CD28拮抗性类肽、CD137结合肽的筛选及生物活性测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分 CD28拮抗性类肽的筛选及其生物活性测定
     目的
     CD28-B7是T细胞活化最关键的,研究最清楚的协同刺激通路。阻断CD28-B7通路是治疗自身免疫病及防治移植排斥的重要策略之一。
     目前阻断协同刺激通路的方法主要是用特异性单克隆抗体封闭,如用抗B7的单抗(抗-CD80/86)阻断CD28-B7通路,由于现有的单抗主要是鼠源性的,用于人体后可产生免疫反应,引起过敏反应和疗效的降低,而人单抗制备困难,基因工程产品技术要求和造价高,限制了其在临床的应用。因此,迫切需要研发出更为廉价、有效的阻断剂。
     类肽是近年来发展起来的一种新型小分子受体或酶的阻断剂,可与受体的配体结合位点结合,阻断受体与天然配体的结合,起到受体抑制物的作用。类肽可根据受体或酶结合位点的三维空间结构设计并通过组合化学的方法合成。其优点是有高度的受体亲和力和选择性,在体内代谢稳定,制备简单,成本低。
     本研究的目的是针对CD28与其配体结合的特异活性位点,用组合化学的方法合成CD28拮抗性类肽;利用噬菌体展示系统展示具有天然结构的CD28同源二聚体,以此建立一个简单、有效、高通量的体外筛选体系;以噬菌体展示CD28为靶标,筛选与CD28高亲和力结合的类肽药物;在体内外进一步检测CD28拮抗性类肽药物的生物活性,为CD28拮抗性类肽药物开发奠定基础。
     方法
     1.CD28拮抗性类肽设计、合成
     根据CD28的三维空间结构及与B7结合关键基序,设计、合成CD28拮抗
Objective
    The CD28-B7 pathway has been described as one of the best characterized, critical costimulatory pathway for T cell activation, so it may serve as a potential target for blocking T cell activation and thereby treating autoimmune diseases and ameliorating transplantation rejection.
    The most common agent to block CD28-B7 costimulatory pathway is specific monoclonal antibodsy, such as anti-CD80/CD86mAbs. But monoclonal antibodies are mouse derived and have many side-effects in application. Otherwise, the production of humanized mAb is not only difficult but also expensive, so its application is limited. It is very necessary to make out more effective and cheaper blocking agents to block the costimulatory pathway.
    Peptoid, oligomers of N-substituted glycines, is a new kind of blocking agent. It can interact with receptor or enzyme, so can be used as a small compound substitute for peptide to block the reaction of receptor with its natural ligand. Peptoid can be designed based on the receptor's conformation and synthesized by combinatory chemistry. Nowadays, peptoids attract more and more attention for their broad variety of biological activities and proteolytic stability.
    The object of this research is to select peptoids that can block CD28-B7 pathway
引文
1. Janeway CA Jr, Bottomly K. Signals and signs for lymphocyte responses. Cell. 1994 Jan 28;76(2):275-85.
    2. Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: Turning lymphocytes off. Science. 1998;280: 243-248.
    3. Ledbetter JA, Imboden JB, Schieven GL, et al. CD28 ligation in T-cell activation: evidence for two signal transduction pathways. Blood. 1990 Apr 1;75(7): 1531-9.
    4. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002 Feb;2(2):116-26.
    5. Linsley PS, Ledbetter JA: The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993; 11: 191-212.
    6. June CH, Bluestone JA, Nadler LM, Thompson CB: The B7 and CD28 receptor families. Immunol Today 1994; 15: 321-331.
    7. June CH, Ledbetter JA, Linsley PS et al.. Role of the CD28 receptor in T-cell activation. Immunol Today. 1990; 11:211-16.
    8. Sansom DM, Manzotti CN, Zheng Y. What's the difference between CD80 and CD86? Trends Immunol. 2003 Jun;24(6):314-9.
    9. Bajorath J, Peach RJ, Linsley PS. Immunoglobulin fold characteristics of B7-1 (CD80) and B7-2 (CD86). Protein Sci. 1994 Nov;3(11):2148-50.
    10. Brunet J F, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature. 1987;328: 267-270.
    11. Carreno BM, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol. 2002;20:29-53.
    12. Masteller EL, Chuang E, Mullen AC, et al. Structural analysis of CTLA-4 function in vivo. J Immunol. 2000 May 15;164(10):5319-27.
    13. Van der Merwe PA, Bodian DL, Daenke S, et al. CD80 (B7-1) binds both CD28 and CTLA-4 with a low atTmity and very fast kinetics. J Exp Med. 1997 Feb 3;185(3):393-403.
    14. Lindsten T, Lee KP, Harris ES, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol. 1993 Oct 1; 151(7): 3489-99.
    15. Alegre ML, Frauwirth KA, Thompson CB. T cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001 Dec; 1(3): 220-8.
    16. Helene B and Jeffrey A. B. CD28 function: A balance of costimulatory and regulatory signals. J Clin immunol. 2002; 22: 1-7.
    17. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA: CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991; 174: 561-569.
    18. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA: CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994; 1: 405-413.
    19. Walunas TL, Bakker CY, Bluestone JA: CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med. 1996; 183: 2541-2550.
    20. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995 Aug 1; 182(2): 459-65.
    21. Howland KC, Ausubel LJ, London CA, et al. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J Immunol. 2000 May 1; 164(9): 4465-4470.
    22. DeFina R, Christopher K, He H, et al. Analysis of costimulation by 4-1BBL, CD40L, and B7 in graft rejection by gene expression profiles. J Mol Med. 2003 Oct; 81(10): 655-63.
    23. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996; 14: 233-258.
    24. Chen L, Ashe S, Brady WA, et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell. 1992; 71: 1093-102.
    25. Townsend SE, Allison JP. Tumor rejection after direct eostimulation of CD8+ T cells by B7-transfected melanoma cells. Science. 1993; 259: 368-70.
    26. Chen L, McGowan P, Ashe S, et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med. 1994; 179: 523-32.
    27. Yang G; Hellstrom KE, Hellstrom I, Chen L. Antitumor immunity elicited by tumor cells transfected with B7-2, a second ligand for CD28/CTLA-4 costimulatory molecules. J Immunol. 1995; 154: 2794-800.
    28. Lanier LL, O'Fallon S, Somoza C, et al. CD80(B7) and CD86(B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J Immunol. 1995; 154: 97-105.
    29. Thompson CB. Distinct roles for the costimulatory ligands B7-1 and B7-2 in T helper cell differentiation. Cell. 1995; 81: 979-982.
    30. Bluestone JA: New perspectives of CD28-B7-mediated T cell costimulation. Immunity. 1995; 2: 555-559.
    31. Sayegh MH, Turka LA: The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998; 338: 1813-1821.
    32. Newell KA, He G, Guo Z et al, Cutting edge: Blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated by CD~+4 but not CD8~+T cells. J Immunol. 1999; 163: 2358-2362.
    33. Fine JS, Macosko HD, Justice L, et al. An inhibitor of CD28-CD80 interactions impairs CD28-mediated costimulation of human CD4 T cells. Cell Immunol. 1999 Jan 10; 191(1): 49-59.
    34. Vu MD, Amanullah F, Li Y, et al. Different costimulatory and growth factor requirements for CD4+ and CD8+ T cell-mediated rejection. J Immunol. 2004 Jul 1; 173(1): 214-21.
    35. Costello RT, Mallet F, Sainty D, et al. Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition. Eur J Immunol. 1998 Jan; 28(1): 90-103.
    36. Yamada A, Kishimoto K, Dong VM, et al. CD28-independent costimulation of T cells in alloimmune responses. J Immunol. 2001 Jul 1; 167(1): 140-6.
    37. Yu XZ, Albert MH, Martin PJ et al. CD28 ligation induces transplantation tolerance by IFN-gamma-dependent depletion of T cells that recognize alloantigens. J Clin Invest. 2004 Jun; 113(11): 1624-30.
    38. Gribben JG, Guinan EC, Boussiotis VA, et al. Complete blockade of B7 family-mediated costimulation is necessary to induce human alloantigen-specific anergy: a method to ameliorate graft-versus-host disease and extend the donor pool. Blood. 1996 Jun 1; 87(11): 4887-93.
    39. Turka LA, Linsley PS, Lin H, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA. 1992 Nov 15; 89(22): 11102-5.
    40. Guo L, Fujino M, Kimura H, et al. Simultaneous blockade of co-stimulatory signals, CD28 and ICOS, induced a stable tolerance in rat heart transplantation. Transpl Immunol. 2003 Oct-Nov; 12(1): 41-8.
    41. Guinan EC, Gribben JG, Boussiotis VA, et al. Pivotal role of the B7: CD28 pathway in transplantation tolerance and tumor immunity. Blood. 1994 Nov 15; 84(10): 3261-82.
    42. Chang TT, Kuchroo VK, Sharpe AH. Role of the B7-CD28/CTLA-4 pathway in autoimmune disease. Curr Dir Autoimmun. 2002; 5: 113-30.
    43. Yamada A, Salama AD, Sayegh MH. The role of novel T cell costimulatory pathways in autoimmunity and transplantation. J Am Soc Nephrol. 2002 Feb; 13(2): 559-75.
    44. Judge TA, Wu Z, Zheng XG, et al. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival. J Immunol. 1999 Feb 15; 162(4): 1947-51.
    45. Alegre M, Fallarino F, Zhou P, et al. Transplantation and the CD28/CTLA4/B7 pathway. Transplant Proc. 2001 Feb-Mar; 33(1-2): 209-11.
    46. Gudmundsdottir H, Turka LA. T cell costimulatory blockade: new therapies for transplant rejection. J Am Soc Nephrol. 1999 Jun; 10(6): 1356-65.
    47. Wekerle T, Kurtz J, Bigenzahn S, et al. Mechanisms of transplant tolerance induction using costimulatory blockade. Curr Opin Immunol. 2002 Oct; 14(5): 592-600.
    48. Cuter C, Giri S, Jeyapalan S, et al. Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol. 2001 Aug 15; 19(16): 3685-91.
    49. Parkman R. Chronic graft-versus host disease. Curr Opin Hematol. 1998, 5: 22-25.
    50. Gaschet J, Lim A, Liem L, et al. Acute graft versus host disease due to T lymphocytes recognizing a single HLA-DPB1*0501 mismatch. J Clin Invest. 1996 Jul 1; 98(1): 100-7.
    51. Flanagan DL, Jennings CD, Bryson JS. Thl cytokines and NK cells participate in the development of murine syngeneic graft-versus-host disease. J Immunol. 1999 Aug 1; 163(3): 1170-7.
    52. Kayaba H, Hirokawa M, Watanabe A, et al. Serum markers of graft-versus-host disease after bone marrow transplantation. J Allergy Clin Immunol. 2000 Jul; 106: 40-4.
    53. Kolb HJ, Schmid C, Barrett AJ, et al. Graft-versus-leukemia reactions in allogeneic chimeras. Blood. 2004 Feb 1; 103(3): 767-76.
    54. Zeis M, Uharek L, Hartung G, et al. Graft-vs-leukemia activity and graft-vs-host disease induced by allogeneic Th1-and Th2-type CD4+ T cells in mice. J Hematol. 2001; 2(2): 136-44.
    55. Murphy WJ, Blazar BR. New strategies for preventing graft-versus-host disease. Curr Opin Immunol. 1999 Oct; 11(5): 509-15.
    56. Young KJ, Dutemple B, Phillips MJ, et al. Inhibition of graft-versus-host disease by double-negative regulatory T cells. J Immunol. 2003 Jul 1; 171(1): 134-41.
    57. Sykes M, Harty MW, Szot GL, et al. Interleukin-2 inhibits graft-versus-host disease-promoting activity of CD4+ cells while preserving CD4- and CD8-mediated graft-versus-leukemia effects. Blood. 1994 May 1; 83(9): 2560-9.
    58. Hattori K, Hirano T, Miyajima H, et al. A metalloproteinase inhibitor prevents acute graft-versus-host disease while preserving the graft-versus-leukaemia effect of allogeneic bone marrow transplantation. Br J Haematol. 1999 Apr; 105(1): 303-12.
    59. Edinger M, Hoffmann P, Ermann J, et al. CD4~+CD25~+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003; 9(9): 1144-1150.
    60. Fowler DH, Gress RE. Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma. Leuk Lymphoma. 2000 Jul; 38(3-4): 221-34.
    61. Yang YG, Sergio JJ, Pearson DA, et al. Interleukin-12 preserves the graft-versus-leukemia effect of allogeneic CD8 T cells while inhibiting CD4-dependent graft-versus-host disease in mice. Blood. 1997 Dec 1; 90(11): 4651-60.
    62. Fassas AB, Morris C, Badros A, et al. Separating graft-versus-tumor from graft-versus-host reactions. Leuk Lymphoma. 2002 Apr; 43(4): 725-33.
    63. Tanaka J, Asaka M, Imamura M; T-cell co-signalling molecules in graft-versus-host disease. Ann Hematol. 2000 Jun; 79(6): 283-90.
    64. Yu XZ, Bidwell SJ, Martin PJ, Anasetti C; CD28-specific antibody prevents graft-versus-host disease in mice. J Immunol. 2000 May 1; 164(9): 4564-8.
    65. Wekerle T, Kurtz J, Bigenzahn S, et al. Mechanisms of transplant tolerance induction using costimulatory blockade. Curr Opin Immunol. 2002 Oct; 14(5): 592-600.
    66. Saito K, Sakurai J, Ohata J, et al. Involvement of CD40 ligand-CD40 and CTLA4-B7 pathways in murine acute graft-versus-host disease induced by allogeneic T cells lacking CD28. J Immunol. 1998 May 1; 160(9): 4225-31.
    67. Dai Z, Lakkis FG. The role of cytokines, CTLA-4 and costimulation in transplant tolerance and rejection. Curr Opin Immunol. 1999 Oct; 11(5): 504-8.
    68. Orleans-Lindasy JK, Seru A, Craig JI, et al. In vitro co-stimulation with anti-CD28 synergizes with IL-12 in the generation of T cell immune responses to leukaemic cells; a strategy for ex-vivo generation of CTL for immunotherapy. Clin Exp Immunol. 2003 Sep; 133(3): 467-75.
    69. Ohata J, Sakurai J, Saito K, Tani K, Asano S, Azuma M; Differential graff-versus-leukaemia effect by CD28 and CD40 co-stimulatory blockade after graft-versus-host disease prophylaxis. Clin Exp Immunol. 2002 Jul; 129(1): 61-8.
    70. Subbotin V, Sun H, Chen C, et al. Combined blockade of CD28/B7 and CD40/CD40L costimulatory pathways prevents the onset of chronic rejection. Transplant Proc. 1998 Jun;30(4):941-2.
    
    71. Haspot F, Villemain F, Lafamme, G, et al. Differential effect of CD28 versus B7 blockade on direct pathway of allorecognition and self-restricted responses. Blood. 2002 Mar 15;99(6):2228-34.
    
    72. Van Gool SW, Vermeiren J, Rafiq K, et al. Blocking CD40-CD154 and CD80/CD86- CD28 interactions during primary allogeneic stimulation results in T cell anergy and high IL-10 production. Eur J Immuno. 1999 Aug;29(8):2367-75.
    
    73. Laskowski IA, Pratschke J, Wilhelm MJ, et al. Anti-CD28 monoclonal antibody therapy prevents chronic rejection of renal allografts in rats. J Am Soc Nephrol. 2002 Feb;13(2):519-27.
    
    74. Sandstrom K, Xu Z, Forsberg G, et al. Inhibition of the CD28-CD80 co-stimulation signal by a CD28-binding affibody ligand developed by combinatorial protein engineering. Protein Eng. 2003; Sep 16(9): 691 - 7.
    
    75. Charco R, Caragol I, Urban S, et al. CD28 regulation in liver transplant recipients treated with two different immunosuppressive regimens. Transplant Proc. 1999; Dec;31(8):3365-6.
    
    76. Hegde VR, Puar MS, Dai P et al. Condensed aromatic peptide family of microbial metabolites, inhibitors of CD28-CD80 interactions. Bioorg Med Chem Lett. 2003 Feb 10;13(3):573-5.
    
    77. Griffin MD, Hong DK, Holman PO et al. Blockade of T cell activation using a Surface-Linked single-chain antibody to CTLA-4 (CD152). J Immunol. 2000; 164(9): 4433-4442.
    
    78. Linsley PS , Wallace PM , Johnosn J , et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 1992;257:792-795.
    
    79. Lenschow DJ , Zeng Y, Thistlethwaite JR , et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science. 1992;257: 789-792.
    80. Shiraishi T, Yasunami Y, Takehara M, et al. Prevention of acute lung allograft rejection in rat by CTLA4Ig. Am J Transplant. 2002; 2: 223-228.
    81. Kurlberg G, Haglind E, Schon K, et al. Blockade of the B7-CD28 pathway by CTLA4-Ig counteracts rejection and prolongs survival in small bowel transplantation. Scand J Immunol. 2000; 51: 224-230.
    82. Horwell DC. The 'peptoid' approach to the design of non-peptide, small molecule agonists and antagonists of neuropeptides. Trends Biotechnol. 1995 Apr; 13(4): 132-4.
    83. Simon RJ, Kania RS, Zuckermann RN, et al. Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA. 1992 Oct 15; 89(20): 9367-71.
    84. Mohle K, Hofmann HJ. Peptides and Peptoids-A Systematic Structure Comparison. J Mole Modeling. 1996; 2(9): 307-311.
    85. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB; The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA. 2000 Nov 21; 97(24): 13003-8.
    86. Low CM, Black JW, Broughton HB, Buck IM, Davies JM, Dunstone D et al; Development of peptide 3D structure mimetics: rational design of novel peptoid cholecystokinin receptor antagonists. J Med Chem. 2000 Sep 21; 43(19): 3505-17.
    87. Moehle K, Hofmann HJ. Peptides and peptoids-a quantum chemical structure comparison. Biopolymers. 1996 Jun; 38(6): 781-90.
    88. Johnson G, Jenkins M, Mclean KM, et al. Peptoid-containing collagen mimetics with cell binding activity. J Biomed Mater Res. 2000 Sep 15; 51(4): 612-24.
    89. Rasmussen HS, McCann PP. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther. 1997; 75(1): 69-75.
    90. Tierney GM, Griffin NR, Stuart RC, et al; A pilot study of the safety and effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer. Eur J Cancer. 1999; 35(4): 563-8.
    91. Tian SS, Lamb P, King AG, et al. A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science. 1998 Jul 10;281(5374):257-9.
    
    92. Wu CW, Seurynck SL, Lee KY, et al. Helical Peptoid Mimics of Lung Surfactant Protein C. Chem Biol. 2003 Nov; 10(11):1057-63.
    
    93. Uno T, Beausoleil E, Goldsmith RA, et al. New Submonomers for Poly N-Substituted Glycines (Peptoids). Tetrahedron Lett. 1999;40:1475-1478.
    
    94. Wu CW, Kirshenbaum K, Sanborn TJ, et al. Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains. J Am Chem Soc. 2003 Nov5;125(44):13525-30.
    
    95. Huang K, Wu CW, Sanborn TJ, et al. A threaded loop conformation adopted by a family of peptoid nonamers. J Am Chem Soc. 2006 Feb 8;128(5):1733-8.
    
    96. Kirshenbaum K, Barron AE, Golssmith RA, et al. Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci USA. 1998 Apr 14;95(8):4303-8.
    
    97. Armand P, Kirshenbaum K, Golssmith RA, et al. NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. Proc Natl Acad Sci USA. 1998 Apr 14;95(8):4309-14.
    
    98. Seurynck SL, Patch JA, Barron AE. Simple, helical peptoid analogs of lung surfactant protein B. Chem Biol. 2005 Jan;12(l):77-88.
    
    99. Smith, GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315-7.
    
    100. Smith GP. Surface presentation of protein epitopes using bacteriophage expression systems. Curr Opin Biotechnol. 1991;2:668-73.
    
    101. Pamela J. Buchli, Zining Wu, and Thomas L. Ciardelli. The Functional Display of Interleukin-2 on Filamentous Phage. Archives of Biochem and Biophy. 1997;339:79-84.
    
    102. Bass s, Greene R, Wells JA. Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins. 1990;8(4):309-14.
    
    103. Kurokawa MS, Ohoka S, Matsui T et al. Expression of MHC class I molecules together with antigenic peptides on filamentous phages. Immunol Lett. 2002;80: 163-168.
    104. Lasters I, Van Herzeele N, Lijnen HR, et al. Enzymatic properties of phage-displayed fragments of human plasminogen. Eur J Biochem. 1997; 244: 946-952.
    105. Le Doussal J, Piqueras B, Dogan I, et al. Phage display of peptide/major histocompatibility complex. J Immunol Methods. 2000 Jul 31; 241(1-2): 147-58.
    106. Scarselli E, Esposito G, Traboni C. Receptor phage. Display of functional domains of the human high affinity IgE receptor on the M13 phage surface. FEBS Lett. 1993 Aug 23; 329(1-2): 223-6.
    107. Lobel LI, Rausch P, Trakht I, et al. Filamentous phage displaying the extracellular domain of the hLH/CG receptor bind hCG specifically. Endocrinology. 1997 Mar; 138(3): 1232-9.
    108. Saggio I, Gloaguen I, Laufer R. Functional phage display of ciliary neurotrophic factor. Gene. 1995 Jan 11; 152(1): 35-9.
    109. Aruffo A and Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci USA. 1987; 84: 8573-8577.
    110. Magistrelli G, Jeannin P, Elson G, et al. Identification of three alternatively spliced variants of human CD28 mRNA. Biochem Biophys Res Commun. 1999 May 27; 259(1): 34-7.
    111. Lee KP, Taylor C, Petryniak B, et al. The genomic organization of the CD28 gene. Implications for the regulation of CD28 mRNA expression and heterogeneity. J Immunol. 1990 Jul 1; 145(1): 344-52.
    112. Deshpande M, Venuprasad K, Parab PB, et al. A novel CD28 mRNA variant and simultaneous presence of various CD28 mRNA isoforms in human T lymphocytes. Hum Immunol. 2002 Jan; 63(1): 20-3.
    113. Gross JA, St John T, Allison JP, et al. The murine homologue of the T lymphocyte antigen CD28, molecular cloning and cell surface expression. J Immunol. 1990 Apr 15; 144(8): 3201-10.
    114. Linsley PS, Ledbetter J, Peach R, et al. CD28/CTLA-4 receptor structure, binding stoichiometry and aggregation during T-cell activation. Res Immunol. 1995; 146(3): 130-40.
    115. Bajorath J, Metzler WJ, Linsley PS. Molecular modeling of CD28 and three-dimensional analysis of residue conservation in the CD28/CD152 family. J Mol Graph Model. 1997 Apr;15(2):135-9.
    
    116. Peach R J, Bajorath J, Brady W, et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med. 1994 Dec 1;180(6):2049-58.
    
    117. Guo Y, Wu Y, Kong X, et al. Identification of conserved amino acids in murine B7-1IgV domain critical for CTLA4/CD28:B7 interaction by site-directed mutagenesis: a novel structural model of the binding site. Mol Immunol. 1998 Mar;35(4):215-25.
    
    118. Zhang X, Schwartz JC, Almo SC, et al. Crystal structure of the receptor-binding domain of human B7-2: insights into organization and signaling. Proc Natl Acad Sci USA. 2003 Mar 4;100(5):2586-91.
    
    119. Peach RJ, Bajorath J, Naemura J, et al. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J Biol Chem. 1995 Sep 8;270(36):21181-7.
    
    120. Srinivasan M, Wardrop RM, Gienapp IE, et al. A retro-inverso peptide mimic of CD28 encompassing the MYPPPY motif adopts a polyproline type II helix and inhibits encephalitogenic T cells in vitro. J Immunol. 2001 Jul 1;167(1):578-85.
    
    121. Schwartz JC, Zhang X, Fedorov AA, et al. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 2001 Mar 29;410(6828):604-8.
    
    122. Stamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/CTLA-4 Complex that inhibits Human immune responses. Nature. 2001 Mar 29;410(6828):608-11.
    
    123. Vaughan AN, Malde P, Rogers NJ, et al. Porcine CTLA4-Ig lacks A MYPPPY motif, binds inefficiently to human B7 and specifically suppresses human CD4+ T cell responses costimulated by pig but not human B7. J Immunol. 2000 Sep 15:165(6):3175-81.
    
    124. Barbas CF, Wagner J. Synthetic human antibodies: selecting and evolving functional proteins. Methods, Companion Methods Enzymology. 1995;8: 94-103.
    125. Tayapiwatana. C, Kasinrerk W. Construction and characterization of phage-displayed leukocyte surface molecule CD99. Appl Microbiol Biotechnol. 2002; 60: 336-41.
    126. Tayapiwatana. C, Arooncharus P, Kasinrerk W. Displaying and epitope mapping of CD147 on VCSM13 phages: influence of Escherichia coli strains. J Immunol Methods. 2003 Oct 1; 281(1-2): 177-85.
    127. Manosroi J, Tayapiwatana. C, Gotz F, et al. Secretion of active recombinant human tissue plasminogen activator derivatives in Escherichia coli. Appl Environ Microbiol. 2001 Jun; 67(6): 2657-64.
    1. Janeway CA Jr, Bottomly K. Signals and signs for lymphocyte responses. Cell. 1994 Jan 28; 76(2): 275-85.
    2. Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: Turning lymphocytes off. Science. 1998; 280: 243-248.
    3. Langstein J, Michel J, Fritsche J, et al. CD137 (ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol. 1998 Mar 1; 160(5): 2488-94.
    4. Schwarz H, Blanco FJ, von Kempis J, et al. ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood. 1996 Apr 1; 87(7): 2839-45.
    5. Schwarz H, Tuckwell J, Lotz M. A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis factor receptor family. Gene. 1993; 134(2): 295-8.
    6. Alderson MR, Smith CA, Tough TW, et al. Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol. 1994; 24(9), 2219-27.
    7. Wen T, Bukczynski J, Watts TH. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol. 2002 May 15; 168(10): 4897-4906.
    8. Diehl L, van Mierlo GJ, den Boer AT, et al. In vivo triggering through 4-1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway. J Immunol. 2002 Apr 15; 168(8): 3755-62.
    9. Vinay DS, Kwon BS. Differential expression and costimulatory effect of 4-1BB (CD137) and CD28 molecules on cytokine-induced murine CD8(+) Tel and To2 cells. Cell Immunol. 1999 Feb 25; 192(1): 63-71.
    10. DeBenedette MA, Shahinian A, Mak TW, et al. Costimulation of CD28-T lymphocytes by 4-1BB ligand. J Immunol. 1997; 158(2): 551-9.
    11. Martinet O, Divino CM, Zang Y, et al. T cell activation with systemic agonistic antibody verse local 4-1BB ligand gene delivery combined with interleukin-12 eradicate liver metastases of breast cancer. Gene Ther. 2002; 9(12): 786-92.
    12. Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997; 3(6): 682-5.
    13. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, et al. Ligation of4-1BB(CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol. 2001; 166(5): 3174-83.
    14. Melero I, Shuford WW, Newby SA, et al, Monoclonal antibodies against 4-1BB T cell activation molecule eradicate established tumors. Nature Medicine. 1997; 3: 682-685.
    15. Murillo O, Arina A, Tirapu I, et al. Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies. Clin Cancer Res. 2003 Nov 15; 9(15): 5454-64.
    16. Michel J, Langstein J, Hofstadter F. A soluble form of CD137 (ILA/4-1BB), a member of the TNF receptor faniily, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis. Eur J Immunol. 1998 Jan; 28(1): 290-5.
    17. Nozawa K, Ohata J, Sakurai J. Preferential blockade of CD8(+) T cell responses by administration of anti-CD137 ligand monoclonal antibody results in differential effect on development of murine acute and chronic graft-versus-host diseases. J Immunol. 2001 Nov 1; 167(9): 4981-6.
    18. Shuford WW, Klussman K, Tritchler DD, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997; 186: 47-55.
    19. DeBenedette MA, Wen T, Bachmann MF, etal. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacing both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to infuenza virus. J Immunol. 1999 Nov 1; 163(9): 4833-41.
    20. Wilcox RA, Tamada K, Flies DB, et al. Ligation of CD137 receptor prevents and reverses established anergy of CD8+ cytolytic T lymphocytes in vivo. Blood. 2004 Jan 1; 103(1): 177-84.
    21. Heinisch IV, Bizer C, Volgger W, et al. Functional CD137 receptors are expressed by eosinophils from patients with IgE-mediated allergic responses but not by eosinophils from patients with non-IgE-mediated eosinophilic disorders. J Allergy Clin Immunol. 2001 Jul; 108(1): 21-8.
    22. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228: 1315-7.
    23. McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990; 348: 552-554
    24. Barbas CF 3rd, Kang AS, Lemer RA, et al. Assembly of combinatorial antibody libraries on phage surfaces: the gene Ⅲ site. Proc Natl Acad Sci USA. 1991 Sep 15; 88(18): 7978-82.
    25. Griffiths AD, Duncan AR. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol. 1998 Feb; 9(1): 102-8.
    26. Kretzschmar T, von Ruden T. Antibody discovery: phage display. Curr Opin Biotechnol. 2002 Dec; 13(6): 598-602.
    27. Hoogenboom HR, de Bruine AP, Hufton SE, et al. Antibody phage display technology and its applications. Immunotechnology. 1998 Jun; 4(1): 1-20.
    28. Zebedee SL, Barbas CF 3rd, Hom YL, et al. Human combinatorial antibody libraries to hepatitis B surface antigen. Proc Natl Acad Sci USA. 1992 April 15; 89(8): 3175-3179.
    29. Rojas G, Lamdan H, Padron S. Efficient construction of a highly useful phage-displayed human antibody repertoire. Biochem Biophys Res Commun. 2005 Nov 4; 336(4): 1207-13.
    30. Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990; 246: 386-390.
    31. Steven EC, Elizabeth AP, Ronald WB. Peptides on phage. A vast library of peptides for identifying ligands. Proc Natl Acad Sci USA. 1990; 87: 6378-6382.
    32. Devlin JJ, Panganiban LC, and Devlin PE. Random peptide libraries: a source of specific protein binding molecules. Science. 1990 Jul 27;249(4967):404-6.
    
    33. Kay BK, Kasanov J, Yamabhai M. Screening phage-displayed combinatorial peptide libraries. Methods. 2001 Jul;24(3):240-6.
    
    34. Cwirla SE, Peters EA, Barrett RW, et al. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA, 1990 Aug;87(16):6378-82.
    
    35. Daniels DA, Lane DP. Phage Peptide Libraries. Methods. 1996 Jun;9(3):494-507.
    
    36. Hoogenboom HR, Chames P. Natural and designer binding sites made by phage display technology. Immunol Today. 2000 Aug;21(8):371-8.
    
    37. Azzazy HM, Highsmith WE Jr. Phage display technology: clinical applications and recent innovations. Clin Biochem. 2002 Sep;35(6):425-45.
    
    38. Benhar I. Biotechnological applications of phage and cell display. Biotechnol Adv. 2001 Feb 1;19(1):1-33.
    
    39. Petrenko VA, Vodyanoy VJ. Phage display for detection of biological threat agents. J Microbiol Methods. 2003 May;53(2):253-62.
    
    40. Adda CG, Anders RF, Tilley L, et al. Random sequence libraries displayed on phage: identification of biologically important molecules. Comb Chem High Throughput Screen. 2002 Feb;5(1):1-14.
    
    41. Kay BK, Hamilton PT. Identification of enzyme inhibitors from phage-displayed combinatorial peptide libraries. Comb Chem High Throughput Screen. 2001;4(7) : 535-543.
    
    42. Hammer J, Takacs B, Sinigaglia F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J Exp Med. 1992 Oct 1;176(4):1007-13.
    
    43. Fukumoto T, Torigoe N, Ito Y, et al. T cell proliferation-augmenting activities of the gene 3 protein derived from a phage library clone with CD80-binding activity. J Immunol. 1998 Dec 15;161(12):6622-8.
    
    44. Goodson RJ, Doyle MV, Kaufman SE, et al. High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci USA. 1994 Jul19;91(15):7129-33.
    45. Bugli F, Mancini N, kang CY, et al. Mapping B-cell epitopes of hepatitis C virus E2 glycoprotein using human monoclonal antibodies from phage display libraries. J Virol. 2001 Oct; 75(20): 9986-90.
    46. Yayon A, Aviezer D, Safran M, et al. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc Natl Acad Sci USA. 1993 Nov 15; 90(22): 10643-7.
    47. Zhong G, Smith GP, Berry J, et al. Conformational mimicry of a chlamydial neutralization epitope on filamentous phage. J Biol Chem. 1994 Sep 30; 269(39): 24183-8.
    48. Gough KC, Cockburn W, Whitelam GC. Selection of phage-display peptides that bind to cucumber mosaic virus coat protein. J Virol Methods. 1999 May; 79(2): 169-80.
    49. Mennuni C, Santini C, Dotta F, et al. Selection of phage-displayed peptides mimicking type 1 diabetes-specific epitopes. J Autoimmun. 1996 Jun; 9(3): 431-6.
    50. Binetruy TR, Demangel C, Malavaud B, et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J. 2000; 19(7): 1525-1533.
    51. Fan H, Liu Y, Zhou H, et al. Selection of peptide ligands that bind to acid fibroblast growth factor 1. IUBMB Life. 2000; 49(6):545-548.
    52. Marc F, Stephen CH. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J Virol. 1999; 73: 5795-5802.
    1. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science. 1970; 169: 1042-1049.
    2. Janeway CA Jr, Bottomly K. Signals and signs for lymphocyte responses. Cell. 1994 Jan 28; 76(2): 275-85.
    3. Kwon BS, Kestler DP, Eshhar Z, etal. Expression characteristic of two potential T cell mediator genes. Cell Immunol. 1989; 121(2): 414-422.
    4. Kwon BS, Weissman SM. cDNA sequence of two inducible T-cell genes. Proc Natl Aad Sci USA. 1989; 86: 1963-1967.
    5. Schwarz H, TuekweU J, Lotz M, etal. A receptor induced by lymphocyte activation(ILA): a new member of the human nerve-growth-factor tumor-necrosis-factor receptor family. Gene. 1993 Dec 8; 134(2): 295-8.
    6. Alderson MR, Smith CA, Tough TW, etal. Molecular and biological characerization of human 4-1BB and its ligand. Eur J Immunol. 1994 Sep; 24(9): 2219-27.
    7. Lindstedt M, Johansson-Lindbom B, Borrebaeck CA. Expression of CD137 (4-1BB) on Human Follicular Dendritic Cells. Scand J Immunol. 2003 Apr; 57(4): 305-310.
    8. Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involved in the pathology of malignant lymphomas. Blood. 1995; 85 (12): 3378-3404
    9. Goodwine RG, Din WS, Davis-Smith T, etal. Molecular cloning of a ligand for the inducible gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol. 1993 Oct; 23(10): 2631-41.
    10. Vinay DS, Kwon BS. Role of 4-1BB in immune responses. Semin Immunol. 1998 Dec; 10(6): 481-9.
    11. Wen T, Bukczynski J, Watts TH. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol. 2002 May 15; 168(10): 4897-4906.
    12. Pollok KE, Kim SH, Kwon BS, et al. Regulation of 4-1BB expression by cell-cell interactions and the cytokines interleukin-2 and interleukin-4. Eur J Immunol. 1995; 25(2): 488-494.
    13. DeBenedette MA, Shahinian A, Mak TW, et al. Costimulation of CD28-T lymphocytes by 4-1BB ligand. J Immunol. 1997; 158(2): 551-9.
    14. Zhou Z, Pollok KE, Kim KK, et al, Functional analysis of T-cell antigen 4-1BB in activated intestinal intra-epithelial T lymphocytes. Immunol Lett. 1994; 41 41(2-3): 177-184.
    15. Pollok KE, Kim YJ, Bick C, etal. 4-1BB T-cell antigen binds to mature B cell and macrophages and costimulates anti-μ-primed splenic B cell. Eur J Immunol. 1994; 24: 367-374.
    16. Melero I, Shuford W, Newby S, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell pro liferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997 Jul; 186(1): 47-55.
    17. Kienzle G, von Kempis J. CD137(ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes. Int Immunol. 2000; Jan 12(1): 73-82.
    18. Gramaglia I, Cooper D, Miner KT, et al. Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol. 2000 Feb; 30(2): 392-402.
    19. Zheng G, Wang B, Chen A. The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol. 2004 Aug 15; 173(4): 2428-2434.
    20. Saoulli K, Lee SY, Cannons JL, etal. CD28-independent, TRAF2-dependent costimulation of resting cells by 4-1BB ligand. J Exp Med. 1998; 187(11): 1849-1862.
    21. Bukczynski J, Wen T, and Watts TH. Costimulation of human CD28-T cells by 4-1BB ligand. Eur J Immunol. 2003 Feb; 33(2): 446-54.
    22. DeBenedette MA, Shahinian A, Mak TW, et al. Costimulation of CD28-T lymphocytes by 4-1BB Ligand. J Immunol. 1997 Jan 15; 158(2): 551-559.
    23. Melero I, Bach N, Hellstrom KE, et al. Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immumol. 1998 Mar; 28(3): 1116-21.
    24. Bukczynski J, Wen T, Ellefsen K, et al. Costimulatory ligand 4-1BBL(CD137L) as an efficient adjuvant for human antiviral cytotoxic T cell responses. Proc Natl Acad Sci USA. 2004 Feb 3; 101(5):1291-6.
    25. Mittler RS, Foell J, McCausland M, et al. Anti-CD137 antibodies in the treatment of autoimmune disease and cancer. Immunol Res. 2004; 29(1-3): 197-208.
    26. Yoshida H, Katayose Y, Unno M, et al. A novel, adenovirus expressing human 4-1BB ligand enhances antitumor immunity. Cancer Immunol Immunother. 2003 Feb; 52(2): 97-106.
    27. Blazar BR, Kwon B S, Panoskaltsis-Mortari A, et al. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol. 2001 Mar 1; 166(5): 3174-83.
    28. Tan JT, Whitmire JK, Ahmed R, et al. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol. 1999 Nov 1; 163(9): 4859-68.
    29. Choi BK, Bae JS, Choi EM, et al. 4-1BB-dependent inhibition of immuno suppression by activated CD4+CD25+ T cells. J Leukoc Biol. 2004 May; 75(5): 785-91.
    30. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity. Nat Rev Immunol. 2003 Aug; 3(8): 609-20.
    31. Schwarz H. Biological activities of reverse signal transduction through CD137 ligand. J Leukoc Biol. 2005 Mar; 77(3): 281-6.
    32. Shuford WW, Klussman K, Tritchler DD, et al, 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997; 186: 47-55.
    33. Melero I, Bach N, Hellstrom KE, et al. Amplification of tumnor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immumol.1998 Mar;28(3):1116-21.
    34. Langstein J, Michel J, Fritsche J, et al. CD137(ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol. 1998 Mar 1; 160(5): 2488-94.
    35. Seo SK, Choi JH, Kim YH, et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med. 2004 Oct; 10(10): 1088-1094.
    36. Langstein J, Michel J, Schwarz H. CD137 induces proliferation and endomitosis in monocytes. Blood. 1999 Nov 1; 94(9): 3161-8.
    37. Schwarz H, Arden K, Lotz M. CD137, a member of the tumor necrosis factor receptor family, is located on chromosome lp36, in a cluster of related genes, and colocalizes with several malignancies. Biochem Biophys Res Commun. 1997 Jun 27; 235(3): 699-703.
    38. Michel J, Schwarz H. Expression of soluble CD137 correlates with activation-induced cell death of lymphocytes. Cytokine. 2000 Jun; 12(6): 742-6.
    39. Michel J, Langstein J, Hofstadter F, et al, A soluble form of CD137(ILA/4-1BB), a member of TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis. Eur J Immuol. 1998; 28: 290-295.
    40. Mittler RS, Bailey TS, Klussman K, etal. Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med. 1999; 190(10): 1535-40.
    41. Hong HJ, Lee JW, Park SS, etal.. A humanized anti-4-1BB monoclonal antibody supresses antigen-induced immune response in nonhuman primates. J Immunother. 2000; 23(6): 613-21.
    42. Cho HR, Kwon B, Yagita H, et al. Blockade of 4-1BB(CD137)/4-1BB ligand interactions increases allografi survival. Transpl Int. 2004 Aug; 17(7): 351-61.
    43. DeBenedette MA, Wen T, Bachmann MF, etal. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacing both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allografi rejection and in the cytotoxic T cell response to infuenza virus. J Immunol. 1999 Nov 1; 163(9): 4833-41.
    44. Nozawa K, Ohata J, Sakurai J, et al. Preferential blockade of CD8(+) T cell responses by administration of anti-CD137 ligand monoclonal antibody results in differential effect on development of murine acute and chronic graft-versus-host diseases. J Immunol. 2001 Nov 1; 167(9): 4981-6.
    45. Wang S, Kim YJ, Bick C, et al, The potential roles of4-1BB costimulation in HIV type 1 infection. AIDS Res Human Retrovirus. 1998; 14: 223-231.
    46. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705): 1315-7.
    47. Barbas CF, Wagner J. Synthetic human antibodies: selecting and evolving functional proteins. Methods: Companion Methods Enzymology. 1995; 8: 94-103
    48. Tayapiwatana C, Kasirtrerk W. Construction and characterization of phage-displayed leukocyte surface molecule CD99. Appl Microbiol Biotechnol. 2002; 60: 336-41.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.