 290-306
    70. Goering J. J., Nelson D. M., Carter J. A., Silicic acid uptake by natural populations of marine phytoplankton. Deep-Sea Res., 1973,20: 777-789
    71. Guillard R. R. L., Kilham P., Jackson T. A. Kinetics of silicon limited growth in the marine diatom Thalassiosira pseudonana Hasle and Heimdal (Cyclotella nana Hustedt). J. Phycol., 1973,9: 233-237
    72. Hesse K J, Tillmann U. Nutrient-phytoplankton relations in the German Wadden Sea. ICES-Council-Meeting-Papers. Copenhagen-Denmark ICES 13 pp.
    73. Heumann K. G, Gallus S. M., Radlinger G, et al., Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. Journal of Analytical Atomic Spectrometoy, 1998,13: 1001-1008
    74. Hurd D. C. Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific. Geochim. Cosmochim. Acta., 1973,37: 2257-2282
    75. Hurd D. C, Birdwhistell S. On producing a general model for biogenic silica dissolution. Am. J. Sci., 1983,283: 1-28
    76. Johnson T. C. Controls on the preservation of biogenic opal in sediments of the Eastern Tropical Pacific. Science., 1976,192: 887-890
    77. Karl D M, Tien G MAGIC:A sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol Oceanogr, 1992,37: 105-116.
    78. Keil R G, Cowie G L. Organic matter preservation through the oxygen-deficient zone of the NE Arabian Sea as discerned by organic carbon: mineral surface area ratios. Marine Geology, 1999,161: 13-22
    79. Klemens P., Heumann K. G Development of an ICP-HRIDMS method for accurate determination of trace of silicon in biological and clinical samples. Fresenius J. Anal. Chem., 2001,371:758-763
    80. Lewin J. C. The dissolution of silica from diatom walls. Geochim. Cosmochim. Acta., 1961,21:182-195
    81. Li, J.F. and Zhang, C. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, 1998,148: 117-124.
    82. Limeburner R, Beardsley R C, Zhao J. Water Mass and Circulation in the East China Sea. Proceedings of International symposium on sedimentation on the continental shelf, with special reference to the East China Sea, April 12-16, 1983, Hangzhou, China, Vol. 1. Beijing: China Ocean Press, 1983. 285-294
    83. Lisitzin A. P. Main regularities in the distribution of recent siliceous sediments and their relation to the climatic zonality. Geochem. Silica, Nauka: Moscow. 1966
    84. Liu S. M., Zhang J., Li R. X. Ecological significance of biogenic silica in the East China Sea. Mar. Ecol. Prog. Ser., 2005,290: 15-26
    85. Michalopoulos P., Aller R. C. Rapid clay mineral formation in Amazon Delta sediments: reverse weathering and oceanic elemental fluxes. Science., 1995,270: 614-617
    86. Morrison J M, Codispoti L A, Smith S L, et al. The oxygen minimum zone in the Arabian Sea during 1995. Deep-Sea Research II, 1999 ,46: 1903-1931
    87. Nelson D. M., Ahern J. A., Herlihy L. J. Cycling of biogenic silica within the upper water column of the Ross Sea. Mar. Chem., 1991,35: 461-476
    88. Nelson D. M., Treguer P., Brzezinski M. A., et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationsip to biogenic sedimentation. Global Biogeochem. Cycles., 1995,9: 359-372
    89. Nelson D. M. Dortch Q. Silicic acid depletion and silicon limitation in the plume of the Mississippi River: evidence from kinetic studies in spring and summer. Mar. Ecol. Prog. Ser., 1996,78: 139-147
    90. Neslon D. M., Goering J. J. A stable isotope tracer method to measure silicic acid uptake by marine phytoplankton. Analytical Biochemistry, 1997,78: 139-147
    91. Passche E. Growth of the plankton diatom Thalassiosira nordenskioldii Cleve at low silicate concentration. J. Exp. Mar. Biol. Ecol., 1975,18: 173-183
    92. Pickett-Heaps J., Schmid A. M. M., Edgar L. A. The cell biology of diatom valve formation. Prog. Phycol. Res., 1990, 7: 1-168
    93. Queguiner B., Brzezinski M. A. Production of biogenic silica in the Southern Ocean (Atlantic Sector) during austral spring 1992: contrast between subsystems.
    94. Rabouille C. Gaillard J. R, Treguer P., et al. Biogenic silica recycling in surficial sediments across the Polar Front o the Southern Ocean (Indian sector). Deep-Sea Res. II 1997,44: 1151-1176
    95. Ragueneau O., Queguiner B., Treguer P. Contrast in biological responses to tidally-induced vertical mixing for two macrotidal ecosystems of Western Europe, Estuarine. Coastal Shelf Sci.. 1996,42: 645-665
    96. Ragueneau O., Treguer P., Leynaert A., et al., A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 2000,26: 317-365
    
    97. Raven J. A., Johnston A. M. Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol. Oceanogr.. 1991,36: 1701-1714
    
    98. Reincke T., Barthel D. Silica uptake kinetics of Halichondria panicea in Kiel Bight. Marine Biology., 1997,129: 591-593
    99. Reynolds B. C, Frank M., Halliday A. N. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth and Planetary Science Letters, 2006,244: 431-443
    100. Richard F A,Anoxic basins, fjords. [A] In: Riley J P, Skirrow G (eds). Chemical Oceanography[C].London: Academic Press, 1965. 611-645
    101. Round F. E. The formation of girdle, intehcalary bands and septa in diatoms. Nova Hedwigia, 1972,23: 339-463
    102. Sander H J M, Pieter Z V, van Belle C C, et al. Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. Journal of Analytical Atomic Spectrometry, 2006,21: 734-742
    103. Sarmiento J. L., Hughes T. M. C, Stouffer R. J., et al. Simulated responses of the Ocean carbon cycle to anthropogenic climate warming. Nature, 1998,393:245-249.
    104. Schmid A. M. M. Aspects of morphogenesis and function of diatom cell walls with implication for taxonomy. Protoplasma., 1994,181: 43-60.
    105. Song H I, Kim B K, Kim G Y. A study on the growth of transplanted oyster, Crassostrea gigas (Thunberg) of western coastal area in Korea. BULL. NATL.FISH. RES. DEV AGENCY Korea. No.41 pp. 55-63
    106. Stumm W., Morgan J. J. Aquatic Chemistry. 3rd edn. Wiley-Interscience, New York. pp. 780, 1996
    107. Sullivan C. W., Volcani B. E. Chap 2: Silicon in the celluar metabolism of diatoms. In: Simpson, T. L., Volcani B. E. (Eds.), Silicon and Siliceous Structures in Biological System. Springer, New York, 1981, pp. 15-42
    108. Tang R Y et al. Biochemical behaviour of nitrogen and phosphate in the Changjiang River Esturary and its adjacent sea areas. "The Biogeochemical Research in the Changjiang River Estuary and its Adjacent Areas", 1992, 322-334
    109. Tian R C, Hu F X, Martin J M. Summer nutrient fronts in the Changjiang (Yangtze River) Esturary. Estuarine, Coastal and Shelf Science, 1993,37: 27-41
    110. Treguer P., Lindner L., van Bennekon A. J. et al. Production of biogenic silica in the Weddell-Scotia Seas measured with 32Si. Limnol. Oceanogr., 1991,36:1212-1227
    111. Treguer P., Nelson D. M., van Bennekorn, et al. The silica balance in the world ocean: a reestimate. Science., 1995,268:375-379
    112. Turner R E, Ralalais N N. Evidence for coastal eutrophication near the Mississippi river delta. Nature, 1994,168: 619-621
    113. Van Beusekom J. E. E., Ban Bennekom A. J., Treguer P., et al. Aluminium and silicic acid in water and sediments of the Enderby and Crozet basins. Deep-Sea Res. II, 1997,44:987-1004
    114. Van Cappellen P. Reactive surface area control of the dissolution kinetics of biogenic silica in deep-sea sediments. Chem. Geol., 1996,132:125-130
    115. Van Cappellen P., Qiu L. Biogenic silica dissolution in sediments of the Southern Ocean: I. Solubility. Deep-Sea Res., 1997 (a) ,44:1109-1128
    116. Van Cappellen P., Qiu L. Biogenic silica dissolution in sediments of the Southern Ocean: II. Kineitcs. Deep-Sea Res., 1997 (b) ,44:1129-1150
    117. Varela D. E., Pride C. J., Brzezinski M. A. Biological fractionation of silicon isotopes in Southern Ocean surface water. Global Biogeochem. Cycles. 2004,18,GB1047
    118. Wilding L. P., Drees L. R. Contribution of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clay Clay Miner. 1974,22:295-306
    119. Wilding L. P., Smeck N. E., Drees L. R. Silica in solis: quartz, crystabolite, tridymite and disordered silica polymorphs. 1989, In: Dixon, J. B., Weed S. B. (Eds), Minerals in Soil Environments, 2nd edn. Soil Sci. Soc. Am Book, Vol. 1. pp.913-974
    120. Wischmeyer A. G, De La Rocha C. L. Maier-Reimer E., et al. Control mechanisms for the oceanic distribution of silicon isotopes. Global Biogeochem. Cycles. 2003(a)
    121. Wischmeyer A. G, Del Amo Y., Brzezinski M., et al. Theoretical constraints on the uptake of silicic acid species by marine diatoms. Marine Chemistry, 2003,82:13-29
    122. Wishner K, Levin L, Gowing M, et al. Involvement of the eastern tropical Pacific oxygen minimum zone in benthic zonation on a deep seamount. Nature, 1990, 346:57-59
    123. Yang S L, Shi Z, Zhao H Y et al. Research note: effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century. Hydrology and Earth System Science. 2004,8:1210-1216
    124. Yun, C.X. and Wan, J.R. A study of diffusion of upper layer suspended sediments in discharges from the Changjiang estuary into the sea, based on satellite imagery. In: VS. Kennedy, (Ed.), Estuarine Comparisons, Academic Press, New York, 1982,693-704.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.