玻璃微珠为基的复合吸波材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料的作用原理是把外来的电磁波能量转换为热能,降低反射波的强度,使雷达无法接收,达到隐身或抗干扰的效果。吸波材料对航空领域、雷达、军用设施等有着重要的意义,已逐渐成为研究热点。目前常用的吸波材料存在着吸波能力有限、或密度大、或频带范围小等缺点,要同时克服以上缺点,对现有吸波材料进行复合,研究制备新型复合吸波材料,将有可能是一条有效的解决途径。
     六角晶磁铅石型铁氧体,其优点是高的电阻率,较高的饱和磁化强度,吸波能力强,频带应用范围大,但同时也存在密度大、高温特性差等缺点。而金属粉末吸收剂具有良好的温度稳定性,较高的饱和磁化强度,但频带应用范围小。由此可见,铁氧体吸波材料和金属粉末吸波材料的电磁特性具有很强的互补性,若能兼顾二者的优点,有望设计出性能优良的复合吸波材料。但是铁氧体和金属粉末密度都较大,不利于制备出质量轻的吸波材料。为解决这一问题,用质量轻、力学性能好的玻璃微珠为基核,用化学镀和溶胶凝胶法包裹玻璃微珠,有可能得到质量较轻、吸波性能较好的复合复合吸波材料。为此,本文对以下几个方面进行了研究:
     (1)对玻璃微珠化学镀的前处理工艺进行了研究,探讨了玻璃微珠的清洗工艺及对化学镀的影响;通过选用两种不同的活化剂PdCl2和AgNO3进行活化-化学镀的实验,对比分析了不同的化学镀效果及活化机理。
     (2)研究了镀液成分、温度、pH值、装载量等因素对玻璃微珠化学镀层性能的影响规律,确定了较好的工艺条件,获得的Ni-P合金镀层饱和磁化强度为2.18emu/g、矫顽力为29.93KA/m。
     (3)用溶胶凝胶法在玻璃微珠Ni-P镀层表面包裹一层均匀钡铁氧体,涂层厚度较薄。玻璃微珠复合涂层的饱和磁化强度和矫顽力分别为6.59 emu/g,315.6KA/m,电磁性能有所提高。
     上述工作对丰富复合吸波材料的制备方法具有积极意义。
Microwave absorbing materials, converting electro-magnetic energy into heat, reducing the intensity of the reflected wave, to obtain electro-magnetic compatibility, have been widely used in aerospace filed, radar technology and military facilities, and they are researching hotspot in these technology field. The shortcomings of electromagnetic wave absorbent are weak absorption, heavy density, and narrow-bandwidth. To overcome these shortcomings, composite of different absorbents is may be a good solution.
     The M-type ferrite is thought to be a very important magnetic absorbent for its special properties, such as high resistivity, strong absorption and wide-bandwidth. But the microwave absorption properties of the ferrite are high density. It is hard to use widely because of its density. The microwave absorption properties of ferrite are not as good as metal powder at high frequency. The metal powder is widely used as microwave absorbent for its high specific saturation magnetization, high magnetic susceptibility. But the microwave absorption properties of the metal powder are narrow-bandwidth. The electromagnetic properties of the ferrite and metal powder are complementary. The combination of them is expected to create good electromagnetic wave absorption composite. But the defect of high density is not benefit for the preparation of light absorber. In response to the need for high performance absorber, in this paper, the composite-coating absorbers with hollow cenosphere as nuclear are prepared by sol-gel and electroless plating technology. The main work and achievements of this paper are listed as follow:
     (1) Fore treatment of electroless Ni-P is studyed:PdCl2 activator and AgNO3 are used as activator in the chemical plating, to compare results and analysis the reason.
     (2) Study the effect of the solution composition, temperature, PH, loading capacity on the performance of Ni-P coating layer. The best electroless processing is obtained. The magnetic properties of Ni-P coated cenospheres are 8s (2.18emu/g) and He (29.93KA/m).
     (3) Thin films of Barium hexaferrite are prepared on fly ash cenpsphere particles by sol-gel. The magnetic properties of Ni-P coated cenospheres are 8s (6.59emu/g) and He (315.6KA/m).
引文
[1]刘顺华.电磁波屏蔽及吸波材料.化学工业出版社.2007:259-277.
    [2]高技术新材料要览编委会编,高技术新材料要览.中国科学技术出版社,1993:225-226.
    [3]李斌太,陈大明,陈钦生.铁氧体微波吸收材料的研究进展.硅酸盐通报.2004,(5):66-67.
    [4]Sugimoto S, Okayama K, Kondo S, et al.Barium M-type ferrite as an electromagnetic microwave absorber in the GHz range. Mater Trans JIM,1998,39(10):1080-1083.
    [5]Shin J Y, Oh Jh. The microwave absorbing phenomena of ferrite microwave absorbers. IEEE Transactions on Magnetics,1993,29(6):3437-3439.
    [6]李世涛,乔学亮,陈建国等.纳米复合薄膜吸波材料的研究进展.材料工程,2006,(S1):35-38.
    [7]Yusoff A N, Abdullah M H. Microwave electromagnetic and absorption properties of some LiZn ferrites. Journal of Magnetism and Magnetic Materials,2004,269:271-280.
    [8]王海.雷达吸波材料的研究现状和发展方向.上海航天,1999,1:55-59.
    [9]巩晓阳,董企铭.吸波材料的研究现状与进展.河南科技大学学报(自然科学版),2003,24:19-22.
    [10]Viau G, Ravel F, Acher O, et al. Preparation and microwave characterization of spherical and monodisperse Co-Ni particles. Journal of Magnetism and Magnetic Materials,1995, 140:377-378.
    [11]Berthault A, Rousselle D, Zerah G. Magnetic properties of permalloy microparticles. Journal of Magnetism and Magnetic Materials,1992,112:447-480.
    [12]谢俊磊,杜仕国,施冬梅.新型雷达吸波材料研究进展.飞航导弹,2008(7):31-34.
    [13]Mouchon E, Colomban Ph. Microwave absorbent preparation, mechanical properties and microwave conductivity of SiC(and/or mullite)fibre reinforeed Nasicon matrix composites. Material Science,1996,31(2):323-324.
    [14]沈国柱,徐政,李轶.短切碳纤维复合材料对8mm波吸收性能研究.玻璃钢/复合材料,2006,3:19-20.
    [15]HUANG Jie, WAN Mei-xiang. Temperature and pressure dependence of conductivity opolyaniline systhesized by in situ doping polymerization in the precence of organic function acid as dopants. Solid State Communications,1998,108(4):255-259.
    [16]高玲玲,周馨我,范广裕.导电高分子应用研究的若干进展.中国基础科学,2000(9)24-25.
    [17]周馨我.功能材料学.北京:北京理工大学出版社,2002:234-287.
    [18]葛副鼎,库万军,朱静.手性材料及其在隐身吸波材料中的应用.材料导报,1999,13(1):10-11.
    [19]王国建.高分子合成新技术.北京:化学工业出版社,2004,209-211.
    [20]Danolov A V. Electromagnetic wave scattering by an array of tubes filled with plasma. Journal of Physics D:Applied Physics,1997,30(16):2313-2319.
    [21]Mouzouris Y, Soharer J. One-and two-dimensional plasma wave field and absorption simulations for collisional radio frequency air plasma,Proc IEEE International Conference on Plasma Science. Wisconsin:IEEE Publication,1998:275-276.
    [22]朱立群,古璟.薄型多层雷达吸波材料结构设计与发展.表面技术,2007,(03):151-154.
    [23]Jagadish C, Tan H.H, Jasinski J. High resistivity and picosecond carrier lifetime of GaAs implanted with MeV Ga ions at high fluences. Applied Physics Letters,67(2005): 1724-1726.
    [24]Chamberlain. Electromagnetic radiation absorbing material employing doubly layered particles. European Patent Application 0479438 A2,1994.
    [25]Minoru Y. Radio wave absorbing material. United States Patent 5310598,1994.
    [26]冯则坤,何华辉.纳米磁性颗粒膜.磁性材料及器件,2001(6):31-34.
    [27]毕云飞,陶冶,刘培英.自组装纳米多层膜吸波性能和机理的研究.金属热处理,2004,29(10):21-24.
    [28]毕云飞,陶冶,刘培英.气相沉积纳米多层膜吸波性能及机理研究.金属热处理,2005,30(6):10-12.
    [29]REAGAN P. A new Process for the low-Cost Production of ceramic. Material Technology, 1994, (3):32-38.
    [30]潘喜峰.钴基金属包覆锶铁氧体复合粉末的制备和吸波性能研究.上海交通大学.2008.
    [31]Diaz, Rodolfo E. High-performance matched absorber using magnet odielectrics. United States Patent:6337125,2002.
    [32]周敏,杨觉明.吸波材料研究进展.西安工业学院学报,2000,20(4):296-302.
    [33]谢国华.红外隐身涂料与雷达吸波材料相容性.研究材料工程,1993,(5):5-7.
    [34]刘俊能,刑立英.雷达吸波材料研究进展.航天制造工程,1996,(12):6-8.
    [35]邓龙江,翁小龙,2005年功能材料学术年会论文集,2005,2(4):8-10.
    [36]邱景辉,李在清,王宏等,电磁场与电磁波,哈尔滨工业大学出版社,2001.
    [37]科夫涅里斯特,拉扎列娃,拉瓦耶夫(苏)著,蔡德录译,微波吸收材料,科学出版社,1985.
    [38]杨文彬,张冰杰.空心玻璃微珠表面化学镀Ni-P合金磁性涂层的研究.功能材料,2007,11(38):1856-1858.
    [39]Kolay P K, Singh D N. Physical, Chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Cement and Concrete Research,2001,31(4):539-542.
    [40]Shukla S, Seal S, Schwarz S, Zhou D. Synthesis and characterization of nanocrystalline silver coating of fly ash cenosphere particles by electroless process. Journal of Nanoscience and Nanotechnology,2001,1(4):417-424.
    [41]Shukla S, Seal S, Akesson J, Oder R. Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Applied Surface Science,2001,181(1-2):35-50.
    [42]黄云霞,曹全喜.空心微球表面化学镀Ni薄膜的工艺研究.稀有金属材料与工程,2007(36):950-953.
    [43]杜玉成,龚先政,黄坤良.玻璃微珠为基核的纳米隐身材料的制备研究.矿冶,2002,11(1):71-73.
    [44]Kudo, Toshio. Tamura,multilayer wave absorber. United States Patent:5708435,1998.
    [45]赵芳霞,张振忠.石英玻璃表面化学镀镍-磷工艺研究.功能材料,2007,2(38):268-271.
    [46]雷景轩,马学鸣,朱丽慧.液相包覆技术及其在材料制备中的应用.材料科学与工程,2002,20(1):93-96.
    [47]Li GJ, Huang XW, Huang XX, et al. Fabrication and mechanical properties of A1203/5vol%Ni composite by a powder coating technique. Key Engineering Materials,2002,224-225.
    [48]徐坚.化学镀合金包覆空心微珠粉体的制备与研究[M].华中科技大学,2005.
    [49]王采芳.空心微珠为基的铁氧体涂层材料的制备与研究[M].华中科技大学,2004.
    [50]Qiuyu Zhang, Min Wu, Wen Zhao. Electroless nickel plating on hollow glass microspheres. Surface & Coating Technology,2005, (192):213-219.
    [51]S A Mazen, F Metawe, S F Mansour. IR absorption and dieleetric ProPerties of Li-Ti ferrite. Appl.Phys,1997,30:1799-1801.
    [52]黄婉霞,毛健,吴行.铁磁性MnZn,NiZn铁氧体与铁电性BaTi03复合材料吸收电磁波能力的研究.四川联合大学学报(工程科学版),1998,2(6):110-113.
    [53]K. J. Vinoy, R.M. Jha. Radar absorbing materials from theory to design and characterization. Kluwer Academic Publishers,1996.
    [54]Eugene F. Knott, John F. Shaeffer, Michael T. Tuley. Radar Cross Section. Artech House, Boston. London,1993.
    [55]周克省,黄可龙,孔德明等.吸波材料的物理机制及其设计.中南工业大学学报,2001,32(6):617-621.
    [56]周馨我.功能材料学.北京:北京理工大学出版社,2002:240-242.
    [57]胡传忻.隐身涂层技术.北京:化学工业出版社,2004:200-202.
    [58]]M. R. Meshrmaa, NwaalK. Agrawal, aBharotiSihna, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. Journal of Magnetism and Magnetic Materials,2004,271:207-214.
    [59]王爱荣.非金属材料电镀前处理概述.表面技术,2001,30(5):11-12.
    [60]黄云霞,曹全喜.空心微球表面化学镀Ni薄膜的工艺研究[J].2007,36,950-953.
    [61]曾爱香.空心微珠复合吸波材料的研究[D].华中科技大学,2004.
    [62]刘建国,陈存华.非金属材料化学镀工艺中基体表面活化方法的研究.表面技术,2002,31(3):5-8.
    [63]刘康平,史桂军.超声波清洗技术在磷化处理中的应用.材料保护,2002(05).
    [64]王海成,杜中美,王立锦等.Ni-P底层对化学镀Co-P薄膜性能的影响.功能材料,2008,(01):51-53.
    [65]姜晓霞,沈伟.化学镀理论与实践.北京:国防工业出版社,2000.
    [66]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术.哈尔滨:哈尔滨工业大学出版社,2000.
    [67]刘志坚.Ni-P合金化学镀溶液的稳定性研究[M].昆明理工大学,2002
    [68]刘志坚,贺子凯,刘鸿康.长寿命高稳定性化学镀镍工艺.材料保护,2003,36(09):30-33.
    [69]夏钮.酸性化学镀镍沉积速度的研究.材料保护,1996,29(1):4-6.
    [70]黄英,黄飞,王艳丽.溶胶-凝胶法制备纳米钡铁氧体薄膜.稀有金属材料与工程,2008,37(7):1229-1232.
    [71]丁子上,翁文剑,杨娟.化学络合法在溶胶—凝胶过程中的应用.硅酸盐学报,1995,23(05):571-577.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.