趋化因子MDC/CCL22-CCR4轴在胃癌腹膜乳斑转移中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进展期胃癌根治术后腹膜种植转移约占40%-50%,是影响预后的主要因素之一。胃癌腹膜转移的形成是一个复杂的病理生理过程,胃癌腹膜转移与癌细胞活性及腹膜特征有关,并且需要多种黏附分子、蛋白水解酶、细胞因子及血管生成因子的共同参与。
     趋化因子是一类具有趋化作用的细胞因子,根据半胱氨酸相对位置不同,可将趋化因子分为C.CC.CXC和CX3C四大类,除参与炎症反应外,趋化因子及其受体在淋巴细胞归巢、免疫应答、感染、自身免疫性疾病、移植免疫排斥及血管生成等众多生理、病理过程中起着非常重要的作用。近年来,越来越多的证据表明,趋化因子与肿瘤的生长、侵袭和转移密切相关趋化因子及其受体的相互作用与胃癌腹膜乳斑转移的关系目前还不完全清楚,但已有研究表明趋化因子家族中的基质细胞衍生因子一1(SDF-1/CXCL 12)及其受体CXCR4可能在胃癌腹膜转移中发挥作用,用CXCR4的特异性阻断剂AMD3100可以抑制胃癌的腹膜转移。已有资料证明进展期胃癌患者腹膜转移初期首先发生在大网膜乳斑区,而非乳斑区很少出现。大网膜乳斑为腹膜上的淋巴样组织,主要由巨噬细胞和淋巴细胞所组成,当乳斑区的巨噬细胞等炎症细胞受到外界因素刺激后分泌巨噬细胞衍生因子(Macrophage-Derived Chemokine,)即MDC/CCL22,CCL22为CC类趋化因子亚家族成员,CCL22的受体为CC类趋化因子受体4(CCR4),
     我们此实验的目的是研究趋化因子受体4(CCR4)在胃癌中的表达;分析与临床病理参数的关系;探讨趋化因子与胃癌细胞之间的作用关系;同时建立小鼠胃癌腹膜乳斑转移模型,观察乳斑区结构;验证胃癌腹膜转移首先特异性选择在乳斑区的理论,并进一步检测趋化因子MDC/CCL22及受体CCR4在乳斑区的表达情况,探讨MDC/CCL22一CCR4轴与胃癌腹膜乳斑转移的可能关系,为胃癌腹膜转移的治疗提供新的靶点。
     方法:
     取大连医科大学附属第一医院外科手术切除的、经病理证实的56例胃癌组织及56例转移淋巴结、12例大网膜转移灶、10例正常胃粘膜作为标本,通过免疫组化检测CCR4在各标本中的表达;单变量分析CCR4表达与临床各病理参数的关系。
     细胞培养人胃癌细胞株MGC-803、AGS、BGC-823、MKN-45、SGC-7901,和小鼠胃癌细胞MFC,运用RT-PCR、Western-blot方法检测CCR4在各胃癌细胞系中的mRNA水平和蛋白水平的表达。
     用MDC对CCR4表达阳性的细胞株进行体外实验,通过四甲基偶氮唑蓝(MTT)法和Transwell小室迁移实验检测不同浓度CCL22对胃癌细胞株的增殖和趋化的影响。
     向615小鼠腹腔内注射0.2ml Dil荧光颗粒标记的CCR4阳性表达的MFC悬液(含癌细胞4×105)制备腹膜乳斑转移模型,12小时后通过免疫荧光观察大网膜。免疫组化检测大网膜乳斑区MDC/CCL22表达。
     小鼠腹腔注入0.2ml MFC细胞悬液(含癌细胞5×106个),制备MFC腹膜转移模型。5天后抽取腹腔腹水,在有血性腹水的小鼠中随机抽取10只,并取数量相等的腹腔内注射生理盐水的615小鼠作为对照组。在腹腔注射后第6、8、10天,抽取小鼠的腹水,运用酶连免疫吸附法(Elisa)分别检测MFC组和对照组腹水中CCL22的浓度。
     结果:
     1.56例胃癌原发灶中,有41例CCR4表达阳性,阳性率为73.21%;56例转移淋巴结中36例呈阳性表达,表达率64.29%12例大网膜转移灶中10例表达CCR4,阳性率为83.33%;12例癌旁正常胃粘膜均未发现CCR4的表达。单变量分析56例胃癌原发灶中的CCR4表达水平与临床各病理参数的关系发现:CCR4在原发灶中的表达与胃癌分化程度相关(P<0.05),而与病人年龄、肿瘤大小、位置、分期、淋巴结转移等无关(P>0.05)。
     2. RT-PCR结果显示CCR4的mRNA在5种人胃癌细胞株MGC-803、AGS、BGC-823、MKN-45、SGC-7901和小鼠胃癌MFC中均有表达。Western-blot检测CCR4蛋白在各细胞系的表达水平结果与RT-PCR相符。体外实验显示MDC可以促进BGC-823细胞的增殖和趋化,在一定的浓度范围内呈剂量依赖性。
     3.腹腔注射的MFC初期转移在大网膜乳斑区;免疫组化显示在胃癌腹膜转移的过程中,乳斑区有CCR4.CCL22表达。CC122在MFC组腹水中的浓度显著高于对照组,有统计学意义(P<0.05)。
     结论:
     CCR4在部分胃癌中有表达,MDC/CCL22可以促进BGC-823细胞的增殖和增加它的迁移能力。胃癌腹膜转移早期特异选择的部位是乳斑区,趋化因子MDC/CCL22-CCR4轴在胃癌腹膜乳斑转移中起作用,CCR4可能成为未来腹膜转移防治的潜在的靶点。
Peritoneal metastasis occurred in 40%-50% out of whole cases of advanced gastric carcinoma, which is a frequent cause of death in these patients. The formation of peritoneal metastasis of gastric cancer is a complex pathophysiological process, which is hypothesized to be related to cancer cell activity, peritoneal characteristics and other factors such as multiple adhesion molecules, proteolytic enzyme, cytokine, angiogenesis factor and so on.
     Chemokines belongs to one type of cytokines which have chemotactic effect. According to the relative position of cysteine, chemokines can be divided into four categories:C, CC, CXC, and CX3C. Chemokines and their receptors get involved in many physiological and pathological processes (inflammatory responses, lymphocyte homing, immune response, infections, autoimmune diseases, graft rejection and angiogenesis and so on) and play important roles in them. In recent years, more and more evidence emerged to demonstrate that chemokines are closely related to the tumor growth, invasion and metastasis. The role that chemokines play in the formation of the peritoneal milky spots metastasis of gastric cancer is still unclear. There were studies which had shown that Stromal cell-derived factor-1(SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) might participate in peritoneal metastasis of gastric cancer on the basis that AMD3100, the blocking agent of CXCR4, can inhibit peritoneal metastasis of gastric cancer. Omental milky spots is the lymphoid tissue in peritoneum and composed of macrophages and lymphocytes. Macrophages secrete macrophage-derived factors (MDC/CCL22, the CC chemokines subfamily members) when they are stimulated by external factors. The receptor of CCL22 is CC-type chemokine receptor 4 (CCR4). The purpose of this study is to assay the expression of chemokine receptor 4 (CCR4) in the primary gastric cancer and analyze the relationship between the expression of chemokine receptor 4 and the clinic pathologic parameters; investigate the relationship between chemokines and the formation of metastasis of gastric carcinoma; construct the mold of the mouse milky spot metastasis of gastric cancer and observe the structure of these metastasis; verify the hypothesis that the preference of metastasis of gastric carcinoma is the milky spot of peritoneal; inspect the expressions of MDC/CCL22 and their recptor CCR4 in the milky spot of peritoneal; explore the relationship between the MDC/CCL22-CCR4 axis and the milky spot metastasis of gastric carcinoma and provide new strategy to treat peritoneal metastasis of gastric carcinoma.
     Methods:
     Pathological specimens of 56 cases of gastric cancer,56 cases of lymph node metastasis,12 specimens of omental metastasis of gastric carcinoma,10 specimens of normal gastric mucosa were included. The expression of CCR4 in the all specimens were detected by immunohistochemistry. The relationship between the expression of CCR4 and clinic pathological parameter were analyzed by the single-variable analysis.
     The human gastric cancer cell lines MGC-803, AGS, BGC-823, MKN-45 and SGC-7901 and the mouse gastric cancer cell lines MFC were cultivated in RPMI 1640 or DMEM supplemented with 10% fetal bovine serum. The expressions of CCR4 at the level of mRNA and protein in cell line MGC-803, AGS, BGC-823, MKN-45, SGC-7901,MFC,were detected by RT-PCR and Western-blot respectively.
     CCL22 with different concentrations was supplemented to the culture medium of BGC-823 in which CCR4 was highly expressed. Subsequently, the effects of CCL22 on the proliferation and chemotaxis of CCR4 were assayed by MTT and Transwell plates.
     The expression of CCR4 at mRNA level were detected by RT-PCR in the MFC. The suspension of fluorescence labeling (Dil) MFC in which CCR4 was highly expressed were injected into the abdominal cavity. The omental were observed by confocal fluorescence microscope 12h later. The expression of MDC in milky spot were detected by immuno histochemistry.
     In addition,615 mice peritoneal cavity was injected 0.2ml MFC cell suspension (containing 5×106 cells in number) in order to product the peritoneal metastasis model of MFC. Include 10 mice which have bloody ascites 5 days later as the experimental group. Meanwhile, take the 10 mice which were injected normal saline in their abdominal cavity as the control group.Ascites were collected in two groups at 6th day,8th day,10th day and The concentration of CCL22 were detected by Enzyme linked immunosorbent assay.
     Results:
     1. CCR4 was expressed in 41 cases of primary gastric carcinoma and the positive rate is 73.21%. CCR4 was expressed in 36 cases of lymph node metastasis and the positive rate is 64.29%. CCR4 was expressed in 10 cases of omental metastasis and the positive rate is 83.33%. CCR4 was not detected in the normal gastric mucosa. The expression of CCR4 in the primary gastric carcinoma is highly related to the tumor differentiation (P< 0.05), however it is not related to the other pathological parameter such as age, tumor size, location, phage, stage and lymph node metastasis and so on.
     2. CCR4 was detected to be highly expressed in the 5 human gastric cell lines:MGC-803, AGS, BGC-823, MKN-45 and SGC-7901 by RT-PCR and Western-blot. MDC could promote the proliferation and chemotaxis of BGC-823 dose-dependently in a certain range of concentration.
     3. CCR4 was detected to be expressed in the cell line MFC. In the specimens of milky spot metastasis, CCR4 and CCL22 were detected by immunohistochemistry to be positive. The concentrations of CCL22 in the abdominal fluid in the group of MFC were higher than the control group, there are statistical significant difference between them (P<0.05).
     Conclusions:
     CCR4 was expressed in parts of gastric carcinoma. MDC/CCL22 could promote the proliferation and chemotaxis of BGC-823. The early omental metastasis of gastric carcinoma is prone to the milky spot. The axis of MDC/CCL22-CCR4 play a important role in the milky spot metastasis of gastric carcinoma and CCR4 maybe the new target for the treatment of milky spot metastasis of gastric carcinoma.
引文
1. Yoshie O, Imai T, Nomiyama H. Novel lymphocyte-specific CC chemokines and their receptors. J Leukoc Biol 1997;62(5):634-644.
    2. Yoshie O. Immune chemokines and their receptors:the key elements in the genesis, homeostasis and function of the immune system. Springer Semin Immunopathol 2000;22(4):371-391.
    3. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4(7):540-550.
    4. Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 2006;7(12):243.
    5. Singh RK, Fidler IJ. Regulation of tumor angiogenesis by organ-specific cytokines. Curr Top Microbiol Immunol 1996;213 (Pt 2):1-11.
    6. Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994;79(2):185-188.
    7. Nicolson GL. Tumor and host molecules important in the organ preference of metastasis. Semin Cancer Biol 1991;2(3):143-154.
    8. Fidler IJ, Singh RK, Yoneda J, Kumar R, Xu L, Dong Z, Bielenberg DR, McCarty M, Ellis LM. Critical determinants of neoplastic angiogenesis. Cancer J 2000;6 Suppl 3:S225-236.
    9. Balkwill F. Chemokine biology in cancer. Semin Immunol 2003;15(1):49-55.
    10. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410(6824):50-56.
    11. Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med 2001;345(11):833-835.
    12. Fidler IJ. The organ microenvironment and cancer metastasis. Differentiation 2002;70(9-10):498-505.
    13. Zlotnik A. Chemokines and cancer. Int J Cancer 2006;119(9):2026-2029.
    14. Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H, Miyasaka M. Chemokines in tumor progression and metastasis. Cancer Sci 2005; 96(6):317-322.
    15. Koizumi K, Kozawa Y, Ohashi Y, Nakamura ES, Aozuka Y, Sakurai H, Ichiki K, Doki Y, Misaki T, Saiki I. CCL21 promotes the migration and adhesion of highly lymph node metastatic human non-small cell lung cancer Lu-99 in vitro. Oncol Rep 2007; 17(6):1511-1516.
    16. Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, Sakurai H, Yoshie O, Saiki I. RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 2006;23(1):9-18.
    17. Yasumoto K, Koizumi K, Kawashima A, Saitoh Y, Arita Y, Shinohara K, Minami T, Nakayama T, Sakurai H, Takahashi Y, Yoshie O, Saiki I. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res 2006;66(4):2181-2187.
    18. Akashi T, Koizumi K, Nagakawa O, Fuse H, Saiki I. Androgen receptor negatively influences the expression of chemokine receptors (CXCR4, CCR1) and ligand-mediated migration in prostate cancer DU-145. Oncol Rep 2006;16(4):831-836.
    19. Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 2002;118(6):915-922.
    20. Singh RK, Gutman M, Radinsky R, Bucana CD, Fidler IJ. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res 1994;54(12):3242-3247.
    21. Varney ML, Li A, Dave BJ, Bucana CD, Johansson SL, Singh RK. Expression of CXCR1 and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype. Clin Exp Metastasis 2003;20(8): 723-731.
    22. Norgauer J, Metzner B, Schraufstatter I. Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J Immunol 1996;156(3):1132-1137.
    23. Arya M, Patel HR, Williamson M. Chemokines:key players in cancer. Curr Med Res Opin 2003;19(6):557-564.
    24. Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 2002;277(51): 49481-49487.
    25. Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe T, Inaba K, Minato N, Oshima M, Taketo MM. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 2004;64(11): 4010-4017.
    26. Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J Dermatol Sci 2004;36(2):71-78.
    27. Cabioglu N, Yazici MS, Arun B, Broglio KR, Hortobagyi GN, Price JE, Sahin A. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res 2005;11(16):5686-5693.
    28. Hao L, Zhang C, Qiu Y, Wang L, Luo Y, Jin M, Zhang Y, Guo TB, Matsushima K, Zhang Y. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Lett 2007;253(1):34-42.
    29. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, Luker GD. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 2004;64(23):8604-8612.
    30. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6(1):17-32.
    31. Saur D, Seidler B, Schneider G, Algul H, Beck R, Senekowitsch-Schmidtke R, Schwaiger M, Schmid RM. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 2005;129(4):1237-1250.
    32. Wehler T, Wolfert F, Schimanski CC, Gockel I, Herr W, Biesterfeld S, Seifert JK, Adwan H, Berger MR, Junginger T, Galle PR, Moehler M. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol Rep 2006;16(6):1159-1164.
    33. Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, Bridger G, Balkwill FR. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 2002;62(20):5930-5938.
    34. Burger M, Glodek A, Hartmann T, Schmitt-Graff A, Silberstein LE, Fujii N, Kipps TJ, Burger JA. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 2003;22(50):8093-8101.
    35. Pan J, Mestas J, Burdick MD, Phillips RJ, Thomas GV, Reckamp K, Belperio JA, Strieter RM. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer 2006;5:56.
    36. Kaifi JT, Yekebas EF, Schurr P, Obonyo D, Wachowiak R, Busch P, Heinecke A, Pantel K, Izbicki JR. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 2005;97(24):1840-1847.
    37. Scala S, Ottaiano A, Ascierto PA, Cavalli M, Simeone E, Giuliano P, Napolitano M, Franco R, Botti G, Castello G. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 2005;11(5):1835-1841.
    38. Arya M, Patel HR, McGurk C, Tatoud R, Klocker H, Masters J, Williamson M. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 2004;4(4): 291-303.
    39. Schimanski CC, Schwald S, Simiantonaki N, Jayasinghe C, Gonner U, Wilsberg V, Junginger T, Berger MR, Galle PR, Moehler M. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 2005;11(5):1743-1750.
    40. Su L, Zhang J, Xu H, Wang Y, Chu Y, Liu R, Xiong S. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res 2005;11(23):8273-8280.
    41. Hu J, Deng X, Bian X, Li G, Tong Y, Li Y, Wang Q, Xin R, He X, Zhou G, Xie P, Li Y, Wang JM, Cao Y. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin Cancer Res 2005; 11 (13):4658-4665.
    42. Laverdiere C, Hoang BH, Yang R, Sowers R, Qin J, Meyers PA, Huvos AG, Healey JH, Gorlick R. Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res 2005;11 (7):2561-2567.
    43. Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, Foshag L, Bilchik AJ, Hoon DS. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 2005;23(12):2744-2753.
    44. Airoldi I, Raffaghello L, Piovan E, Cocco C, Carlini B, Amadori A, Corrias MV, Pistoia V. CXCL12 does not attract CXCR4+human metastatic neuroblastoma cells:clinical implications. Clin Cancer Res 2006;12(1):77-82.
    45. Weigelt B, Wessels LF, Bosma AJ, Glas AM, Nuyten DS, He YD, Dai H, Peterse JL, van't Veer LJ. No common denominator for breast cancer lymph node metastasis. Br J Cancer 2005;93(8):924-932.
    46. Godiska R, Chantry D, Raport CJ, Sozzani S, Allavena P, Leviten D, Mantovani A, Gray PW. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 1997; 185(9):1595-1604.
    47. Imai T, Chantry D, Raport CJ, Wood CL, Nishimura M, Godiska R, Yoshie O, Gray PW. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J Biol Chem 1998;273(3):1764-1768.
    48. Chang M, McNinch J, Elias C,3rd, Manthey CL, Grosshans D, Meng T, Boone T, Andrew DP. Molecular cloning and functional characterization of a novel CC chemokine, stimulated T cell chemotactic protein (STCP-1) that specifically acts on.activated T lymphocytes. J Biol Chem 1997;272(40): 25229-25237.
    49. Schaniel C, Pardali E, Sallusto F, Speletas M, Ruedl C, Shimizu T, Seidl T, Andersson J, Melchers F, Rolink AG, Sideras P. Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. J Exp Med 1998; 188(3):451-463,
    50. Mantovani A. The chemokine system:redundancy for robust outputs. Immunol Today 1999;20(6):254-257.
    51. Sozzani S, Luini W, Bianchi G, Allavena P, Wells TN, Napolitano M, Bernardini G, Vecchi A, D'Ambrosio D, Mazzeo D, Sinigaglia F, Santoni A, Maggi E, Romagnani S, Mantovani A. The viral chemokine macrophage inflammatory protein-Ⅱ is a selective Th2 chemoattractant. Blood 1998; 92(11):4036-4039.
    52. Cerwenka A, Morgan TM, Harmsen AG, Dutton RW. Migration kinetics and final destination of type 1 and type 2 CD8 effector cells predict protection against pulmonary virus infection. J Exp Med 1999;189(2):423-434.
    53. Ely KH, Roberts AD, Woodland DL. Cutting edge:effector memory CD8+T cells in the lung airways retain the potential to mediate recall responses. J Immunol 2003;171 (7):3338-3342.
    54. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001; 19:65-91.
    55. Chantry D, Romagnani P, Raport CJ, Wood CL, Epp A, Romagnani S, Gray PW. Macrophage-derived chemokine is localized to thymic medullary epithelial cells and is a chemoattractant for CD3(+), CD4(+), CD8(low) thymocytes. Blood 1999;94(6):1890-1898.
    56. Tang HL, Cyster JG. Chemokine Up-regulation and activated T cell attraction by maturing dendritic cells. Science 1999;284(5415):819-822.
    57. Rodenburg RJ, Brinkhuis RF, Peek R, Westphal JR, Van Den Hoogen FH, van Venrooij WJ, van de Putte LB. Expression of macrophage-derived chemokine (MDC) mRNA in macrophages is enhanced by interleukin-1beta, tumor necrosis factor alpha, and lipopolysaccharide. J Leukoc Biol 1998; 63(5):606-611.
    58. Bonecchi R, Sozzani S, Stine JT, Luini W, D'Amico G, Allavena P, Chantry D, Mantovani A. Divergent effects of interleukin-4 and interferon-gamma on macrophage-derived chemokine production:an amplification circuit of polarized T helper 2 responses. Blood 1998;92(8):2668-2671.
    59. Andrew DP, Chang MS, McNinch J, Wathen ST, Rihanek M, Tseng J, Spellberg JP, Elias CG,3rd. STCP-1 (MDC) CC chemokine acts specifically on chronically activated Th2 lymphocytes and is produced by monocytes on stimulation with Th2 cytokines IL-4 and IL-13. J Immunol 1998; 161(9):5027-5038.
    60. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 1998; 187(1):129-134.
    61. Iellem A, Colantonio L, Bhakta S, Sozzani S, Mantovani A, Sinigaglia F, D'Ambrosio D. Inhibition by IL-12 and IFN-alpha of I-309 and macrophage-derived chemokine production upon TCR triggering of human Thl cells. Eur J Immunol 2000;30(4):1030-1039.
    62. D'Ambrosio D, Iellem A, Bonecchi R, Mazzeo D, Sozzani S, Mantovani A, Sinigaglia F. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 1998; 161(10): 5111-5115.
    63. Galli G, Chantry D, Annunziato F, Romagnani P, Cosmi L, Lazzeri E, Manetti R, Maggi E, Gray PW, Romagnani S. Macrophage-derived chemokine production by activated human T cells in vitro and in vivo:preferential association with the production of type 2 cytokines. Eur J Immunol 2000;30(1):204-210.
    64. Vestergaard C, Yoneyama H, Murai M, Nakamura K, Tamaki K, Terashima Y, Imai T, Yoshie O, Irimura T, Mizutani H, Matsushima K. Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J Clin Invest 1999; 104(8):1097-1105.
    65. Lloyd CM, Delaney T, Nguyen T, Tian J, Martinez AC, Coyle AJ, Gutierrez-Ramos JC. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J Exp Med 2000;191(2):265-274.
    66. Gonzalo JA, Pan Y, Lloyd CM, Jia GQ, Yu G, Dussault B, Powers CA, Proudfoot AE, Coyle AJ, Gearing D, Gutierrez-Ramos JC. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J Immunol 1999; 163(1):403-411.
    67. Campbell JJ, Pan J, Butcher EC. Cutting edge:developmental switches in chemokine responses during T cell maturation. J Immunol 1999; 163(5): 2353-2357.
    68. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew DP, Warnke R, Ruffing N, Kassam N, Wu L, Butcher EC. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 1999;400(6746):776-780.
    69. Cossman J, Annunziata CM, Barash S, Staudt L, Dillon P, He WW, Ricciardi-Castagnoli P, Rosen CA, Carter KC. Reed-Sternberg cell genome expression supports a B-cell lineage. Blood 1999;94(2):411-416.
    70. Endres MJ, Garlisi CG, Xiao H, Shan L, Hedrick JA. The Kaposi's sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J Exp Med 1999; 189(12):1993-1998.
    71. Wells TN, Schwartz TW. Plagiarism of the host immune system:lessons about chemokine immunology from viruses. Curr Opin Biotechnol 1997; 8(6): 741-748.
    72. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 2000;164(2):762-767.
    73. Nakanishi T, Imaizumi K, Hasegawa Y, Kawabe T, Hashimoto N, Okamoto M, Shimokata K. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol Immunother 2006;55(11):1320-1329.
    74. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 2008;122(10):2286-2293.
    75. Maruyama T, Kono K, Izawa S, Mizukami Y, Kawaguchi Y, Mimura K, Watanabe M, Fujii H. CCL17 and CCL22 chemokines within tumor microenvironment are related to infiltration of regulatory T cells in esophageal squamous cell carcinoma. Dis Esophagus 2009.
    76. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401(6754):708-712.
    77. Mosmann TR, Sad S. The expanding universe of T-cell subsets:Thl, Th2 and more. Immunol Today 1996;17(3):138-146.
    78. O'Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med 2004;10(8):801-805.
    79. Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S, Kawaguchi M, Kobayashi H, Doi R, Hori T, Fujii N, Imamura M. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 2000;6(9):3530-3535.
    80. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6(4):295-307.
    81. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5(4):263-274.
    82. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D'Ambrosio D. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001;194(6):847-853.
    83. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10(9): 942-949.
    84. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004;16(11):1643-1656.
    85. Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, Gray PW, Matsushima K, Yoshie O. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol 1999;11(1):81-88.
    86. Kikuchi H, Shibazaki M, Ahmed S, Baba T. Method for evaluation of immunotoxicity of dioxin compounds using human T-lymphoblastic cell line, L-MAT. Chemosphere 2001;43(4-7):815-818.
    87. Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, Hieshima K, Tatsumi Y, Matsushima K, Hasegawa H, Kanamaru A, Kamihira S, Yamada Y. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood 2002;99(5):1505-1511.
    88. Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, Takeuchi G, Shimizu S, Ito M, Komatsu H, Wakita A, Eimoto T, Matsushima K, Ueda R. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma:its close association with skin involvement and unfavorable outcome. Clin Cancer Res 2003;9(10 Pt 1):3625-3634.
    89. Girardi M, Heald PW, Wilson LD. The pathogenesis of mycosis fungoides. N Engl J Med 2004;350(19):1978-1988.
    90. Jones D, O'Hara C, Kraus MD, Perez-Atayde AR, Shahsafaei A, Wu L, Dorfman DM. Expression pattern of T-cell-associated chemokine receptors and their chemokines correlates with specific subtypes of T-cell non-Hodgkin lymphoma. Blood 2000;96(2):685-690.
    91. Ishida T, Inagaki H, Utsunomiya A, Takatsuka Y, Komatsu H, lida S, Takeuchi G, Eimoto T, Nakamura S, Ueda R. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res 2004;10(16):5494-5500.
    92. Ohshima K, Karube K, Kawano R, Tsuchiya T, Suefuji H, Yamaguchi T, Suzumiya J, Kikuchii M. Classification of distinct subtypes of peripheral T-cell lymphoma unspecified, identified by chemokine and chemokine receptor expression:Analysis of prognosis. Int J Oncol 2004;25(3):605-613.
    93. Ishida T, Inagaki H, Kusumoto S, Inagaki A, Komatsu H, lida S, Harada S, Takeuchi G, Uedaa R. CC chemokine receptor 4-positive diffuse large B-cell lymphoma involving the skin:a case report. Int J Hematol 2005; 82(2): 148-151.
    94. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I, Wirth T, Demel G, Falini B. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 2001;97(2):496-501.
    95. Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, Inagaki H, Ueda R. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 2006;66(11): 5716-5722.
    96. van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin's lymphoma. Am J Pathol 1999; 154(6):1685-1691.
    97. Weihrauch MR, Manzke O, Beyer M, Haverkamp H, Diehl V, Bohlen H, Wolf J, Schultze JL. Elevated serum levels of CC thymus and activation-related chemokine (TARC) in primary Hodgkin's disease:potential for a prognostic factor. Cancer Res 2005;65(13):5516-5519.
    98. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL, Deng J, Xu M, Briest S, Biragyn A. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 2009;69(14): 5996-6004.
    99. Yonemura Y, Ninomiya I, Kaji M. Sugiyama K, Fujimura T, Tsuchihara K, Kawamura T, Miyazaki I, Endou Y, Tanaka M, et al. Decreased E-cadherin expression correlates with poor survival in patients with gastric cancer. Anal Cell Pathol 1995;8(2):177-190.
    100. Bando E, Yonemura Y, Endou Y, Sasaki T, Taniguchi K, Fujita H, Fushida S, Fujimura T, Nishimura G, Miwa K, Seiki M. Immunohistochemical study of MT-MMP tissue status in gastric carcinoma and correlation with survival analyzed by univariate and multivariate analysis. Oncol Rep 1998;5(6): 1483-1488.
    101. Tahara E. Cancer-stromal interaction through growth factor/cytokine networks implicated in growth of stomach cancer. Princess Takamatsu Symp 1994;24:187-194.
    102. Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, Sawada T, Sowa M. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 1996;77(5):858-863.
    103. Tsujimoto H, Takhashi T, Hagiwara A, Shimotsuma M, Sakakura C, Osaki K, Sasaki S, Shirasu M, Sakakibara T, Ohyama T, et al. Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination: immunohistochemical observation in mice inoculated intraperitoneally with bromodeoxyuridine-labelled cells. Br J Cancer 1995;71(3):468-472.
    104. Shimotsuma M, Simpson-Morgan M. Omental milky spots. Lancet 1991; 338(8782-8783):1596.
    105. Shimotsuma M, Takahashi T, Kawata M, Dux K. Cellular subsets of the milky spots in the human greater omentum. Cell Tissue Res 1991;264(3):599-601.
    106. Shimotsuma M, Shirasu M, Hagiwara A, Takahashi T, Shields JW. Omental milky spots and the local immune response. Lancet 1992;339(8803):1232.
    107. Krist LF, Kerremans M, Koenen H, Blijleven N, Eestermans IL, Calame W, Meyer S, Beelen RH. Novel isolation and purification method permitting functional cytotoxicity studies of macrophages from milky spots in the greater omentum. J Immunol Methods 1995;184(2):253-261.
    108. Lawrance RJ, Loizidou M, Cooper AJ, Alexander P, Taylor I. Importance of the omentum in the development of intra-abdominal metastases. Br J Surg 1991;78(1):117-119.
    109. Abe H, Ina K, Kitamura H, Sumiyoshi H, Tatsukawa S, Yoshioka H, Fujikura Y. Role of the CXCL12/CXCR4 axis in milky spots of rats bearing ascitic-type hepatoma. Anat Sci Int 2009;84(3):226-236.
    110. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 2002;62(24):7203-7206.
    111. Yang SX, Chen JH, Jiang XF, Wang QL, Chen ZQ, Zhao W, Feng YH, Xin R, Shi JQ, Bian XW. Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem Biophys Res Commun 2005;335(2):523-528.
    112. Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, Marquez LA, Christofidou-Solomidou M, Janowska-Wieczorek A, Ratajczak MZ. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001;19(5):453-466.
    113. Brand S, Dambacher J, Beigel F, Olszak T, Diebold J, Otte JM, Goke B, Eichhorst ST. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res 2005;310(1):117-130.
    114. Lee JH, Cho YS, Lee JY, Kook MC, Park JW, Nam BH, Bae JM. The chemokine receptor CCR4 is expressed and associated with a poor prognosis in patients with gastric cancer. Ann Surg 2009;249(6):933-941.
    115. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344(11):783-792.
    116. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346(4): 235-242.
    117. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350(23):2335-2342.
    118. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354(6): 567-578.
    119. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001;1(2):118-129.
    120. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, Castiglioni F, Villani L, Magalotti C, Gibelli N, Oliviero B, Ballardini B, Da Prada G, Zambelli A, Costa A. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004;10(17):5650-5655.
    121. Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, Matsushima K, Ueda R, Hanai N, Shitara K. Defucosylated chimeric anti-CC chemokine receptor 4 IgGl with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 2004;64(6):2127-2133.
    122. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+T cells:a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163(10):5211-5218.
    123. Steitz J, Bruck J, Lenz J, Knop J, Tuting T. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 2001;61(24):8643-8646.
    124. Sanderson K, Scotland R, Lee P, Liu D, Groshen S, Snively J, Sian S, Nichol G, Davis T, Keler T, Yellin M, Weber J. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 2005;23(4):741-750.
    1. Tsujitani S, Oka S, Suzuki K, Saito H, Kondo A, Ikeguchi M, Maeta M, Kaibara N. Prognostic factors in patients with advanced gastric cancer treated by noncurative resection: a multivariate analysis. Hepatogastroenterology 2001;48(41):1504-1508.
    2. Maehara Y, Hasuda S, Koga T, Tokunaga E, Kakeji Y, Sugimachi K. Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. Br J Surg 2000;87(3):353-357.
    3. Yonemura Y, Bandou E, Kawamura T, Endou Y, Sasaki T. Quantitative prognostic indicators of peritoneal dissemination of gastric cancer. Eur J Surg Oncol 2006;32(6): 602-606.
    4. Togo S, Shimada H, Kubota T, Moossa AR, Hoffman RM. "Seed" to "soil" is a return trip in metastasis. Anticancer Res 1995; 15(3):791-794.
    5. Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M. Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as "soil" for peritoneal dissemination. Cancer 1996;77(8 Suppl):1668-1675.
    6. Nishimura S, Chung YS, Yashiro M, Inoue T, Sowa M. Role of alpha 2 beta 1-and alpha 3 beta 1-integrin in the peritoneal implantation of scirrhous gastric carcinoma. Br J Cancer 1996;74(9):1406-1412.
    7. Yonemura Y, Ninomiya I, Kaji M, Sugiyama K, Fujimura T, Tsuchihara K, Kawamura T, Miyazaki I, Endou Y, Tanaka M, et al. Decreased E-cadherin expression correlates with poor survival in patients with gastric cancer. Anal Cell Pathol 1995;8(2):177-190.
    8. Imai T, Chantry D, Raport CJ, Wood CL, Nishimura M, Godiska R, Yoshie O, Gray PW. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J Biol Chem 1998;273(3):1764-1768.
    9. Bando E, Yonemura Y, Endou Y, Sasaki T, Taniguchi K, Fujita H, Fushida S, Fujimura T, Nishimura G, Miwa K, Seiki M. Immunohistochemical study of MT-MMP tissue status in gastric carcinoma and correlation with survival analyzed by univariate and multivariate analysis. Oncol Rep 1998;5(6):1483-1488.
    10. Tahara E. Cancer-stromal interaction through growth factor/cytokine networks implicated in growth of stomach cancer. Princess Takamatsu Symp 1994;24:187-194.
    11. Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, Sawada T, Sowa M. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 1996;77(5):858-863.
    12. Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000; 18:593-620.
    13. Balkwill F. Chemokine biology in cancer. Seniin Immunol 2003;15(1):49-55.
    14. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410(6824):50-56.
    15. Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med 2001;345(11):833-835.
    16. Krist LF, Kerremans M, Broekhuis-Fluitsma DM, Eestermans IL, Meyer S, Beelen RH. Milky spots in the greater omentum are predominant sites of local tumour cell proliferation and accumulation in the peritoneal cavity. Cancer Immunol Immunother 1998; 47(4): 205-212.
    17. Hagiwara A, Takahashi T, Sawai K, Taniguchi H, Shimotsuma M, Okano S, Sakakura C, Tsujimoto H, Osaki K, Sasaki S, et al. Milky spots as the implantation site for malignant cells in peritoneal dissemination in mice. Cancer Res 1993;53(3):687-692.
    18. Tsujimoto H, Takhashi T, Hagiwara A, Shimotsuma M, Sakakura C, Osaki K, Sasaki S, Shirasu M, Sakakibara T, Ohyama T, et al. Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination:immunohistochemical observation in mice inoculated intraperitoneally with bromodeoxyuridine-labelled cells. Br J Cancer 1995;71(3): 468-472.
    19. Shimotsuma M, Shirasu M, Hagiwara A, Takahashi T, Shields JW. Omental milky spots and the local immune response. Lancet 1992;339(8803):1232.
    20. Krist LF, Kerremans M, Koenen H, Blijleven N, Eestermans IL, Calame W, Meyer S, Beelen RH. Novel isolation and purification method permitting functional cytotoxicity studies of macrophages from milky spots in the greater omentum. J Immunol Methods 1995; 184(2):253-261.
    21. Yasumoto K, Koizumi K, Kawashima A, Saitoh Y, Arita Y, Shinohara K, Minami T, Nakayama T, Sakurai H, Takahashi Y, Yoshie O, Saiki I. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res 2006;66(4):2181-2187.
    22. Godiska R, Chantry D, Raport CJ, Sozzani S, Allavena P, Leviten D, Mantovani A, Gray PW. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 1997;185(9):1595-1604.
    23. Chantry D, DeMaggio AJ, Brammer H, Raport CJ, Wood CL, Schweickart VL, Epp A, Smith A, Stine JT, Walton K, Tjoelker L, Godiska R, Gray PW. Profile of human macrophage transcripts:insights into macrophage biology and identification of novel chemokines. J Leukoc Biol 1998;64(1):49-54.
    24. Chang M, McNinch J, Elias C,3rd, Manthey CL, Grosshans D, Meng T, Boone T, Andrew DP. Molecular cloning and functional characterization of a novel CC chemokine, stimulated T cell chemotactic protein (STCP-1) that specifically acts on activated T lymphocytes. J Biol Chem 1997;272(40):25229-25237.
    25. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001;19:65-91.
    26. Rodenburg RJ, Brinkhuis RF, Peek R, Westphal JR, Van Den Hoogen FH, van Venrooij WJ, van de Putte LB. Expression of macrophage-derived chemokine (MDC) mRNA in macrophages is enhanced by interleukin-lbeta, tumor necrosis factor alpha, and lipopolysaccharide. J Leukoc Biol 1998;63(5):606-611.
    27. Vestergaard C, Yoneyama H, Murai M, Nakamura K, Tamaki K, Terashima Y, Imai T, Yoshie O, Irimura T, Mizutani H, Matsushima K. Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J Clin Invest 1999;104(8):1097-1105.
    28. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D'Ambrosio D. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001;194(6):847-853.
    29. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10(9):942-949.
    30. Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, Hieshima K, Tatsumi Y, Matsushima K, Hasegawa H, Kanamaru A, Kamihira S, Yamada Y. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood 2002;99(5):1505-1511.
    31. Jones D, O'Hara C, Kraus MD, Perez-Atayde AR, Shahsafaei A, Wu L, Dorfman DM. Expression pattern of T-cell-associated chemokine receptors and their chemokines correlates with specific subtypes of T-cell non-Hodgkin lymphoma. Blood 2000;96(2): 685-690.
    32. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL, Deng J, Xu M, Briest S, Biragyn A. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 2009;69(14):5996-6004.
    33. Nakanishi T, Imaizumi K, Hasegawa Y, Kawabe T, Hashimoto N, Okamoto M, Shimokata K. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol Immunother 2006;55(11):1320-1329.
    34. Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, Inoue H, Mori M. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002;62(10):2937-2941.
    35. Pituch-Noworolska A, Drabik G, Szatanek R, Bialas M, Kolodziejczyk P, Szczepanik A, Stachura J, Zembala M. Immunophenotype of isolated tumour cells in the blood, bone marrow and lymph nodes of patients with gastric cancer. Pol J Pathol 2007;58(2):93-97.
    36. Yan C, Zhu ZQ Yu YY, Ji J, Zhang Y, Ji YB, Yan M, Chen J, Liu BY, Yin HR, Lin YZ. Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol 2004;10(6):783-790.
    37. Singh RK, Fidler IJ. Regulation of tumor angiogenesis by organ-specific cytokines. Curr Top Microbiol Immunol 1996;213 (Pt 2):1-11.
    38. Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994;79(2):185-188.
    39. Nicolson GL. Tumor and host molecules important in the organ preference of metastasis. Semin Cancer Biol 1991;2(3):143-154.
    40. Fidler IJ, Singh RK, Yoneda J, Kumar R, Xu L, Dong Z, Bielenberg DR, McCarty M, Ellis LM. Critical determinants of neoplastic angiogenesis. Cancer J 2000;6 Suppl 3:S225-236.
    41. Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H, Miyasaka M. Chemokines in tumor progression and metastasis. Cancer Sci 2005;96(6):317-322.
    42. Zlotnik A. Chemokines and cancer. Int J Cancer 2006;119(9):2026-2029.
    43. Fidler IJ. The organ microenvironment and cancer metastasis. Differentiation 2002; 70(9-10):498-505.
    44. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 2008;122(10):2286-2293.
    45. Mosmann TR, Sad S. The expanding universe of T-cell subsets:Thl, Th2 and more. Immunol Today 1996;17(3):138-146.
    46. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6(4):295-307.
    47. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5(4):263-274.
    48. Bennaceur K, Chapman JA, Touraine JL, Portoukalian J. Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta 2009;1795(1):16-24.
    49. Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, Takeuchi G, Shimizu S, Ito M, Komatsu H, Wakita A, Eimoto T, Matsushima K, Ueda R. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma:its close association with skin involvement and unfavorable outcome. Clin Cancer Res 2003;9(10 Pt l):3625-3634.
    50. Ishida T, Inagaki H, Utsunomiya A, Takatsuka Y, Komatsu H, Iida S, Takeuchi G, Eimoto T, Nakamura S, Ueda R. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res 2004;10(16):5494-5500.
    51. Ohshima K, Karube K, Kawano R, Tsuchiya T, Suefuji H, Yamaguchi T, Suzumiya J, Kikuchii M. Classification of distinct subtypes of peripheral T-cell lymphoma unspecified, identified by chemokine and chemokine receptor expression:Analysis of prognosis. Int J Oncol 2004;25(3):605-613.
    52. Pavese I, Satta F, Todi F, Di Palma M, Piergrossi P, Migliore A, Piselli P, Borghesi R, Mancino G, Brunetti E, Alimonti A. High serum levels of TNF-{alpha} and IL-6 predict the clinical outcome of treatment with human recombinant erythropoietin in anaemic cancer patients. Ann Oncol 2009.
    53. Abe H, Ina K, Kitamura H, Sumiyoshi H, Tatsukawa S, Yoshioka H, Fujikura Y. Role of the CXCL12/CXCR4 axis in milky spots of rats bearing ascitic-type hepatoma. Anat Sci Int 2009;84(3):226-236.
    54. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 2002;62(24):7203-7206.
    55. Yang SX, Chen JH, Jiang XF, Wang QL, Chen ZQ, Zhao W, Feng YH, Xin R, Shi JQ, Bian XW. Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem Biophys Res Commun 2005;335(2):523-528.
    56. Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, Marquez LA, Christofidou-Solomidou M, Janowska-Wieczorek A, Ratajczak MZ. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001;19(5):453-466.
    57. Brand S, Dambacher J, Beigel F, Olszak T, Diebold J, Otte JM, Goke B, Eichhorst ST. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res 2005;310(1):117-130.
    58. Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 2002; 118(6):915-922.
    59. Singh RK, Gutman M, Radinsky R, Bucana CD, Fidler IJ. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res 1994;54(12):3242-3247.
    60. Varney ML, Li A, Dave BJ, Bucana CD, Johansson SL, Singh RK. Expression of CXCR1 and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype. Clin Exp Metastasis 2003;20(8):723-731.
    61. Norgauer J, Metzner B, Schraufstatter I. Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J Immunol 1996;156(3):1132-1137.
    62. Arya M, Patel HR, Williamson M. Chemokines:key players in cancer. Curr Med Res Opin 2003;19(6):557-564.
    63. Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 2002;277(51):49481-49487.
    64. Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe T, Inaba K, Minato N, Oshima M, Taketo MM. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 2004;64(11):4010-4017.
    65. Porcile C, Bajetto A, Barbieri F, Barbero S, Bonavia R, Biglieri M, Pirani P, Florio T, Schettini G. Stromal cell-derived factor-lalpha (SDF-lalpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 2005;308(2): 241-253.
    66. Kikuchi H, Shibazaki M, Ahmed S, Baba T. Method for evaluation of immunotoxicity of dioxin compounds using human T-lymphoblastic cell line, L-MAT. Chemosphere 2001;43(4-7):815-818.
    67. Lee JH, Cho YS, Lee JY, Kook MC, Park JW, Nam BH, Bae JM. The chemokine receptor CCR4 is expressed and associated with a poor prognosis in patients with gastric cancer. Ann Surg 2009;249(6):933-941.
    68. Tsujimoto H, Hagiwara A, Shimotsuma M, Sakakura C, Osaki K, Sasaki S, Ohyama T, Ohgaki M, Imanishi T, Yamazaki J, Takahashi T. Role of milky spots as selective implantation sites for malignant cells in peritoneal dissemination in mice. J Cancer Res Clin Oncol 1996;122(10):590-595.
    69. Van Vugt E, Van Rijthoven EA, Kamperdijk EW, Beelen RH. Omental milky spots in the local immune response in the peritoneal cavity of rats. Anat Rec 1996;244(2):235-245.
    70. Fokas E, Engenhart-Cabillic R, Daniilidis K, Rose F, An HX. Metastasis:the seed and soil theory gains identity. Cancer Metastasis Rev 2007;26(3-4):705-715.
    71. Yamashita K, Sakuramoto S, Katada N, Futawatari N, Moriya H, Hirai K, Kikuchi S, Watanabe M. Diffuse type advanced gastric cancer showing dismal prognosis is characterized by deeper invasion and emerging peritoneal cancer cell:the latest comparative study to intestinal advanced gastric cancer. Hepatogastroenterology 2009; 56(89):276-281.
    72. Shimotsuma M, Takahashi T, Kawata M, Dux K. Cellular subsets of the milky spots in the human greater omentum. Cell Tissue Res 1991;264(3):599-601.
    73. Cui L, Johkura K, Liang Y, Teng R, Ogiwara N, Okouchi Y, Asanuma K, Sasaki K. Biodefense function of omental milky spots through cell adhesion molecules and leukocyte proliferation. Cell Tissue Res 2002;310(3):321-330.
    74. Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001; 357(9255):539-545.
    75. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today 1992;13(7):265-270.
    76. Allavena P, Sica A, Vecchi A, Locati M, Sozzani S, Mantovani A. The chemokine receptor switch paradigm and dendritic cell migration:its significance in tumor tissues. Immunol Rev 2000;177:141-149.
    77. Niwa R, Shoji-Hosaka E, Sakurada M, et al.Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 2004;64(6):2127-2133.
    78. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells:a common basis between tumor immunity and autoimmunity. J Immunol 1999;163(10):5211-5218.
    79. Steitz J, Bruck J, Lenz J, Knop J, Tuting T. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 2001; 61(24):8643-8646.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.