化学镀Ni-Co-P合金工艺、组织结构和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学镀Ni-Co-P合金镀层具有高密度磁性特点,由它制成的磁盘线密度大,而且膜层厚度均匀、硬度高、耐蚀性好,且操作方便,成本低,成为近年来的研究热点。但是,目前所报导的化学镀Ni-Co-P工艺存在镀速低、镀液不稳定、施镀过程中pH值变化大等问题。本研究采用复合络合剂,通过正交试验对化学镀Ni-Co-P工艺进行了优化,得出了最佳的工艺参数,并对镀层的形貌、成分、组织结构和性能进行了检测并分析了它们之间的关系;同时详细研究了热处理对化学镀Ni-Co-P合金组织结构和性能的影响。
     然而,化学镀三元Ni-Co-P合金一个无法回避的问题就是反应较复杂,薄膜成分不易控制,重复性不好。由于化学镀Ni-P二元合金发展历史较长,工艺成熟;且离子注入又具有注入元素可控,同时还可提高材料表面硬度、耐磨性、耐蚀性和磁性能等。因此,我们结合化学镀和离子注入这两种表面技术,在化学镀Ni-P膜中离子注Co获得Ni-Co-P薄膜,并研究了离子注Co对镀层表面形貌、组织结构和性能的影响。
     在正交试验的基础上优化得到的化学镀Ni-Co-P配方为:NiSO_4·6H_2O 0.1 mol·L~(-1) CoSO_4·7H_2O 0.1 mol·L~(-1)NaH_2PO_2·H_2O 0.2 mol·L~(-1) Na_3C_6H_5O_7·2H_2O 0.5 mol·L~(-1) CH_3CH(OH)COOH 0.2 mol·L~(-1) (NH_4)_2SO_4 0.5 mol·L~(-1) pH:9温度:80℃
     研究结果表明:
     1.化学镀Ni-P和Ni-Co-P合金为P在Ni(Co)基上的过饱和固溶体,镀层中P含量和Co含量的增加都使得“胞状”组织尺寸减小,Co的共沉积能减低镀层沉积速度,并使镀层更加致密均匀;随着镀层中Co含量的增加,镀层硬度和耐腐蚀性能提高,磁性能有从软磁特性向硬磁特性转变的趋势。
     2.镀态下为微晶或纳米晶结构的化学镀Ni-P和Ni-Co-P合金,处于热力学亚稳定状态;300℃热处理1h后镀层发生重结晶,晶粒细化,400℃处理后晶粒达到最小值,更高温处理晶粒长大并开始析出稳定相Ni_3P;Co的共沉积提高了Ni_3P稳定相的析出温度,还稳定了纳米晶粒尺寸,大大提高了镀层的热稳定性。
     3.热处理显著影响镀层性能,各镀层在400℃处理后由于具有最小晶粒尺寸,硬度达到最大值,温度继续升高,晶粒长大硬度有所下降,但500℃处理后,由于析出大量稳定相Ni_3P而硬度又有所回升;热处理对镀层磁性能影响较小;热处理后镀层耐蚀性先提高,400℃处理后耐蚀性最优异,继续提高温度耐蚀性则又有所下降;当Co含量达到27.57at.%时,由于良好的热稳定性,镀层硬度变化平稳,热处理后镀层耐蚀性稍有下降。
     4.化学镀Ni-P合金表面形貌为凸显“胞状”结构,离子注Co后表面变得较平整,“胞”结合更加紧密,Co在化学镀Ni-P膜中呈梯度分布,镀层中Co含量和注入深度随注入剂量的增加而增加。
     5.化学镀Ni-P合金为纳米晶结构,离子注入Co后镀层晶粒明显长大,且析出大量Ni_3P,在结合面形成了Cu-Ni合金;当注入剂量增加至5×10~(17)ions·cm~(-2)时,镀层表面形成氧化膜。
     6.离子注Co可提高化学镀Ni-P镀层硬度,但幅度不大,最大可提高6%;离子注Co后镀层矫顽力H_c、饱和磁化强度M_s和耐腐蚀性能都明显提高,且随着注入剂量的增加而增加。
In recent years, many studies were carried out to develop the electroless Ni-Co-P alloy for numerous interests such as good magnetic performance of high line density, uniform thickness, high hardness, good corrosion resistance, easy operation and low cost. However, some problems of the present reported electroless Ni-Co-P process have to be solved urgently, such as low deposition rate, low stability and great variation of pH during plating. In this study, the electroless Ni-Co-P plating was stabilized using complexing agents, sodium citrate and lactic acid. Moreover, the electroless Ni-Co-P process was optimized by orthogonal experiment and the optimal operating conditions were obtained. The surface morphology, chemical composition, microstructure and properties of the coating were investigated and the relationship among them was analyzed. The effect of heat treatment on the microstructure and properties of the coating were also studied.
     It is an avoidless problem of the electroless Ni-Co-P alloy that the chemical compositions of the coatings are difficult to be controlled for its complex reaction. However, the electroless Ni-P process have been studied for a long time, and the quantity of the ions can be controlled well by ion implantation technology. In addition, ion implantation has been widely used for a valuable surface modification to improve the near-surface properties, such as surface hardness, wear and corrosion resistance and magnetism of various metals. Therefore, ion implanted Ni-Co-P alloy was obtained by combining the electroless plating and the ion implantation technology, i.e. Co ions were implanted into the electroless Ni-P alloy by ion implantation technology. The effect of Co ion implantation on the surface morphology, microstructure and properties were discussed.
     Based on the orthogonal experiment, the optimal electroless Ni-Co-P alloy bath is obtained as follows:
     The experimental observations show:
     1. The electroless Ni-P and Ni-Co-P alloy is a supersaturated solid solution of P dissolved in Ni (Co) matrix. The size of the "cell" decreased with the increase of the P or Co content in the coatings. Co co-deposition decreased the deposition rate and improved the density of the coatings. With the increase of the Co content, the hardness and corrosion resistance increased and a trend from soft to hard magnetism was observed.
     2. The as-plated Ni-P and Ni-Co-P alloy with microcrystalline or nanocrystalline structure is metastable. When heat treated for one hour at 300℃, recrystallization occurred and grain size refined, and the grain size decreased with temperature for one hour up to the minimum at 400℃. The grains begin to grow and the Ni_3P separate when heat treated for one hour at higher temperature. Thermostability is improved greatly by Co co-deposition for higher Ni_3P precipitation temperature and stabilizing the grain.
     3. Obviously, the properties of the coating are affected by heat treatment. The hardness increased with heat treatment temperature at 400℃up to a maximum and decreased with higher temperature. However, the hardness increased again when heated at 500℃because of many equilibrium Ni_3P precipitates. Heat treatment has a little effect on magnetism. Corrosion resistance increased with heat treatment temperature at 400℃up to the
     best and decreased with higher temperature. When the Co content is up to 27.57at.%, the hardness change placidly and heat treatment caused a little decrease in corrosion resistance because of good thermostability.
     4. After Co ion implantation, the surface morphology of electroless Ni-P alloy with "cell" structure become more and more smooth, dense and the grains attached each other. A gradient profile of Co content in the electroless Ni-P alloy is found. The Co content and ion implantation depth increased with the increase of the fluence.
     5. The as-plated Ni-P alloy has a nanocrystalline structure. After Co ion implantation, the grains grow, Ni_3P precipitates separate from Ni matrix and Cu-Ni alloy forms at the interface between substrate and coating. When the fluence is up to 5×10~(17)ions·cm~(-2), oxide film forms on the surface of the Ni-P coating.
     6. After Co ion implantation, the hardness increased with 6% compared to un-implanted Ni-P coating. The coercivity, saturation magnetization and corrosion resistance of the Ni-P coating also improved by Co ion implantation, and their values increase with the increase of the fluence.
引文
[1] 姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000.
    [2] 李宁,屠振密.化学镀实用技术.北京:化学工业出版社,2004.
    [3] Miller R E. Trends in the electroless nickel industry. Plating and Surface Finishing, 1987, 74: 52-56.
    [4] 陈曙光,刘君武,丁厚福.化学镀研究现状.应用及展望,热加加工工艺,2002.
    [5] Tarozaite R. Stalnionis G, Sudavicius A, et al. Magnetic properties of thin CoNiPCu films deposited from electroless plating solution with simultaneous electrolysis. Surface and Coatings Technology, 2002, 161:150-157.
    [6] Jiang J T, Zhen E, Xu C Y, et al. Microstructure and magnetic properties of SiC/Co composite particles prepared by electroless plating. Surface snd Coatings Technology, 2006, 201: 3139-3146.
    [7] Homma T, Sezai Y, Osaka T. A study on growth processes of CoNiP perpendicular magnetic anisotropy films electroless-deposited at room temperature. Electrochimic Acta, 1997, 42: 3041-3047.
    [8] 李建中,邵忠财,田彦文.以硫酸镍为主盐的镁合金化学镀镍.中国有色金属学报.2005,15:152-156.
    [9] Li J Z, Shao Z C, et al. The electroless on magnesium alloy using NiSO_4·6H_O as the main salt. Surface and Coatings Technology, 2006, 200:3010-3015.
    [10] Kim D, Matsuda H, Aoki K, et al. Electroless Ni-Fe-B alloy plating solution using DMAB as a reducing agent. Plating and Surface Finishing, 1996, 83: 78-80.
    [11] Younan M M, Aly I H M, Nageeb M Y. Effect of heat treatment on electroless ternary nickel-cobalt-phosphorus alloy. Jounal of Applied Electrochemistry, 2002, 32: 439-446.
    [12] Cherkaoui M, Srhiri A, Chassaing E. Electroless deposition of Ni-Cu-P alloy. Plating and Surface Finishing, 1992, 79: 68-71.
    [13] Lee S L, Liang H H. The structure and hardness of electroless Ni-Mo-P alloy deposition. Plating and Surface Finishing, 1992, 79: 56-59.
    [14] Wu F B, Tien S K, Chen W Y, et al. Microstructure evaluation and strengthening mechanism of Ni-P-W alloy coatings. Surface and Coatings Technology, 2004, 177: 312-316.
    [15] Lindsay J H. Electroless plating fundamental and application. Plating and Surface Finishing, 1993, 80: 22-23.
    [16] 宣天鹏,卑多惠.镀液pH值对化学镀Co-Ni-P合金镀层能给结构的影响.兵器材料科学与工程,2000,23:13-17.
    [17] 毕邵丹.化学镀Ni-Co-P合金的工艺控制因素.表面技术,2004,33:46-47.
    [18] 宣天鹏,郑晓华,刘玉等.镍钴离子浓度比对化学镀Co-Ni-P合金组织结构和性能的影响.稀有金属,1998,22:111-115.
    [19] 王森林,陈志荣.化学镀Ni-Co-P合金的晶化行为研究.材料保护,2003,37:14-15.
    [20] Sankara Narayanan T S N, Selvakumar S, Stephen A. Electroless Ni-Co-P temary alloy deposits: preparation and characteristics. Surface and Coating Technology, 2003, 172: 298-307.
    [21] 曾爱香,熊惟浩,许坚等.空心微珠表面化学镀Ni-Co-P合金镀层研究.材料保护,2004.37:16-17.
    [22] Zitko M W, U.S. Patent 6,146,702. Nov. 14, 2000, Assignor to Enthone-OMI Inc., West Haven, Conn.
    [23] 顾正彬,李延祥,李恒杰.热处理对化学沉积Ni-P、Ni.Co-P合金组织及耐蚀性的影响.材料丌发与应用,1999,13:1-6.
    [24] Lee D N, Hur K H. The evolution of texture during annealing of electroless Ni-Co-P deposition. Scripta Materialia, 1999, 40:1333-1339.
    [25] 孙宏飞,吴宜勇,邵歉等.化学镀Ni-Co-P合金的初期沉积行为.中国有色金属学报,2000,10:81-83.
    [26] 费锡明,汪继红,费华等.稀土铈添加对Ni-Co-P化学镀层组织及耐蚀性的影响. 华中师范大学学报(自然科学版),2004,38:336-339.
    [27] 张光华,钟士谦.离子注入技术.北京:机械工业出版社,1982.
    [28] 徐滨士.表面工程与维修.北京:机械工业出版社,1996.
    [29] 王贻华,胡正琼.离子注入与分析基础.北京:航空工业出版社,1992.
    [30] 沈保罗,易勇,高见.离子注入及其应用.机械:2001.4:62-64.
    [31] 陈江红,陈阳,李爱成.离子注入技术的发展和应用.电子工业专用设备,2004,112:64-66.
    [32] 戴达煌,周克菘,袁镇海等.现代材料表面技术科学.北京:冶金工业出版社,2004.
    [33] Li J Z, Tian Y W, et al. Studies of the porosity in electroless nickel deposits on magnesium alloy. Applied Surface Science, 2006, 252: 2839-2846.
    [34] ASM Specialty Handbook. Magnesium and Magnesium Alloys, 1999.
    [35] 刘新宽,向阳辉等.镁合金上高耐蚀性组合镀层.电镀与环保,2004,24:3-5.
    [36] Gu C D, Lian J S, et al. High corrosion-resistance nannocrystalline Ni coating on AZ91D magnesium alloy. Surface and Coating Technology, 2006, 200: 5413-5418.
    [37] Gu C D, Lian J S, Jiang Z H. Multilayer Ni-P coating for improving the corrosion resistance of AZ91D magnesium alloy. Advanced Engineering Materials, 2005, 7: 1032-1036.
    [38] Chang Y Y, Wang D Y. Corrosion behavior of electroless nickel-coated AISI 304 stainless steel enhanced by titanium ion implantation. Surface and Coatings Technology, 2005, 200: 2187-2101.
    [39] Groudeva-Zotova S. Karl H, Saran A, et al. Structural and magnetic characteristics of FeCo thin films modified by combinatorial ion implantation. Thin Solid Fihns, 2006, 495:169-174.
    [40] Chen W Y, Tien S K, Wu F B, et al. Crystallization behaviors and microhardness of sputtered Ni-P, Ni-P-Cr and Ni-P-W deposits on tool steel. Surface and Coatings Technology, 2004, 182: 85-91.
    [41] Wu F B, Tien S K, Du J G, et al. Surface characteristics of electroless and sputtered Ni-P-W alloy coatings. Surface and Coatings Technology, 2003, 166: 60-66.
    [42] Bi X F, Ou S Q, Gong S K, et al. Nano-crystallization and magnetic properties in the highly resistive Fe-Si-Zr-0 films prepared by EB-PVD. Material and Science Engineering, 2003, 344: 74-78.
    [43] Park D Y, Myung N V, Schwartz M, et al. Nanostructured magnetic CoNiP electrodeposits: structure-property relationships. Electrochimic Acta, 2002, 47:2893-2896.
    [44] Murthy S K, Vemagiri J K, Gunasekaran R A. et al., Electroless deposition of soft magnetic CoNiP thin films. Journal of The Electrochemical Society, 2004, 151:C1-C7.
    [45] Homma T, Kita Y, Osaka T. Electrochemical studies on the deposition process of electroless CoNiP films with graded magnetic properties. Journal of The Electrochemical Society, 2000,147: 4138-4141.
    [46] Fenineche N, Chaze A M, Coddet C. Effect of pH and current density on the magnetic properties of electrodeposited Co-Ni-P alloys. Surface and Coatings Technology, 1997,88: 264-268.
    [47] Homma T, Suzuki M, Osaka T. Gradient control of magnetic properties in electroless-deposited CoNiP thin films. Journal of The Electrochemical Society, 1998,145:134-138.
    [1] 姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000.
    [2] 李宁,屠振密.化学镀实用技术.北京:化学工业出版社,2004.
    [3] 毕邵丹.化学镀Ni-Co-P合金的工艺控制因素.表面技术,2004,33:46-47.
    [4] Sankara Narayanan T S N, Selvakumar S, Stephen A. Electroless Ni-Co-P temary alloy deposits: preparation and characteristics. Surface and Coating Technology, 2003, 172: 298-307.
    [5] Aly I H M, Younan M M, Nageeb M Y. Autocatalytic (Electroless) deposition of ternary nickel-cobalt-phosphorus alloy. Metal Fishing, 2003, April: 37-42.
    [6] 宣天鹏,郑晓华,刘玉等.镍钴离子浓度比对化学镀Co-Ni-P合金组织结构和性能的影响.稀有金属,1998,22(2):111-115.
    [7] 宣天鹏,卑多惠.镀液pH值对化学镀Co-Ni-P合金镀层结构的影响.兵器材料科学与工程,2000,23(2):13-17.
    [8] 刘珍.溶液pH值对化学镀Ni-Co-P合金的影响.电镀与精饰,1999,21(1):17-18.
    [9] 宣天鹏,卑多慧.化学镀Co-Ni-P合金薄膜化学成分的考察.电镀与精饰,2000,22(3):3-5.
    [10] 宣天鹏,晓华,邓宗钢.镍钴离子浓度比对化学镀Co-Ni-P合金工艺的影响.材料保护,1997 30(1):20-22.
    [11] Matsubara H. Control of magnetic properties of chemically deposited cobalt nickel phosphorus films by Electrolysis. Joumal of Electrochemistry Society, 1994, 141(9): 2386-2392.
    [12] 洛温海姆编,北航103教研室译.现代电镀.北京:北京机械工业出版社,1982.
    [13] 宣天鹏,郑晓华.化学镀Co-Ni-P合金工艺的研究.新技术新工艺,1996,6:37-39.
    [14] Liu W L, Hsieh S H, Tsai T K. Temperature and pH dependence of the electroless Ni-P deposition on silicon. Thin Solid Films, 2006, 510(1-2): 102-106.
    [1] Hu C. C, Bai A. Influences of the phosphorus content on physicochemical properties of nickel-phosphorus deposits. Materials Chemistry and Physics, 2002, 77:215-225.
    [2] Lewis D B, Marshall G. Investigation into the structure of electrodeposited nickel-phosphorus alloy deposits. Surface and coatings technology, 1996, 78: 150-156.
    [3] Ashassi-Sorkhabi H, Rafizadeh S.H. Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits. Surface and Coatings Technology, 2004,176:318-326.
    [4] Berrios J. A, Staia M. H, E.C. Hema'ndez, et al. Effect of the thickness of an electroless Ni-P deposit on the mechanical properties of an AISI 1045 plain carbon steel. Surface and Coatings Technology, 1998, 108-109: 466-472.
    [5] Xie H. W, Zhang B. W. Effects of preparation technology on the structure and amorphous forming region for electroless Ni-P alloys. Joumal of Materials Processing Technology, 2002, 124: 8-13.
    [6] Younan M. M, Aly I. H. M, Nageeb M. T. Effect of heat treatment on electroless temary nickel-cobalt-phosphorus alloy. Jounal of Applied Electrochemistry, 2002, 32: 439-446.
    [7] Aly I H M, Younan M M, Nageeb M T. Autocatalytic(electroless) deposition of temary nickel-cobalt-phosphorus alloy. Journal of Applied Electrochemistry 32 (2002) 439-446.
    [8] Sankara Narayanan T S N, Selvakumar S, Stephen A. Electroless Ni-Co-P temary alloy deposits: preparation and characteristics. Surface and Coating Technology, 2003, 172: 298-307.
    [9] 宣天鹏,卑多慧.镀液pH值对化学镀Co-Ni-P合金镀层结构的影响.兵器材料科学与工程,2000,23(2):13-17.
    [10] 姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000.
    [11] Keong K. G, Sha W. Crystallisation and phase transformation behaviour of electroless nickel-phosphorus deposits and their engineering properties. Surface Engineering, 2002, 18(5): 329-343.
    [12] Homma T. Sezai Y. J, Osaka T, et al. Compositional inhomogeneity in electroless-deposited CoNiP films studied by spin-echo 59Co nuclear magnetic resonance. Journal of Magnetism and Magnelic Materials, 1997, 173:314-320.
    [13] Homma T, Osaka T, Yamazaki Y, et al. Correlation between magnetic properties and phase-separated microstructure of electroless CoNiP perpendicular magnetic recording media. Scripta Metallurgica et Materialia, 1995, 33: 1569-1573.
    [14] 胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版社,2006.
    [15] Taheri R, Oguocha N A, Yannacopoulos S. Effect of heat treatment on age hardening behaviour of electroless nickel-phosphorus coating. Materials Science and Technology, 2001, 17: 278-184.
    [16] Apachitei I, Duszczyk J, Katgerman L, et al. Electroless Ni-P composite coatings: the effect of heat treatment on the microstructure of substrate and coating, Scripta Materialia, 1998, 38(9): 1347-1353.
    [17] Staiaa M. H, Puchia E. S, Castroa G, et al. Effect of thermal history on the microhardness of electroless Ni-P. Thin Solid Films, 1999, 355-356: 472-479.
    [18] 王克武,罗邦容.磷含量在化学镀层中对其性能的影响.表面技术,1996,25(5):15-18.
    [19] Imanishi S, Hayashi T. Physical properties of electroless NiP alloy deposits from a pyrophosphate bath. Plating and Surface Finishing, 1989, 76: 54-58.
    [20] Martinou R, M. Ruimi. Formation of protective coatings by electrolytic codeposition of a nickel-cobalt matrix and ceramic particles. U. S., 4886583, 1989, 12. 12.
    [21] Sadowska-Mazur J. Warwick M E, Walker R. Electrodeposition and properties of tin-nickel silicon carbide composite coatings. Transactions of the Institution of Metal Finishing, 1986, 64(4): 142-148.
    [22] Luborsky F E, Development of elongated partical magnets. Journal of Applied Physics, 1961, 32: 171S-183S.
    [23] Kneller E F, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Transactions on Magnetics, 1991, 27(4): 3588-3560.
    [24] Hirosawa S, Kanekiyo H, Uehara M. High-coercivity iron-rich rare-earth permanent magnet material based on (Fe, Co)_3B-Nd-M (M=Al, Si, Cu, Ga, Ag, Au). Journal of Applied Physics, 1993, 73(10): 6488-6490.
    [25] Yoshizawa Y, Oguma S, Yamauchi K. New-Fe-based magnetic alloys composed of ultrafine grain structure. Journal of Applied Physics, 1988, 64: 6044-6046.
    [26] Girl A K, Chowdary K M, Humfeld K D, et al. AC magnetic properties of FeCo nanocomposites. IEEE Transactions on Magnetics, 2000, 36(5): 3026-3028.
    [27] Tarozaite R, Stalnionis G, Sudavicius A, et al. Change of magnetic properties of autocatalytically deposited CoNiP films by electrolysis simultaneously applied. Surface Coatings and Technology, 2001, 138(1): 61-70.
    [28] Wang S L, Zeng F Q. Effect of electroless deposition conditions on the structures and the magnetic performances of the Co-Fe-P alloy. Acta Metallurgica Sinica (English Letters), 2006, 19(4): 307-312.
    [29] 顾正彬,李延祥,李恒杰.热处理对化学沉积Ni-P、Ni-Co-P合金组织及耐蚀性的影响.材料开发与应用,1998,13(6):1-6.
    [30] Li J. Z, Tian Y. W, et al. Studies of the porosity in electroless nickel deposits on magnesium alloy. Applied Surface Science, 2006, 252: 2839-2846.
    [1] Ma E M, Luo S F, Li P X. A transmission electron microscopy study on the crystallization of amorphous Ni-P electroless deposited coatings. Thin Solid Films, 1988, 166: 273-280.
    [2] Guo Z, Keong K G, Sha W. Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating. Joumal of Alloys and Compounds, 2003, 358:112-119.
    [3] Keong K G, Sha W, Malinov S. Crystallisation kinetics and phase transformation behaviour of electroless nickel-phosphorus deposits with high phosphorus content. Journal of Alloys and Compounds, 2002, 334:192-199.
    [4] Staia M H, Puchi E S, Castro G, et al.Effect of thermal history on the microhardness of electroless Ni-P. Thin Solid Films, 1999, 355-356: 472-479.
    [5] 谢中维,郭薇.热处理对化学镀薄膜结合强度影响.腐蚀科学与防护技术,1999,11:165-168.
    [6] 高岩,刘贵昌.热处理对化学镀Ni2P镀层性能的影响。铸造,1998,14:39-41.
    [7] 谢明立,储凯,付健.镍-磷合金化学镀层成分及时效处理温度对镀层组织性能的影响.表面技术,1998,27:8-21.
    [8] Staia M H, Enriquez C, Puchi E S. Influence of heat treatment on the abrasive wear resistance of electroless Ni-P. Surface and Coating Technology, 1997, 94-95: 543-548.
    [9] Lee D N, Hur K H. The evolution of texture during annealing of electroless Ni-Co-P deposition. Scripta Materialia, 1999, 40:1333-1339.
    [10] Younan M M, Aly I H M, Nageeb M T. Effect of heat treatment on electroless ternary nickel-cobalt-phosphorus alloy. Jounal of Applied Electrochemistry, 2002, 32: 439-446.
    [11] 杨海燕,卫英慧,毕虎才等.压铸镁合金AZ91D手机内构件化学镀Ni-P研究.稀有金属材料与工程,2005,12(35):1979-1981.
    [12] Mahoney M W, Dynes P J. The effects of thermal history and phosphorus level on the crystallization behavior of electroless nickel. Scripta Materialia, 1985, 19(4): 539.
    [13] Hur K H, Jeong J H, Lee D N. Microstructures and crystallization of electroless Ni-P deposits. Journal of Material Science, 1990, 25:2573-2584.
    [14] Chen W Y, Tien S K, Wu F B, et al. Crystallization behaviors and microhardness of sputtered Ni-P, Ni-P-Cr and Ni-P-W deposits on tool steel. Surface and Coatings Technology, 2004, 182: 85-91.
    [15] Yu H S, Luo S F, Wang Y R. A comparative study on the crystallization behavior of electroless Ni-P and Ni-Cu-P deposits. Surface and Coatings Technology, 2001, 148: 143-148.
    [16] Tien S K, Du J G, Chen Y I. Structure, thermal stability and mechanical properties of electroless Ni-P-W alloy coatings during cycle test. Surface and Coatings Technology, 2004, 177-178: 532-536.
    [17] Tarozaite R, Stalnionis G, Sudavicius A, et al. Change of magnetic properties of autocatalytically deposited CoNiP films by electrolysis simultaneously applied. Surface Coatings and Technology, 2001, 138(1): 61-70.
    [18] 李宁,屠振密.化学镀实用技术.北京:化学工业出版社,2004.
    [19] Zangeneh-Madar K, Monir Vaghefi S M.The effect of thermochemical treatment on the structure and hardness of electroless Ni-P coated low alloy steel. Surface and Coatings Technology, 2004, 182(1): 65-71.
    [20] Sankara Narayanan T S N, Krishnaveni K, Seshadri S K. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance. Materials Chemistry and Physics, 2003, 82(3): 771-779.
    [21] Wu F B, Chen Y I. Peng P J, et al. Fabrication, thermal stability and microhardness of sputtered Ni-P-W coating. Surface and Coatings Technology, 2002, 150(2-3); 232-238.
    [22] Younan M M, Aly I H M, Nageeb M T. Autocatalytic(electroless) deposition of ternary nickel-cobalt-phosphorus alloy. Joumal of Applied Electrochemistry 32 (2002) 439-446.
    [23] Wang S L, Zeng F Q. Effect of electroless deposition conditions on the structures and the magnetic performances of the Co-Fe-P alloy. Acta Metallurgica Sinica (English Letters), 2006, 19(4): 307-312.
    [24] Homma T, Seczai Y, Osaka T, et al. Compositional inhomogeneity in electroless-deposited CoNiP films studied by spin-echo ~(59)Co nuclear magnetic resonance. Journal of Magnetism and Magnetic Materials, 1907, 173(3): 314-320.
    [25] 徐滨士,纳米表面工程.北京:化学工业出版社,2003.
    [26] Gao Y, Zheng Z J, Zhu M, et al. Corrosion resistance of electrolessly deposited Ni-P and Ni-W-P alloys with various structures. Materials Science and Engineering, 2004, 381: 98-103.
    [27] Youssef Kh M S, Koch C C, Fedkiw P S. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corrosion Science, 46: 2004, 51-64.
    [28] Wang L P, Zhang J Y, Gao Y, et al. Grain size effect in corrosion behavior of electrodeposited n(?)nocrystalline Ni coatings in alkaline solution. Scripta Materialia, 2006, 55: 657-660.
    [1] Aly I H M, Younan M M, Nageeb M T. Autocatalytic (Electroless) deposition of ternary nickel-cobalt-phosphorus allov. Metal Fishing, 2003, April: 37-42.
    [2] 毕邵丹.化学镀Ni-Co-P合金的工艺控制因素.表面技术,2004,33(4):46-47.
    [3] Sankara Narayanan T S N, Selvakumar S, Stephen A. Electroless Ni-Co-P temary alloy deposits: preparation and characteristics. Surface and Coating Technology, 2003, 172: 298-307.
    [4] Michael R, David J. A study of electroless nickel coatings containing low phosphorus. Thin Solid Films, 1989, 177: 207-223.
    [5] Keong K G, Sha W. Crystallisation and phase transformation behaviour of electroless nickel-phosphorus deposits and their engineering properties. Surface Engineering, 2002, 18: 329-343.
    [6] Yu M, Zhang J Z, Li D X, et al. Metal vapor vacuum-arc ion implantation effects on the adhesion and hardness of ion-beam deposited Cr/Cu films. Applied Surface Science, 2007, 253: 3276-3283.
    [7] Tian L P, Zuo Y, Zhao X H, et al. The improved corrosion resistance of anodic films on aluminum by nickel ions implantation. Surface and Coatings Technology, 2006, 201: 3246-3252.
    [8] Lei M K, Li P, Yang H G, et al. Wear and corrosion resistance of Al ion implanted AZ31 magnesium alloy. Surface and Coatings Technology, 2007, 201(9): 5182-5185.
    [9] Park S Y, Shin S W, Kim P J, et al. A study on the magnetic properties of hydrogen-implanted Zno.96Mn_(0.04)O films. Journal of Magnetism and Magnetic Materials, 2006, 10: e1-e3.
    [10] 宣天鹏,郑晓华,刘玉等.镍钴离子浓度比对化学镀Co-Ni-P合金组织结构和性能的影响.稀有金属,1998,22(2):111-115.
    [11] Martini E M A, Muller I L, Characterization of the film formed on iron in borate solution by electrochemical impedance spectroscopy. Corrosion Science, 2000, 42: 443-454.
    [12] Mishra P. Ghose D, The hardness study of oxygen implanted aluminum thin films. Surface and Coatings Technology. 2006, 201: 965-970.
    [13] Frost F, A. Schindler, F. Bigl. Ion beam smoothing of indium containing Ⅲ-Ⅴ compound semiconductors. Applied Physics, 1998, A 66: 663-668.
    [14] Chang Y Y, Wang D Y. Corrosion behavior of electroless nickel-coated AISI 304 stainless steel enhanced by titanium ion implantation. Surface and Coatings Technology, 2005, 200: 2187-2191.
    [15] Keong K G, Sha W, Malinov S. Crystallisation kinetics and phase transformation behaviour of electroless nickel-phosphorus deposits with high phosphorus content. Journal of Alloys and Compounds, 2002, 334:192-199.
    [16] 姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000.
    [17] Sankara Narayanan T S N, Selvakumar S, Stephen A. Electroless Ni-Co-P temary alloy deposits: preparation and characteristics. Surface and Coating Technology, 2003, 172: 298-307.
    [18] Rivero G, Multigner M, Garca M, et al. Magnetic and structural properties of electrodeposited Co-Ni-P amorphous ribbons. Joumal of Magnetism and Magnetic Materials, 1998, 177-181: 119-120.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.