动脉粥样硬化大鼠动脉组织的基因芯片分析及组织蛋白酶D的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     运用基因芯片技术分析动脉粥样硬化(atherosclerosis,AS)大鼠与正常大鼠动脉组织中的差异性表达基因,筛选其中与细胞外基质(Extracellular matrix,ECM)代谢相关的基因,探讨ECM与AS发病的关系。观察ECM代谢相关基因中组织蛋白酶D(cathepsinD,CathD)在AS大鼠动脉组织中的分布及表达水平,研究其在AS发病中的作用。
     方法
     (1)以高脂饲料(3%胆固醇、0.5%胆酸钠、5%精制糖、10%猪油及81.5%基础饲料)喂养加维生素D3腹腔注射法建立SD大鼠AS模型;
     (2)实验第14周末,检测大鼠血清总胆固醇(total cholesterol,TC)及甘油三酯(triglyeride,TG),进行主动脉、冠状动脉HE及油红O染色;
     (3)提取主动脉组织RNA,应用基因芯片技术分析差异性表达基因,根据基因芯片结果筛选与ECM代谢相关的基因CathD,以免疫荧光及免疫印迹法检测CathD在动脉组织中的分布情况及表达水平。
     结果
     (1)以高脂饮食加腹腔注射维生素D3的方法成功建立了大鼠AS模型。14周时模型组TG和TC均较对照组明显升高(P<0.01);HE染色可见模型组大鼠主动脉内皮细胞排列紊乱,部分脱落,中膜平滑肌细胞、纤维组织增生伴点状或片状钙化,弹性纤维层结构不清,形成纤维增生性动脉粥样硬化病变。模型组主动脉、冠状动脉油红O染色可见内皮下橙红色脂质沉积。对照组动脉组织未见明显异常。
     (2)采用覆盖20500个大鼠基因的Oligo基因芯片,结果显示有1728个基因发生差异性表达,其中1218条基因表达下调,510基因表达上调,这些差异性表达基因分别与炎症、脂代谢、氧化应激、细胞凋亡等相关。其中可能与ECM代谢相关的基因有162条,表达上调的包括:血小板反应素、骨桥蛋白、基底膜蛋白多糖、MMp-11,CathB、L、D、Y细胞因子及炎症因子(TNF-α)等;表达下调的包括:生长因子(TGF-β),CystatinC ,MMp-2、16、23,丝氨酸蛋白酶抑制剂等。
     (3)免疫荧光检测发现AS组大鼠动脉组织中红色荧光标记的CathD表达增加,主要分布在动脉内膜、中膜,在增厚的中膜中表达增高更明显。在对照组表达较少或不表达,主要分布于内膜及中膜。Western-blot检测提示:与对照组比较,AS组大鼠动脉组织CathD蛋白增加(P<0.05)。
     结论
     (1)通过高脂饲料加维生素D3腹腔注射的方法可以成功的复制大鼠动脉粥样硬化模型;
     (2)基因芯片技术证实动脉粥样硬化是一种多因素导致的多种基因改变的复杂病变。ECM尤其是CathD可能参与了AS的发生及发展;
AIM: To explore the potential candidate genes related to extracellular matrix(ECM),especially cathepsin D, which might play roles in atherosclerosis (AS) pathogenesis by microarray technology.
     METHODS: (1)Male SD rats were fed with fat diet (containing 3% cholesterol, 0.5% sodium cholate, 5% refined sugar, 10% lard, and 81.5% base feed) and injected with vitamin D3 i.p. to establish the experiment atherosclerotic model.
     (2)After 14 weeks, total cholesterol (TC) and triglyeride (TG) in serum were detected. Aorta and coronary arteries were stained with HE and a solution of oil red O to visualize the lesion area.
     (3)Total RNA was isolated from the aorta for microarray to explore the differential gene expression profiling.
     (4)Cathepsin D expression was measured by immunofluorescence and western-blot.
     RESULTS: (1)Compared with the control group, model group showed elevated TC and TG in serum (both P<0.01), and obvious aortic fibrous plaques.
     (2)Of the 20500 genes explored,1218 genes were downregulated and 510 genes were upregulated. The differential expression genes were associated with inflammation, lipid metabolism, oxidative stress and cell apoptosis. The upregulated genes related to ECM remodeling included thrombospondin, osteopontin, perlecan, MMP-11, CathepsinB, CathepsinL, CathepsinD, CathepsinY, cytokines and inflammatory factors(TNF-α) etc. The downregulated ones included growth factor(TGF-β), CystatinC, MMp-2, MMp-16, MMp-23 and serine protease inhibitor, serine protease inhibitor (serpin).
     (3)Immunofluorescence analysis showed that cathepsin D was mainly localized in the intima and tunica media, especially in the thicken tunica media. Further western-blot revealed that Cathepsin D protein expression was significantly increased in aorta of model group compared with control group. CONCLUSION: (1)Combining the high fat/cholesterol diets with injection of vitamin D3 successfully established the experiment atherosclerotic model in rats. (2)AS was a complex disorder resulting from a network of gene–gene and gene–environment interactions, the pathogenesis of AS was in close relation with ECM. Cathepsin D might play an important role in AS.
引文
[1] Brown PO, Botstein D.Exploring the new world of the genome with DNA microarrays.Nat Genet.1999, 21 (1 Suppl): 33-37.
    [2] Russell Ross.Atherosclerosis-An Inflammatory Disease.the New England Journal of Medicine.1999,340(2):115-126.
    [3] Kiechl S, Willeit J.The nature course of atherosclerosis partⅡ: vascular remodeling.Bruneck Study Group.Arterioscler Thromb Vasc Biol.1999, 19(6): 1491-1498.
    [4] Arturo Garcia Touchard, Henry TD, Giuseppe Sangiorgi, et al. Extracellular proteases in atherosclerosis and restenosis.Arterioscler Thromb Vasc Biol.2005, 25 ( 6): 1119 -1127.
    [5] Galis ZS and Khatri JJ.Matrix metalloproteinases in vascular remodeling and atherosclerosis:the good, the bad, and the ugly.Circ Res.2002, 90(3): 251-262.
    [6] JoséA, Rodríguez, Josune Orbe, JoséA.Páramo.Metalloproteases, Vascular Remodeling, and Atherothrombotic Syndromes . Rev Esp Cardiol.2007, 60(9): 959-967.
    [7] Berdowska I.Cysteine proteases as disease markers.Clin Chim Acta.2004, 342(1-2): 41-69.
    [8] Katunuma N, Tsuge H, Nukatsuka M, et al.Structure-based design of specific cathepsin inhibitors and their application to protection of bone metastases of cancer cells.Arch Biochem Biophys.2002, 397 (2): 305 -31.
    [9] Lecaille F, Kaleta J, Br?mme D.Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developmentsin inhibitor design.Chem Rev.2002, 102(12): 4459 -4488.
    [10] Hall A, Ekiel I, Mason RW, Kasprzykowski F, Grubb A, Abrahamson M.Structural basis for different inhibitory specificities of human cystatins C and D.Biochemistry.1998, 37(12): 4071–4079.
    [11] Shi GP, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT, Ridker PM, Libby P, Chapman HA.Cystatin C deficiency in human atherosclerosis and aortic aneurysms.J Clin Invest.1999, 104(9): 1191-1197.
    [12] O?rni K, Sneck M, Br?mme D, Pentik?inen MO, Lindstedt KA, M?yr?np?? M, Aitio H, Kovanen PT.Cysteine protease cathepsin F is expressed in human atherosclerotic lesions, is secreted by cultured macrophages, and modifies low density lipoprotein particles in vitro.J Biol Chem.2004: 279(33),34776–34784.
    [13] Lutgens E, Lutgens SP, Faber BC, Heeneman S, Gijbels MM, de Winther MP, Frederik P, van der Made I, Daugherty A, Sijbers AM, Fisher A, Long CJ, Saftig P, Black D, Daemen MJ, Cleutjens KB.Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation.Circulation.2006,113(1): 98-107.
    [14] Farouc A. Jaffer, Dong-Eog Kim, Luisa Quinti, Ching-Hsuan Tung, Elena Aikawa, Ashvin N. Pande, Rainer H. Kohler, Guo-Ping Shi, Peter Libby, Ralph Weissleder.Optical Visualization of Cathepsin K Activity in Atherosclerosis With a Novel, Protease-Activatable Fluorescence Sensor.Circulation.2007,115(17):2292-2298.
    [15] Manu O. Platt, Randall F. Ankeny, Guo-Ping Shi, Daiana Weiss, J. D. Vega, W. R. Taylor, Hanjoong Jo.Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis.2007,Am J Physiol Heart Circ Physiol.2007,292(3):1479-1486.
    [16] Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P.Expression of the elastolytic cathepsins S and Kin human atheroma and regulation of their production in smooth muscle cells.J Clin Invest.1998, 102(3): 576-583.
    [17] Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, Kodama T, Tsimikas S, Witztum JL, Lu ML, Sakara Y, Chin MT, Libby P, Shi GP . Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice.J Clin Invest.2003,111 (6) : 897 -906.
    [18] Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, and Shi GP.Lysosomal cysteine proteases in atherosclerosis.Arterioscler Thromb Vasc Biol.2004, 24(8): 1359-1366.
    [19] Rodgers KJ, Watkins DJ, Miller AL, Chan PY,Karanam S, Brissette WH, Long CJ, and Jackson CL.Destabilizing role of cathepsin S in murine atherosclerotic plaques.Arterioscler Thromb Vasc Biol.2006,26(4): 851–856.
    [20] Lutgens S, Kisters N, Lutgens E, van Haaften R, Evelo C,de Winther M, Saftig P, Daemen M, Heeneman S, and Cleutjens K.Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic.J Pathol.2006, 210(3): 334–343.
    [21] Andriy O. Samokhin, Andre Wong, Paul Saftig, Dieter Bromme.Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice.Atherosclerosis.2008, [Epub ahead of print].
    [22] Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Bromme D.Cathepsin V, a novel and potent elastolyticactivity expressed in activated macrophages.J Biol Chem.2004,279(35): 36761–36770.
    [23] Cheng XW, Kuzuya M, Nakamura K, Di Q, Liu Z, Sasaki T, Kanda S, JinH, Shi GP, Murohara T, Yokota M, Iguchi A.Localization of cysteine protease, cathepsinS, to the surface of vascular smooth muscle cells by association with integrin alphanubeta3. Am J Pathol.2006,168(2): 685–694.
    [24] Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, DelaisséJM.The collagenolytic activity of cathepsin K is unique among mammalian proteinases.J Biol Chem.1998,273(48): 32347–32352.
    [25] Liu J, Sukhova GK, Yang JT, Sun J, Ma L, Ren A, Xu WH, Fu H, Dolganov GM, Hu C, Libby P, and Shi GP.Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells.Atherosclerosis.2006,184(2): 302–31.
    [26] Li W, Yuan XM, Olsson AG, and Brunk UT.Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation.Arterioscler Thromb Vasc Biol.1998,18(2): 177-184.
    [27] Li W, Yuan XM.Increased expression and translocation of lysosomal cathepsins contribute to macrophage apoptosis in atherogenesis. Ann NY Acad Sci.2004,1030: 427-433.
    [28] Chwieralski CE, Welte T, Bühling F . Cathepsin-regulated apoptosis. Apoptosis. 2006, 11(2):143-9.
    [29] Li W, Dalen H, Eaton JW, and Yuan XM . Apoptotic death of inflammatory cells in human atheroma.Arterioscler Thromb Vasc.2001, 21(7): 1124-1130.
    [30] Sukhova GK, Shi GP.Do cathepsins play a role in abdominal aortic aneurysm pathogenesis? Ann NY Acad Sci.2006, 1085 : 161-169.
    [31] Bengtsson E , Hakansson TF , Grubb A , Branen L , Nilsson J , Jovinge S.Lack of the cysteine protease inhibitor Cystatin C promotes atherosclerosis in apolipoprotein E-deficient mice.Arterioscler Thromb Vasc Biol.2005, 25(2): 151-156.
    [32] Bengtsson E, To F, Grubb A, H?kansson K, Wittgren L, Nilsson J, Jovinge S.Absence of the protease inhibitor cystatin C in inflammatory cells results in larger plaque area in plaque regression of apoE-deficient mice.Atherosclerosis.2005, 180(1): 45-53.
    [33] Dudda-Subramanya R, I ucchese G, Kandue D, et al.Clinical applications of DNA microarray analysis, J Exp Ther Oncol.2003, 3(6): 297-304.
    [34] Chang JC, Hilsenbeck SG, Fuqua SA.Genornic approaches in the management and treatment of breast cancer.Br J Cancer.2005, 92(4): 6l8-624.
    [35] Kunz M, Ibrahim SM, Koczan D, et a1.DNA microarray technology and its applications in dermatology.Exp Dermato1.2004,13(10): 593-606.
    [36] Hacia JG.Resequencing and mutational analysis using oligonucleotide microarrays.Nature Genetics.1999, 21 (1 Suppl): 42-47.
    [37] DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM..Use of a cDNA microarray to analyse gene expression patterns in human cancer.Nat Genet.1996, 14(4): 457-460.
    [38] Hacia JG, Brody LC, Chee MS, Fodor SP, Collins FS.Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis.Nat Genet.1996,14(4): 441-447.
    [39] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES.Molecular classification of cancer; class discovery and class prediction by gene expression monitoring.Science.1999, 286 (5439) : 531-537.
    [40] Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE Jr, Hartwell LH, Brown PO, Friend SH.Drug target validation and identification of secondarydrug target effects using DNA microarrays.Nat Med.1998,4(11) :1293-1301。
    [41] Chee M, Yang R, Hubble E, et al.Accessing genetic information with high density DNA arrays.Science.1996,(5287):610-614.
    [42] Rys? J, Leskinen H, Ilves M, Ruskoaho H.Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure.Hypertension.2005,45(5):927-933.
    [43] Litvin J, Blagg A, Mu A, Matiwala S, Montgomery M, Berretta R, Houser S, Margulies K.Periostin and periostin-like factor in the human heart: possible therapeutic targets.Cardiovasc Pathol.2006,15(1):24-32.
    [44] Yang J, Moravec CS, Sussman MA.Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays.Circulation.2000,10(2):3046-3052.
    [45] Schomisch SJ, Murdock DG, Hedayati N, Carino JL, Lesnefsky EJ, Cmolik BL .Cardioplegia prevents ischemia-induced transcriptional alterations of cytoprotective genes in rat hearts:a DNA microarray study.J Thorac Cardiovasc Surg.2005,130(4):1151.
    [46] Mirotsou M, Watanabe CM, Schultz PG, Pratt RE, Dzau VJ.Elucidating the molecular mechanism of cardiac remodeling using a comparative genomic approach.Physiol Genomics.2003,15(2): 115-126.
    [47] Yamagishi M, Higashikata T, Ishibashi-Ueda H, Sasaki H, Ogino H, Iihara K, Miyamoto S, Nagaya N, Tomoike H, Sakamoto A . Sustained upregulation of inflammatory chemokine and its receptor in aneurysmal and occlusive atherosclerotic disease: results form tissue analysis with cDNA macroarray and real-time reverse transcriptional polymerase chain reaction methods.Circ J.2005,69(12): 1490-1495.
    [48] Satterthwaite G, Francis SE, Suvarna K, Blakemore S, Ward C, Wallace D, Braddock M, Crossman D.Differential gene expression in coronaryarteries from patients presenting with ischemic heart disease: further evidence for the inflammatory basis of atherosclerosis. Am Heart J.2005,150(3):488-499.
    [49] Shiffman D, Mikita T, Tai JT, Wade DP, Porter JG, Seilhamer JJ, Somogyi R, Liang S, Lawn RM.Large scale gene expression analysis of cholesterol-loaded macrophages.J Biol Chem.2000,275(48):37324-37332.
    [50] Liu SL, Li YH, Shi GY, Jiang MJ, Chang JH, Wu HL.The effect of statin on the aortic gene expression profiling . International Journal of Cardiology.2007,114(1): 71-77.
    [51] Barton PJ, Felkin LE, Birks EJ, Cullen ME, Banner NR, Grindle S, Hall JL, Miller LW, Yacoub MH.Myocardial insulin-like growth factor-I gene expression during recovery from heart failure after combined left ventricular assist device and clenbuterol therapy.Circulation.2005,112(9 Suppl): I46-50.
    [52] Iemitsu M, Maeda S, Miyauchi T, Matsuda M, Tanaka H.Gene expression profiling of exercise-induced cardiac hypertrophy in rats . Acta Physiol Scand.2005,185(4):259-270.
    [53] Cheek DJ, Cesan A.Genetic predictors of cardiovascular disease:the use of chip technology.J Cardiovasc Nurs.2003,18(1): 50-56.
    [54] Nagase H, Woessner JF.Matrix metalloproteinases.Biol Chem.1999, 274(31): 21491-21494.
    [55] Peng-Yuan Yang, Yao-Cheng Rui, Ling Lu , Jun Li, Su-Qin Liu,He-Xin Yan, Hong-Yang Wang.Time courses of ascular endothelial growth factor and intercellular adhesion molecule-1 expressions in aortas of atherosclerotic rats.Life Sciences.2005, 77(20):2529–2539.
    [56]张顺民,龚志锦,陈伟红,胡宏杰,郑唯强,朱明华.实验动物整体血管和心脏冰冻切片的脂质染色法改进与应用.中国组织化学与细胞化学杂志.2004,13(1):127-128.
    [57]杨永宗.动脉粥样硬化性心血管病基础与临床.北京:科学出版.2004:140-142.
    [58]杨小毅,万载阳,谭健苗,袁中华,杨永宗.一种纯系小鼠动脉粥样硬化模型的建立.中国动脉硬化杂志.1995,3(2):182.
    [59] Fleckenstein-Grun G, Frey M, Frey M, Thimm F, Luley C, Czirfusz A, Fleckenstein A..Differentiation between calcium- and cholesterol-dominated types of arteriosclerotic lesions: antiarteriosclerotic aspects of calcium antagonists.Cardiovas Pharmacol.1991,18(suppl 6):s1- s9.
    [60] Price PA, Faus SA, Williamson MK.Warfarin-induced artery calcification is accelerated by growth and vitamin D[J].Arterioscler Thromb Vasc Biol.2000, 20(2): 317-327.
    [61]温进坤,韩梅,杜玮南.一种快速建立大鼠动脉粥样硬化模型的方法.中国老年学杂志.2001,21(1):50-52.
    [62] Price PA, June HH, Buckley JR, et al.Osteoprotegerin inhibits artery calcigfication induced by warfarin and by vitamin D.Arterioscler Thromb Vasc Biol.2001, 21(10): 1610-1616.
    [63]孙安阳,俞彰,钟慈声,王永铭,杨藻宸.大鼠动脉钙超负荷模型的建立及确证.中华医学杂志,1999,79(10):769-772.
    [64] Bennani-Kabchi N, Kehel L, El Bouayadi F, Fdhil H, Amarti A, Saidi A, MarquiéG.New model of atherosclerosis in insulin resistant sand rats:hyperecholesterolemia combined with D2 vitamin.Atherosclerosis.2000,150(1):55-61.
    [65] Bennani-Kabchi N, Kehel L,Bouayadi F, Fdhil H, Amarti A, Saidi A, MarquiéG.New model of atherosclerosis in sand rats subjected to a high cholesterol diet and vitamin D2.Therapie.1999,54(2):559-565.
    [66]郭延松,吴宗贵,杨军柯,黄高忠.三种大鼠动脉粥样硬化模型复制方法的比较.中国动脉硬化杂志.2003,11(5):465-469.
    [67] Rekhter MD.Collagen synthesis in atherosclerosis:too much and notenough.Cardiovasc Res.1999, 41(2): 376–384.
    [68] Isoda K, Kamezawa Y, Ayaori M, Kusuhara M, Tada N, Ohsuzu F.Osteopontin transgenic mice fed a high-cholesterol diet develop early fatty-streak lesions. Circulation. 2003, 107(5): 679–681.
    [69] Kinsella MG, Irvin C, Reidy MA, Wight TN.Removal of heparan sulfate by heparinase treatment inhibits FGF-2-dependent smooth muscle cell proliferation in injured rat carotid arteries.Atherosclerosis.2004,175(1): 51–57.
    [70] Li D, Liu Y, Chen J, Velchala N, Amani F, Nemarkommula A, Chen K, Rayaz H, Zhang D, Liu H, Sinha AK, Romeo F, Hermonat PL, Mehta JL.Suppression of atherogenesis by delivery of TGF beta1 ACT using adeno-associated virus type 2 in LDLR knockout mice.Biochem Biophys Res Commun.2006, 344(3): 701-707.
    [71] Argmann CA, Van Den Diepstraten CH, Sawyez CG, Edwards JY, Hegele RA, Wolfe BM, Huff MW. Transforming growth factor-1 inhibits macrophage cholesteryl ester accunmulation induced by native and oxidized VLDL remnants. Arterioscler Throm Vasc Biol.2001, 21(12): 2011-2018.
    [72] Zuckerman SH, Panousis C, Evans G.TGF-beta reduced binding of high-density lipoproteins in murine macrophages and macrophage derived foam ce11s.Atherosclerosis.2001, 155(1): 79-85.
    [73] Minami M, Kume N, Kataoka H, Morimoto M, Hayashida K, Sawamura T, Masaki T, Kita T. Transforming growth factor-beta(1) increases the expression of lectin-like oxidized low density lipoprotein receptor-1. Biochem Biophys Res Common.2000, 272(2): 357-361.
    [74] Tedgui A, Mallat Z. Cytokines in therosclerosis: pathogenic and regulatory pathways.Physiol Rev.2006,86(2):515-581.
    [75] Grainger DJ, Mosedale DE, Metcalfe JC, Bottinger EP.Dietary fat and reduced levels of TGF beta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions . J Cell Sci.2000,113(Pt 13):2355–2361.
    [76] Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, KamatéC, Merval R, Fradelizi D, Tedgui A.. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice.Circ Res.2001,89(10): 930-934.
    [77] Chesebro BB, Blessing E, Kuo CC, Rosenfeld ME, Puolakkainen M, Campbell LA . Nitric oxide synthase plays a role in Chlamydia pneumoniae-induced atherosclerosis.Cardiovasc Res. 2003 Oct 15;60(1):170-174
    [78] Behr-Roussel D, Rupin A, Simonet S, Bonhomme E, Coumailleau S, Cordi A, Serkiz B, Fabiani JN, Verbeuren TJ.Effect of chronic treatment with the inducible nitric oxide synthase inhibitor N-iminoethyl-L-lysine or with L-arginine on progression of coronary and aortic atherosclerosis in hypercholesterolemic rabbits.Circulation.2000, 102 (9) : 1033-1038.
    [79] Jian Liu, Galina K.Sukhova, Jin-Tian Yang, Jiusong Sun, Likun Ma, An Ren, Wei-Hua Xu.Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis.2006,184( 2): 302-311.
    [80] Jormsj? S, Wuttge DM, Sirsj? A, Whatling C, Hamsten A, Stemme S, Eriksson P.Differential expression of cysteine and aspartic proteases during progression of atherosclerosis in apolipoprotein E-deficient mice.Am J Pathol.2002 ,161(3): 939-945.
    [81] Kitamoto S, Sukhova GK, Sun J, Yang M, Libby P, Love V, Duramad P, Sun C, Zhang Y, Yang X, Peters C, Shi GP.Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice.Circulation.2007 , 115 (15): 2065-2075.
    [82] Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, and Weissleder R.In vivo imaging of proteolytic activity in atherosclerosis.Circulation.2002,105(23): 2766–2771.
    [83] Shi GP, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT, Ridker PM, Libby P, Chapman HA.Cystatin C deficiency in human atherosclerosis and aortic aneurysms.J Clin Invest.1999,104(9): 1191–1197.
    [84] Bengtsson E, To F, Grubb A, H?kansson K, Wittgren L, Nilsson J, Jovinge S. Absence of the protease inhibitor cystatin C in inflammatory cells results in larger plaque area in plaque regression of apoE-deficient mice. Atherosclerosis.2005, 180 (1) : 45 -53.
    [85] Isola J, Weitz S, Visakorpi T, Holli K, Shea R, Khabbaz N, Kallioniemi OP.Cathepsin D expression detected by immunohistochemistry has independent prognostic value in axillary node-negative breast cancer.J Clin Oncol.1993, 11 (1) : 36-43.
    [86] Matsuo K, Kobayashi I, Tsukuba T, Kiyoshima T, Ishibashi Y, Miyoshi A, Yamamoto K, Sakai H.Immunohistochemical localization of cathepsin D and E in human gastric cancer: a possible correlation with local invasive and metastatic activities of carcinoms cell.Hum Pathol.1996, 27(2): 184-190.
    [87] Karin O llinger.Inhibition of Cathepsin D Prevents Free-Radical-Induced Apoptosis in Rat Cardiomyocytes.Archives of Biochemistry and Biophysics.2000, 373( 2): 346–351.
    [88] Jukka K.Hakala, Riina Oksjoki, Petri Laine, Hong Du, Gregory A.Grabowski, PetriT.Kovanen, Markku O.Pentik?inen.Lysosomal Enzymes Are Released From Cultured Human Macrophages, Hydrolyze LDL In Vitro, and Are Present Extracellularly in Human Atherosclerotic Lesions.Arterioscler Thromb Vasc Biol.2003,23(8): 1430-1436.
    [89] Haendeler J, Popp R, Goy C, Tischler V, Zeiher AM, Dimmeler S.Cathepsin D and H2O2 stimulate degradation of thioredoxin-1: implication for endothelial cell apoptosis.J Biol Chem.2005, 280(52): 42945-42951.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.