基因修饰CDR3δ移植型γδT淋巴细胞的抑癌作用研究及抑郁症患者外周血中细胞因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是女性生殖器官三大恶性肿瘤之一,死亡率占据妇科恶性肿瘤首位,预后差。目前已有的卵巢癌肿瘤治疗方法包括手术治疗,化学药物治疗和放射治疗,但是都有其局限性。从而,迫使人们努力寻找新的治疗手段,以达到特异而有效的识别并杀灭肿瘤细胞的目的。其中生物学治疗手段已引起人们的广泛关注。生物治疗包括非特异的细胞因子(白介素-2,干扰素-α等)疗法和单克隆抗体、αβ细胞毒性T细胞(CTL)过继治疗等靶向治疗方法,对微小肿瘤以及残留病变的清除有一定的疗效。但是单克隆抗体和αβT阻细胞精密识别靶抗原的优点又限定了其抗肿瘤治疗的肿瘤谱,同时治疗用的大量抗体和CTLs的来源也是不易解决的问题。目前,γδT细胞因其识别抗原广泛,且识别无MHC分子限制性,成为过继治疗的候选细胞。但在γδT细胞制剂的制备方法上仍存在某些问题亟待解决。如中晚期肿瘤患者或化疗后患者体内免疫抑制,导致种子细胞数量减少和免疫活性下降,致使体外扩增细胞数量受限,难以达到治疗所需数量的细胞制剂。因此使用基因工程方法制备基因修饰的γδT淋巴细胞治疗肿瘤不失为一个值得尝试的新型策略。
     近年来,我们实验室选择TCRδ链的CDR3 (CDR3δ)为研究对象,通过CDR3合成多肽、CDR3移植性Ig与肿瘤靶细胞、靶组织以及肿瘤细胞提取蛋白的相互作用的实验,验证了CDR3是TCRyδ与抗原结合的关键部位,进而证明γδ6T细胞能够经由其细胞受体(yδTCR)δ链的CDR3区(CDR3δ)广泛地识别、进而杀伤多种实体肿瘤细胞。
     因此,本文的第一部分旨在利用基因工程技术,制备特异肿瘤反应性的CDR3δ移植型γδT细胞。通过体内体外实验以证明其对肿瘤具有杀伤作用,从而为临床过继性免疫治疗提供新思路和新方法。
     本研究主要包括以下几个方面的工作:
     一、建立mRNA电转外周血淋巴细胞(PBLs)技术的平台用于移植的肿瘤特异性的CDR3δ序列的筛选。
     将线性化的pGEM4Z/EGFP/A64质粒作为体外转录RNA的模板,通过不同的电转参数下细胞电转率及细胞存活率的比较,建立mRNA电转的平台。将实验室前期从卵巢癌TIL获得的γδTCRδ2的特异性CDR3序列OT1,OT3和OT10分别嵌合进入全长的γδTCRδ2链,全长的γδTCRδ2链与γ9链分别体外转录成mRNA后,共同转染抗CD3抗体刺激的正常人PBMC,使其细胞膜表面表达TCRγδ,分别命名为γ9δ2(OTl)T细胞,γγ9δ2(OT3)T细胞和γ9δ2(T10)T细胞。检测上述转染细胞,在肿瘤细胞蛋白的刺激下,活化分泌的细胞因子及其对多种肿瘤细胞的细胞毒作用。结果显示,相对于γ9δ2(OT1)T细胞,γ9δ2(OT3)T细胞和γ9δ2(T10)T细胞具有更显著的细胞毒作用,且分泌更多的细胞因子。进而,结合实验室以前的研究结果,我们选用嵌合OT3序列的δ链和γ9链进行下一步的实验。
     二、基因修饰的γ6 T淋巴细胞抑癌作用及其杀伤机制的研究
     鉴于mRNA电转技术得到的基因修饰的淋巴细胞的转染效率低,表达时间短的缺陷,我们运用逆转录病毒技术制备基因修饰的淋巴细胞。我们分别包装含有OT3序列全长的γδTCRδ2链与γδTCRγ9链的逆转录病毒颗粒,将获得的高滴度病毒浓缩后,感染经抗CD3抗体刺激的正常人PBMC,使其细胞膜表面表达TCRγδ,命名为γ9δ2(OT3)T细胞。结果显示γγ9δ2(OT3)T细胞被多种肿瘤细胞蛋白刺激后,TNF-a和IFN-γγ分泌增加。同时,对多种肿瘤细胞也具有细胞毒作用。而且,这种细胞毒作用能被抗TCRγδ的单克隆抗体所阻断。这些结果提示,γ9δ2(OT3)T细胞能够被肿瘤抗原活化,且具有抗肿瘤作用。为了研究转染细胞细胞毒活性的作用机制,我们进行了Fas/FasL途径的抑制剂BFA和穿孔素/颗粒酶途径的抑制剂CMA对γγ9δ2(OT3)T细胞的细胞毒阻断实验。结果发现,BFA对γγ9δ2(OT3)T细胞肿瘤杀伤作用的最大抑制率仅有20-30%;CMA对γ9δ2(OT3)T杀伤Fas低表达的SKOV3细胞的杀伤活性抑制率可达56.71%,对Fas高表达的H08910细胞的杀伤活性抑制率达33.93%。联合应用CMA和BFA对γγ9δ2(OT3)T细胞的细胞毒作用抑制率达60%以上。以上结果提示,γγ9δ2(OT3)T细胞对肿瘤的细胞毒作用中,穿孔素/颗粒酶和Fas/FasL途径都发挥作用,但穿孔素/颗粒酶途径起主要作用,尤其在对Fas低表达的肿瘤细胞的细胞毒作用中更为重要。
     三、γ9δ2(OT3)T细胞体内抑癌作用研究
     通过裸鼠荷人卵巢癌肿瘤模型,肿瘤局部注射γ9δ2(OT3)T细胞,观察其对肿瘤的治疗效果。结果显示,γ9δ2(OT3)T细胞配合IL-2治疗,相对于空载体感染的细胞配合IL-2治疗组,肿瘤的生长明显受到抑制,裸鼠的生存期也有所延长。
     总之,本文第一部分通过将γδTCR基因序列转染进入抗CD3抗体刺激的外周血单个核细胞中,获得具有特异肿瘤反应性的免疫效应细胞。并且通过体内外实验验证了基因修饰细胞的抗肿瘤的能力,为肿瘤免疫治疗提供了新的思路与方法。
     抑郁症的发病率和患病率较高,其严重影响了病人的生理、心理健康及社会交往,使病人的日常生活能力明显受损,增加了致残率和死亡率。传统理论认为,抑郁症主要是由于单胺神经递质类物质活性降低引起。最近,又有其他新的理论解释抑郁症的病理生理学。其中糖皮质激素,神经营养因子和免疫系统细胞因子网络的变化逐渐引起了人们的关注。目前对抑郁症的研究主要集中在单个细胞因子群,特别是单核促炎性细胞因子(IL-1β,IL-6,TNF-α)。然而,细胞因子之间具有多效性而且彼此之间密切相互作用。细胞因子属于不同的细胞群分泌对免疫反应有不同的应答。因此,本文的第二部分采用ELISA法研究对抑郁症患者血清中3个亚系的细胞因子,主要是单核细胞因子(IL-1β,IL-6,TNF-α),Thl细胞因子(IFN-γ和IL-2)及一个Th2细胞因子(IL-4)进行了研究。结果表明,抑郁症患者血清IL-1β和IL-6水平显著高于正常对照组,且血清IL-1与IL-6变化成正相关(r=0.308 P<0.01),提示IL-6与IL-1在抑郁症的发病过程中可能具有相关性。抑郁症患者TNF-α水平高于正常对照组,但是没有统计学差异。抑郁症患者血清中Thl型细胞因子水平明显低于正常对照组,Th2型细胞因子明显高于正常对照组。上述结果提示抑郁症患者Th1/Th2细胞因子分泌严重失衡。此外,我们用ELISA法检测了抑郁症患者血清中胶质细胞源性神经营养因子(GDNF)及MHCI类链相关基因A(MICA)的表达,结果发现,抑郁症患者血清GDNF显著低于对照组,MICA显著高于对照组。上述检测的指标在抑郁症病人接受6个星期的百优解及传统医学的针刺治疗后,都有明显的逆转。这提示GDNF和MICA可能是抑郁症的生物指标之一。然而其与抑郁症病因、病理变化机制及相关的神经递质的作用都需要进一步深入研究。总之,本文的第二部分初步研究了抑郁症患者外周血中细胞因子,GDNF及MICA的变化,为抑郁症的发病机制研究提供了一些依据,上述细胞因子有可能作为抑郁症患者临床诊断的辅助手段。
Ovarian cancer, one of the three malignant tumors in women, has the worst prognosis of all gynecological cancers and is a leading cause of death from cancer in women. Nowadays the routine treatments on ovarian cancer include surgery, chemotherapy and radiotherapy. Because of their limitations, more effective and specific ways in killing tumors are needed. Biological treatment has received a huge amount of attention in recent years. As a type of treatment that works with immune system,Biological treatments involving non-specific cytokines (IL-2, IFN-a) and target therapy of monoclonal antibodies and ap cytotoxic T cells (CTL) help to eliminate tiny tumors and remnant pathological changes. In contrast to non-specific cytokines, the great virtue of target therapy that monoclonal antibodies and ap T cells precisely recognize the tumor antigen restricts the application of monoclonal antibodies andαβT cells in clinical treatment. The acquirement of y8T cells ex vivo is a mature technology; however, there are still some problems. For example, the numbers and immunological activities of seed cells in the patients with median or late-stage malignant tumors or treated with chemotherapy decreased and are not up to quantities demand for treatment. Therefore, gene-modified y8 T lymphocytes consider being prepared for tumor therapy using genetic engineering methods.
     In recent years, our lab selected the CDR3 of 82 chain (CDR38) as a research target and investigated the interaction of CDR3 peptide or CDR3 grafted Ig with tumor cells, tumor tissues or tumor cell protein extracts. Our results suggested that CDR3δwas the important position for antigen recognition and furthermoreγδT cells were able to widely recognize and kill many solid tumors through CDR3 of 8 chain.
     In the first part of my thesis, we constructed gene modified y8 T cells whose CDR38 is replaced by sequences of OT3 and showed they had tumor specific reactivity and cytotoxity in vivo and in vitro. Our data indicated that the adoptive transfer of gene modified y8 T cells can provide a new strategy for cancer therapy.
     The first part of the experiments contained the following work
     1 Create technological platform for screen the tumor specific and reactive CDR3 region.
     Linearized plasmid pGEM4Z/EGFP/A64 was template for in vitro mRNA. Compared the electroparation expression rates and cell survival rates under various parameters, we make sure the prior condition and build a platform of mRNA elctroparation. Stimulated PBMC were transferred by mRNA electroporation with the combination of the. full length ofδchain with different CDR3 region and the full length ofδchain from ovarian cancer infiltrated yδT cells and expressedγδTCR whose CDR3 region of 8 chain were replaced by OT1, OT3 or OT10 sequences, named y9δ2(OT1)T cells,γ9δ2(OT3)T cells and y9δ2(OT10)T cells separately. After stimulated by various tumor protein extracts,the transfectant cells expressing y8 TCR with specific CDR3 sequences secreted TNF-a, IFN-y. At the same time, transfentent cells showed the specific lysis against tumor cell lines. y9δ2(OT1)T cells are suboptimal for the cytotoxity and cytokines secretion in comparison to y9δ2(OT3)T cells and y982(OT10)T cells. Previous experiments demonstrated OT3 peptide has more affinity than OT10 peptide. Combined previous results of our laboratory, we chose the OT3 sequence as the CDR38 for the next studies.
     2 Retro virus-mediated yδTCR gene transfer into PBLs and evaluation of their functional activity against tumors.
     To improve the expression rate, we constructed TCRγ-andδ-chain gene retrovirus vectors. They were introduced into two individual vectors and generated TCR retrovirus vector particles. After 3 days activated, PBMC isolated from healthy volunteers were harvested, resuspended at 1 X 106 cells/ml inγδTCR retrovirus vector particles containing 200 IU/ml IL-2 and expressed yδTCR at the surface. The cells were called y982(OT3)T cells. After stimulated by various tumor protein extracts, the transfectant cells expressingγδTCR with OT3 sequence secreted much more TNF-a, IFN-y. At the same time,γ9δ2(OT3)T show the specific lysis against tumor cell lines and the lysis can be blocked by anti-γδTCR antibody. To study the mechanisms of the cytotoxocity, we incubated the y982(OT3)T cells with a FasL/Fas pathway inhibitor BFA or a perforin/granzyme inhibitor CMA at the different concentration before killing target cells. Results indicated that BFA partially blocked the killing ofγ9δ2(OT3)Tells against target cells (20-30%) and CMA suppressed the killing ability ofγ9δ2(OT3)T in Fashigh or Faslowcells, the inhibition rate was up to 33.93% and 56.71%, respectively. Combination CMA and BFA can mostly inhibit the killing process. These findings indicated that y982(OT3)T cells lysed their target cells via FasL/Fas and perforin/granzyme pathways, the latter was more important, especially in killing tumor cells that expressed low levels of Fas.
     3 Tumor cell therapy with y982(OT3)T combined with IL-2
     To observe anti-tumor effects in vivo, y982(OT3)T cells were used for experimental immunotherapy in nude mice engrafted with human ovarian cancer. Intratumoral injections of y9δ2(OT3)T cells greatly decreased the growth of tumors, significantly different from PBS control and vector retrovirus particle infected cells control following 18 days'therapy. Intratumoral injections of y9δ2(OT3)T cells prolonged the survival of tumor-bearing nude mice than the other two groups.
     In a word, we prepared gene-modified y8T cells using gene engineered technology. In vitro and vivo experiments, gene-modified y8T cells showed the anti-tumor potency, providing a new strategy for immunotherapy.
     Depression is the main type of mood disorders, characteristic with a significant and lasting decline in the mood. Depression has high disease incidence and mortality which threatens human health and life. The traditional theory that depression is a consequence of deficient monoamine activity has been revised by the addition of novel theories suggesting that disturbances in other systems are important for the pathophysiology of depression. In particular, there is evidence that glucocorticoids, cytokines and neurotrophins are involved in the manifestation and treatment of this disease. To date, the majority of studies on cytokines in depression have investigated in a single cytokine subset, especially monocytic proinflammatory cytokines such as IL-1β, IL-6 and TNF-a. However, cytokines exert pleiotropic activities and interact closely with each other. Also, individual cytokines belonging to the same subset may have different effects on the immune response. In the present study, we measured 3 subsets of cytokine family, specifically monocytic cytokines (IL-1β,IL-6,TNF-a), Thl cytokines (IFN-y,IL-2) and a Th2 cytokine(IL-4). The depressive patients showed a significant increase in serum levels of IL-1βand IL-6 compared to controls. And the IL-1βand IL-6 production were positively correlated(r=0.308 P<0.01), indicating IL-6 and IL-1βmay have a synergistic effect in the pathogenesis of depression. No significant differences in TNF-a level between both groups were found, although the mean values of this cytokines in MDD patients was slightly increased compared to that in the control subjects. In depressive patients, quantitative measurements were significantly decreased for IFN-y and IL-2 compared to those in controls. In contrast, serum levels of IL-4 were significantly higher in depressive patients, than that in control subjects. In addition, we tested glial cell line-derived neurotrophic factor (GDNF) and MICA expression in the serum of patients with depression. GDNF in patients with depression was significantly lower than that in the control group, and MICA was significantly higher than that of control subjects. Detection of these indicators of depression patients following the six weeks of fluoxetine treatment, there has been a marked restoration change. We believe that the level of GDNF and MICA may be one of the biological indicators. Of course, its etiology, pathological changes and other related mechanisms requires further study.
     In conclusion, in the second part of my thesis, we had studied the changes of cytokines, GDNA and MICA in serum of depressive patients, providing clues and basis for the further research on depression.
引文
[1]Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2[J]. J. Natl. Cancer Inst,1994,86(15):1159-1166.
    [2]Figlin RA, Thompson JA, Bukowski RM, et al. Multicenter, randomized, phase III trial of CD8+tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma[J]. J. Clin. Oncol.1999,17 (8):2521-2529.
    [3]Dreno B, Nguyen JM, Khammari A, et al. Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage Ⅲ melanoma[J]. Cancer Immunol. Immunother.2002,51(10):539-546.
    [4]Chamoto K, Tsuji T, Funamoto H, et al. Potentiation of tumor eradication by adoptive immunotherapy with T-cell receptor gene-transduced T-helper type 1 cells [J]. Cancer Res,2004,64(1):386-390.
    [5]Clay T M, Custer M C, Sachs J, et al. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor [J].J. Immunol. 1999,163(1):507-513.
    [6]Stanislawski T, Voss RH, Lotz C, et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer[J]. Nat. Immunol,2001,2(10): 962-970.
    [7]Dudley ME, Wunderlich JR, Hughes MS, et al.Cancer regression in patients after transfer of genetically engineered lymphocytes [J].Science,2006;314(5796):126-129.
    [8]Lars T van der Veken, Renate S Hagedoorn, Marleen M. van Loenen,et al. Alphabeta T-cell receptor engineered gammadelta T cells mediate effective antileuke mic reactivity[J]. Cancer Res,2006,66(6):3331-3337.
    [9]Kabelitz D, Wesch D, He W. Perspectives of y8 Cells in Tumor Immunology [J] Cancer Res 2007,67(1),5-8.
    [10]Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD. Ex vivo expanded human Vgamma9Vdelta2+gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro[J]. J Urol.2005,173(5):1552-1556.
    [11]Viey E, Fromont G, Escudier B, Morel Y, et al. Phosphostim-activated gamma delta T cells kill autologous metastatic renal cell carcinoma[J]. J Immunol.2005, 174(3):1338-1347.
    [12]Corvaisier M, Moreau-Aubry A, Diez E, et al. V gamma 9 V delta 2 T cell response to colon carcinoma cells[J]. J Immunol.2005,175(8):5481-5488
    [13]Fujishima N, Hirokawa M, Fujishima M, et al. Skewed T cell receptor repertoire of Vdeltal(+) gammadelta T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction[J]. Clin Exp Immunol.2007,149(l):70-79.
    [14]Raspollini MR, Castiglione F, Rossi Degl'innocenti D,et al. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma[J]. Ann Oncol.2005,16(4):590-596.
    [15]Davis MM, Lyons DS, Altman JD, et al. T cell receptor biochemistry, repertoire selection and general features of TCR and Ig structure[J]. Ciba Found Symp,1997, 204:94-104.
    [16]Rock EP, Sibbald PR, Davis MM er al. CDR3 length in Antigen specific immune Receptors[J]. J Exp Med.1994,179(1):323-328.
    [17]Adams EJ, Chien YH, Garcia KC. Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22[J]. Science,2005,308(5719):227-231.
    [18]Smyth M J, Trapani J A. Granzymes:exogenous proteinases that induce target cell apoptosis[J]. Immunol. Today,1995,16(4):202-206.
    [19]Nagata, S. Fas-mediated apoptosis [J].Adv. Exp. Med. Biol.1996,406:119-124.
    [20]Ashton-Rickardt, P G. The granule pathway of programmed cell death[J]. Crit. Rev. Immunol.2005,25(3):161-182.
    [21]Andreas Hombach, Heike Ko"hler, Gunter Rappl,et al.Human CD4+T Cells Lyse Target Cells via Granzyme/Perforin upon Circumvention of MHC Class II Restriction by an Antibody-Like Immunoreceptorl[J].The Journal of Immunology,2006,177(8): 5668-5675.
    [22]Simon Voelkl, Tamson V Moore, Michael Rehli et al.Characterization of MHC class-I restricted TCRαβ+CD4-CD8-double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination [J]. Cancer Immunol Immunother,2009,58(5):709-718.
    [23]Hara H, Seon BK. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins:nude mouse models[J]. Proc Natl Acad Sci U S A, 1987,84(10):3390-3394.
    [24]Mizuguchi H, Nakanishi T, Nakanishi M, et al.Intratumor administration of fusogenic liposomes containing fragment A of diphtheria toxin suppresses tumor growth[J]. Cancer Lett 1996,100(1-2):63-69.
    [1]Lecrubier Y.The burden of depression and anxiety in general medicine[J].J Clin Psychiatry,2001,62(8):4-9.
    [2]Zorrilla,E.P,Luborsky,LMcKay,J.R et al.The relationship of depression and stressors to immunological assays:a meta-analytic review.Brain Behave. Immu [J]. 2001,15(3):199-226.
    [3]Capuron L, Hauser P, Hinze-Selch D, et al. Treatment of cytokine-induction depression. Brain Behavior and Immune[J].2002,16(5):575-580.
    [4]Kent S, Bluthe R M, Kelley K W, et al. Sickness behavior as a new target for drug development. Trends Pharmacology Science[J].1992,13(1):24-28
    [5]Hisaoka K,Takebayashi M.Glia as targets for antidepressants:an involvement in glial cell line-derived neuro trophic factor[J].Nihon Shinkei Seishin Yakurigaku Zasshi,2007,27(5-6):173-179
    [6]Friedman EM,Becker KA,Overstreet DH,Lawrence DA Reduced primary antibody responses in a genetic animal model of depression[J].Psychosom Med,2002,64 (2):267-273
    [7]Maes M, Meltzer HY, Bosmans E,et al. Increased plasma concentrations of interleukin-6,soluble interleukin-6,soluble interleukin-2 and transferring receptor in major depression[J].J Affect Disord.1995,34(4);301-309.
    [8]Ziad Kronfol.Immune dysregulation in major depression:a critical review of existing evidence[J]. Int. J Neuropsychopharmacol.2002,5(4):333-343.
    [9]Lieb,J Karmali R,Horrobin D, et al. Elevated levels of prostaglandin E2 and thromboxane B2 in depression[J].Prostaglandins Leukotriene Med.1983,10(4); 361-367.
    [10]Z. Kronfol, J. D. House.lymphocyte mitogenesis,immunoglobulin and complement levels in depressed patients and normal controls[J].Acta Psychiatr. Scand.1989,80(2): 142-147
    [11]Maes,M. Evidence for an immune response in major depression:a review and hypothesis[J]. Pro. Neuropsychopharmacol. Biol. Psychiatr.1995,19(1):11-38.
    [12]Maddock C, Pariante CM. How does stress affect you? Anview of stress, immunity, depression and disease[J].Epidemiol Psichiatr,2001,10(3):153-156
    [13]Silverman M N,Pearce, B D,Miller A H. Cytokines and HPA axis regulation. regulation.In:Kronfol Z, ed. Cytokines and mental health[M]. Norwell, MA: KluwerAcademic Publishers,2003:85-122.
    [14]Swiergiel A H, Dumn A J. Feeding and anxiety-related behaviors are intact in IL-6 deficient mice[J].Brain Behav.Immun.2003,17(1):214-220
    [15]Ur E, W hite PD,Grossman A. Hypothesis:cytokines may be activated to cause depressive illness and chronic fatigue syndrome[J]. Eur Arch Psychiatry Ctin Neurosce, 1992,241 (5):241-317.
    [16]Dantzer R, Kelly KW. Twenty years of research on cytokines-induced sickness behaviors[J].Brain Behav Immun.2007,21(2):153-160.
    [17]Carney RM, Feedland KE. Depression,mortality and medical morbidity in patients with coronary heart disease[J]. Biol Psychiatry.2003,54(3):241-247.
    [18]Capuron L, Miller AH. Cytokines and psychopathology:lessons from interferon-alpha[J].Biol Psychiatry.2004,56(11):819-824.
    [19]Charles L, Raison, Lucile C, et al. Cytokines sing the blues:inflammation and the pathogenesis of depression[J]. Trends in Immunology,2006,27(1):24-31.
    [20]Banks WA. Physiology and pathology of the blood-brain barrier:implications for microbial pathogenesis, drug delivery and neurodegenerative disorders[J]. J Neurovirol. 1999,5(6):538-555.
    [21]Wieczorek M, Swiergiel AH, Pournajafi-Nazarloo H, et al. Physiological and behavioral responses to interleukin-lbeta and LPS in vagotomized mice. Physiol Behav. 2005,85(4):500-511.
    [22]Saija A, Princi P, Lanza M, et al. Systemic cytokine administration can affect blood-brain barrier permeability in the rat[J]. Life Sci 1995,56(10):775-784.
    [23]Stone T W, Darlington L G. Endogenous kynurenines as targets for drug discovery and development. Nature Reviews[J]. Drug Discovery,2002,1(8):609-620.
    [24]Lenin Pavon, Gabriel Sandoval-Lopez, Maria Eugenia Hernandez,et al. Th2 cytokine response in Major Depressive Disorder patients before treatment[J].Journal of Neuroimmunology,2006,172(1-2); 156-165.
    [25]Youg-Ku Kim, Kyeong-Sae Na, Kyung-Ho shin,et al.Cytokine imbalance in the pathophysiology of major depressive disorder[J].Progress in Neuro-psychopharmacology & Biological Psychiatry,2007,31(5):1044-1053.
    [26]Evans SJ, Choudary PV, Neal CR, et al. Dysregulation of the fibroblast growth factorsystem in major depression[J]. Proceedings of the National Academy of Sciences 2004,101(43):15506-15511.
    [27]Hock C, Heese K, Muller-Spahn F, et al. Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression[J]. Molecular Psychiatry, 2000,5(5):510-513.
    [28]Shimizu E, Hashimoto K, Okamura N,et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants[J]. Biological Psychiatry,2003,54(1):70-75.
    [29]Airaksinen MS, Saarma M. GDNF family neurotrophic factors:receptor mechanisms, biological functions and therapeutic value[J].Nature Rev.2002,3(5):383-394.
    [30]Pochon NA, Menoud A, Tseng JL,etal. Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization[J].Eur J Neurosci 1997,4(9):463-471
    [31]Messer CJ, Eisch AJ, Carlezon-Jr WA,etal.Role for GDNF in biochemical and behavioral adaptations to drugs of abuse[J].Neuron 2000,26(1):247-257
    [32]Rosa AR, Frey BN, Andreazza AC,et al.Increased serum glial cell line-derived neurotrophic factor immunocontent during manic and depressive episodes in individuals with bipolar disorder [J].Neurosci Lett 2006,407(2):146-150
    [33]Takebayashi M, Hisaoka K, Nishida A,etal. Decreased levels of whole blood glial cell line-derived neurotrophic factor(GDNF) in remitted patients with mood disorders[J]. Int J Neuropsychopharmacol 2006,9(5):607-612.
    [34]Groh V, Bahram S, Bauer S, et al.Cell stress-regulated human major histocompatibi lity complex class I gene expressed in gastrointestinal epithelium[J]. Proc Natl Acad Sci, 1996,93(22):12445-12450.
    [1]Maeurer MJ, Martin D, Walter W, et al. Human intestinal V δ1+T lymphocytes recognize tumor cells of epithelial origin[J]. J Exp Med,1996,183:1681-1696.
    [2]Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH,Spies T. Broad umor-associated expression and recognition by tumor-derived yδT cells of MIC-A and MIC-B [J].Proc Natl Acad Sci,1999,96:6879-6884.
    [3]Wu J, Groh V, Spies T. T cell antigen receptor engagement and specificity in the recognition ofstress-inducible MHC class I-related chains by human epithelial yδ T cells[J]. J Immunol,2002,169:1236-1240.
    [4]Zhao J, Huang J, Chen H, Cui L, He W. Vyl T cellreceptor binds specifically to MHC I chain related A:molecular and biochemical evidences[J]. Biochem Biophys Res Commun,2006,339:232-240
    [5]Cosman, D, J. Mullberg, C. L. Sutherland, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor[J]. Immunity,2001,14:123-133.
    [6]Sutherland, C.L, Chalupny, N.J, Schooley, K, VandenBos,T, Kubin, M, Cosman, D, UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells[J]. J. Immunol,2002,168:671-679.
    [7]Jan Chalupny N, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D. ULBP4 is a novel ligand for human NKG2D[J]. Biochem Biophys Res Commun,2003,305:129-135.
    [8]Kubin, M, Cassiano, L, Chalupny, J, et al. ULBP1,2,3:novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells[J]. Eur. J. Immunol,2001,31:1428-1437.
    [9]Cao, W, and W. He. UL16 binding proteins[J]. mmunobiology.,2004,209:283-290.
    [10]Poggi A, C Venturino S,Catellani et al. Vdeltal T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid[J]. Cancer research,2004,64:9172-9179.
    [11]Catellani, S, A. Poggi, A. Bruzzone, et al. Expansion of V{delta} 1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas expressing UL-16-binding proteins[J]. Blood,2007,109(5):2078-2085.
    [12]Hintz M, Reichenberg A, Jomaa H. Identification of (E)-4-hydroxy1-3-methyl-but-2-enyl pyrophosphate as a major activator for human gammadelta T cells in Escherichia coli[J].FEBS Lett,2001,509(2):317-22
    [13]Begley M, Gahan CG, Eberl M The interplay between classical and alternative isoprenoid biosynthesis controls gammadelta T cell bioactivity of Listeria monocytogenes [Jj].FEBS Lett,2004,561 (1-3):99-104.
    [14]Kuzuyama T, Takagi M, Takahashi S, Seto H Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp. Strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis[J].J Bacteriol,2000,182(4):891-897.
    [15]Jomaa H, Feurle J, Luhs K, et al.Vy9/Vδ2 T cell activation induced by bacterial lowmolecular mass compounds depends on the 1-deoxy-Dxylulose5-phosphate pathway of isoprenoid biosynthesis[J].FEMS Immunol Med Microbiol,1999,25(3):371-378.
    [16]Begley M, Gahan CG, Kollas AK, et al. The interplay between classical and alternative isoprenoidbio synthesis controls y8 T cell bioactivity of Listeria monocytogenes[J]. FEBS Lett,2004,561(1-3):99-104
    [17]Tanaka Y, Morita CT, Nieves E, et al. Natural and synthetic non-peptide antigens recognized by human yδ T cells[J]. Nature,1995,375:155-158.
    [18]Gober HJ, Kistowska M, Angman L, et al. Human T cell receptor yδ cells recognize endogenous mevalonate metabolites in tumor cells[J]. J Exp Med,2003,197(2):163-168.
    [19]Wadhwa R, Yaguchi T, Hasan MK,et al. Mortalin-MPD (mevalonate pyrophosp hat e decarboxylase)interactions and their role in control of cellular proliferation [J]. Bioche m Biophys Res Commun,2003,302(4):735-742.
    [20]Scotet E, Martinez LO, Grant E, et al. Tumor recognition following V y9δ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I [J].Immunity,2005,22:71-80.
    [21]Burrell HE, Wlodarski B, Foster BJ, et al. Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface[J]Biol Chem,2005,280(33):29667-29676.
    [22]Moser TL, Kenan DJ, Ashley TA, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin[J]. Proc Natl Acad Sci,2001,98(12):6656-6661
    [23]Monkkonen H, Auriola S, Lehenkari P, et al. A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide ranslocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates[J]. Br JPharmacol,2006,147(4):437-445.
    [24]Monkkonen H, Ottewell PD, Holen I et al. Zoledronic acid-induced IPP/ApppI production in vivo[J]. Life Sci,2007,81(13):1066-1070.
    [25]Constant P, Davodeau F, Peyrat MA, et al. Stimulation of human yδ T cells by nonpeptidic mycobacterial ligands[J]. Science,1994,264(5156):267-270.
    [26]Bonneville M, Fournie JJ:Sensing cell stress and transformation through Vg9Vd2 T cell-media ted recognition of the isoprenoid pathway metaitbolites[J]. Microbes Infect 2005,7(3):503-509.
    [27]Thompson K, Rojas-Navea J, Rogers MJ et al. Alkylamines causeVy9Vδ2 T-cell activation and proliferation by inhibiting the mevalonate pathway [J]. Blood,2006, 107(2):651-654.
    [28]Ismaili J, Olislagers V, Poupot R, Fournie JJ, et al. Human yδT cells induce dendritic cell maturation [J]. ClinImmunol,2002,103(1):296-302.
    [29]Conti L, Casetti R, Cardone M, et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated y8 T cells:role of CD86 and inflammatory cytokines[J]. J Immunol,2005,174(1):252-260.
    [30]Dieli F, Gebbia N, Poccia F, et al. Induction of y8 T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo[J]. Blood, 2003,102(6):2310-2311.
    [31]Kato Y, Tanaka Y, Hayashi M, er al. Involvement o f CD 166 in the activation of human y8 T cells by tumor cells sensitized with nonpeptide antigens[J]. J Immunol,2006, 177:877-884.
    [32]Miyagawa F, Tanaka Y, Yamashita S, et al. Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary humanγδT cells by aminobisphosphonate antigen[J]. J Immunol,2001,166(9):5508-5524.
    [33]French JD, Roark CL, Born WK, O'brien RL.{gamma}{delta} T cell homeostasis is established in competition with{alpha}{beta} T cells and NK cells[J]. Proc Natl Acad Sci,2005,102(41):14741-14746.
    [34]Zhang R, Zheng X, Li B, Wei H, Tian Z. Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis[J]. J Immunol 2006,176(4):2610-2616.
    [35]Rajagopalan S T, Zordan GC, Tsokos R M et al. Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patientsWith active lupus nephritis: isolation of CD4-8- T helper cell lines that express the T-cell antigen receptor[J]. Proc. Natl. Acad. Sci.1990,87(18):7020-7024.
    [36]Homer, A. A., H. Jabara, N. Ramesh, e al. T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes[J]. J. Exp.Med,1995,181(3):1239-1244.
    [37]Nadia Caccamo, Luca Battistini, Marc Bonneville, et al.CXCR.5 Identifies a Subset of Vy9Vδ2 T Cells which Secrete IL-4 and IL-10 and Help B Cells for Antibody Production[J].J Immunol,2006,177(8):5290-5295
    [38]Biao Zheng, Ekaterina Marinova, Jin Han,et,al. Cutting Edge:T Cells Provide Help to B Cells with Altered Clonotypes and Are Capable of Inducing Ig Gene Hypermutationl [J].J Immunol,2003,171(10):4979-4983.
    [39]Mombaerts, P, Clarke, A. R, Rudnicki, M. A, et,al. Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature, 1992,360(6401):225-231.
    [40]Sicard H, Ingoure S, Luciani B, et al. In vivo immunomanipulation of Vy9Vδ2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model[J]. J Immunol,2005,175(8):5471-5480.
    [41]Casetti R, Perretta G, Taglioni A, et al. Drug-induced expansion and differentia tion of Vy9Vδ2 T cells in vivo:the role of exogenous IL-2[J]. J Immunol,2005, 175(3):1593-1598.
    [42]Wilhelm M, Kunzmann V, Eckstein S, Reimer P,et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies [J]. Blood,2003,102(1):200-206.
    [43]Dieli F, Vermijlen D, Fulfaro F,et,al. Targeting human{gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer[J]. Cancer Res,2007,67(15):7450-7457.
    [44]Kakinuma T, Nadiminti H, Lonsdorf AS, et,al.Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location.Cancer Immunol Immunother[J].2007,56(7) 1119-1131
    [45]Bennouna J, Bompas E, Neidhardt EM,et,al. Phase-I study of Innacell gammadelta trade mark, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma[J].Cancer Immunol Immunother.2008,57(11):1599-1609.
    [46]Casetti R, Perretta G, Taglioni A, Mattei M, et,al.Drug-induced expansion and differentiation of V gamma 9V delta 2 T cells in vivo:the role of exogenous IL-2[J].J Immunol,2005,175(3):1593-1598.
    [47]Ali Z, Shao L, Halliday L,et,al..Prolonged (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells in macaques[J]. J Immunol.2007,179 (12):8287-8296.
    [48]Sicard H, Ingoure S, Luciani B,et,al..In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model [J].J Immunol.2005,175(8):5471-5480
    [49]Dieli F, Vermijlen D, Fulfaro F, et,al.Targeting human{gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer Cancer [J]Res.2007,67(15):7450-7457
    [50]Caccamo N, Meraviglia S, Ferlazzo V, et,al.Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9V delta2 naive, memory and effector T cell subsets[J]. Eur J Immunol.2005,35(6):1764-7279.
    [51]Meresse B, Chen Z, Ciszewski C, et al. Coordinated induction by IL15 of a TCR-independent NKG2Dsignaling pathway converts CTL into lymphokine-activated killer cells in celiac disease[J]. Immunity 2004,21(3):357-366.
    [52]Vermijlen D, Ellis P, Langford C et,al. Distinct cytokine-driven responses of activated blood gammadelta T cells:insights into unconventional T cell pleiotropy[J]. J Immunol.2007,178(7):4304-4314.
    [53]Zou W. Regulatory T cells, tumour immunity andimmunotherapy. Nat Rev Immunol, 2006,6(4):295-307.
    [54]Lopez RD.Human gammadelta-T cells in adoptive immunotherapy of malignant and infectious diseases[J]. Immunol Res.2002,26(1-3):207-221
    [55]Onuma E, Tsunenari T, Saito H,et,al. Parathyroid hormone-related protein (PTHrP) as a causative factor of cancer-associated wasting:possible involvement of PTHrP in the repression of locomotor activity in rats bearing human tumor xenografts[J]. Int J Cancer, 2005,116(3):471-478.
    [56]Mattarollo SR, Kenna T, Nieda M,er,al. Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother, 2007,56(8):1285-1297.
    [57]Dalton JE, Howell G, Pearson J, Scott P, Carding SR.et,al.Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells[J]. J Immunol,2004,173(6):3660-3667.
    [58]Tateishi K, Ohta M, Guleng B,et,al. TRAIL-induced cell death cooperates with IFN-gamma activation in the graft-versus-tumor effect against colon tumors[J].Int J Cancer,2006,118 (9):2237-2246.
    [59]Chou AH, Tsai HF, Lin LL, et al.Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand[J]. J Immunol,2001,167(3):1347-1352.
    [60]Wallace M, Bartz S R, Chang W L, et al. yδ lymphocyte responses to HIV[J]. Clin Exp Immunol,1996,103(2):177-184.
    [61]Subauste CS, Chung J Y, Do D, et al. Preferential activation and expansion of human peripheral blood yδ T-cells in response to Toxoplasma gondii in vitro and their cytokine production and cytotoxic activity against T.gondii-infected cells[J]. J Clin Invest,1995,96(1):610-619.
    [62]Bunsussan A, Lagabrielle JF, Degos L. TCR yδ bearing lymphocyte clones with lymphokine-activated killer activity against autologous leukemic cells[J]. Blood,1989, 73(8):2077-2080。
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.