炭纤维及树脂对C/C-SiC摩擦材料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有密度低、耐腐蚀、抗氧化性好、优异的摩擦磨损性能等优点,C/C-SiC复合材料作为最新一代的摩擦材料具有广阔的应用前景。本论文结合课题组前期已有的研究成果,采用周期短、成本低的温压-原位反应法制备C/C-SiC,研究了硅化及热处理对纤维结构及强度的影响,树脂的热分解过程和不同短纤维和树脂对C/C-SiC力学和摩擦磨损性能的影响。结果表明:
     (1)HTA炭纤维硅化处理后拉伸强度由处理前的3.15GPa下降到0.32GPa。320K预氧丝热处理后表面粗糙度降低较多,强度由处理前的0.26GPa提高到处理后的1.62GPa。
     (2)硼改性酚醛树脂850℃炭化后残碳率为64%,线收缩和体积收缩分别为14.6%和37.9%,该树脂在室温-200℃和500-700℃两阶段热失重速率较大。无机纳米改性酚醛树脂850℃炭化后残碳率为58%,线收缩和体积收缩分别为23.4%和48.4%,该树脂在350-700℃阶段热失重速率较大。
     (3)不同纤维增强的C/C-SiC试样中,T700增强的材料的力学性能较好,其抗压强度随纤维体积含量的增加先增后减,其垂直、平行抗压强度在含量为10%时有最大值75.44MPa.58.14MPa;冲击强度随着纤维含量的增加而增加,在23%时有最大值为1.74 KJ/m2。预氧丝增强的C/C-SiC试样的垂直抗压强度表现为先增后减,在10%时有最大值49.34MPa,而平行抗压强度逐渐降低,在8%有最大值49.34MPa;冲击强度表现先增后降,在15%有最大值1.50KJ/m2。
     (4)不同树脂做粘结剂制备的C/C-SiC试样中,树脂含量较低时,硼改性树脂做粘结剂制备的材料的抗压强度较高,冲击强度较低。硼改性树脂做粘结剂制备的材料的抗压强度随树脂含量的增加而减小,垂直、平行抗压强度在22.5%时有最大值86.18MPa.64.77MPa;冲击强度表现为先增后降,在37.5%有最大值1.80KJ/m2。无机纳米改性树脂做粘结剂制备的试样的抗压强度随着树脂含量的增加先增后减,其垂直、平行抗压强度在37.5%时有最大值84.07MPa,71.1MPa,冲击强度表现为逐渐下降,在22.5%有最大值1.95 KJ/m2。
     (5)不同纤维增强的C/C-SiC试样中,T700增强的试样的摩擦系数在0.50-0.73范围内,纤维含量为10%的试样的摩擦系数波动较大,23%含量的试样的摩擦系数的波动较小;纤维含量为10%的试样的磨损率在0.17~19.2×10-7·cm3·N-1·m-1内波动;纤维含量为23%的试样的磨损率在0.7~0.81×10-7·cn3·N-1·m-1内波动。预氧丝增强的试样的摩擦系数在0.54-0.72范围内,纤维含量为23%的试样的摩擦系数较小且波动较小;预氧丝含量为15%的试样的磨损率在0.46-1.09×10-7·cm3·N-1·m-1内变化,波动较小;而10%的试样的磨损率在0.66~16.67×10-7·cm3·N-1·m-1呈正弦波动,波动较大。整体来看,预氧丝增强的材料的摩擦系数和磨损率较大。
     (6)不同树脂做粘结剂制备的C/C-SiC试样中,硼改性树脂制备的试样的摩擦系数在0.50-0.72范围内,40%树脂含量的试样的摩擦系数波动较小;22.5%树脂含量的试样的磨损率在0.42-21.76×10-7·cm3·N-1·m-1范围变化,波动较大,30%树脂含量的试样的磨损率在0.7~0.8×10-7·cm3·N-1·m-1范围变化,波动较小。无机纳米改性的树脂制备的试样的摩擦系数在0.56-0.78范围内,30%树脂含量的试样的摩擦系数波动较小;40%树脂含量的试样的磨损率在0.38-1.18×10-7·cm3,N-1·m-1范围变化,波动较大,37.5%树脂含量的试样的磨损率在0.47-0.64×10-7·cm3·N-1·m-1范围变化,波动小。整体来说,无机纳米改性的树脂制备的材料的摩擦系数较大,磨损较小。
C/C-SiC composites has broad application prospect as the newest generation friction materials because of its advantages of low density, excellent oxidation resistance and good friction properties. In this paper, the short periods and lower cost warm pressing and in-situ reaction process was used to manufacture C/C-SiC,The effects of siliconization and heat treatment on the structure and intension of carbon fibre,the heat decomposition of resin,the effects of different carbon fibres and resins on the performance of C/C-SiC were researched.The results show that:
     (1) The pull intensity of HTA after siliconization reduced to 0.32 GPa from 3.15 GPa, The surface roughness of preoxidized fibre after heat treatment decreased and intensity increased to 1.62GPa from 0.26 GPa.
     (2) The remnant carbon rate of boron-modified phenolic resin after carbonization at 850℃was 64%,the line shrink and bulk shrink rate were 14.6%and 37.9%, its weight loss velocity in the 25-200℃and 500-700℃phases was high. While The remnant carbon rate of Inorganic nano-modified phenolic resin after carbonization was 64%,the line shrink and bulk shrink rate were 23.4% and 48.4%,its weight loss velocity of nano-modified phenolic resin in the 350-700℃phase was high.
     (3) In the different fibres enhanced C/C-SiC samples, The mechanics performance of T700 enhanced C/C-SiC was better,with the fiber volume increasing,its compressive stress firstly increased then decreased and impact stress increased, composites have the best vertical compressive stress(75.44MPa),parallel compressive stress(58.14MPa) when fiber volume was 10%, composites have the best impact stress(1.74 KJ/m2) when fiber volume was 23%.With the fiber volume increasing, the vertical compressive stress and impact stress of preoxidized fibre enhanced C/C-SiC firstly increased then decreased, composites have the best vertical compressive stress(49.34 MPa)when fibre volume was 10% and have the best impact stress(1.5 KJ/m2) when fibre volume was 15%,while the parallel compressive stress of preoxidized fibre enhanced C/C-SiC decreased, the best parallel compressive stress was 49.34 MPa when fibre volume was 8%.
     (4) In the C/C-SiC samples made of different resins adhesive,when the resin volume was low, the compressive stress of C/C-SiC made of boron-modified resin was better,while its impact stress was worse. With the resin volume increasing, the compressive stress of C/C-SiC made of boron-modified resin decreased and impact stress firstly increased then decreased,composites have the best vertical compressive stress(86.18MPa) and parallel compressive stress (64.77MPa)when fibre volume was 22.5% and have the best impact stress(1.8 KJ/m2) when resin volume was 37.5%. The compressive stress of C/C-SiC made of Inorganic nano-modified resin firstly increased then decreased and the impact stress decreased, composites have the best vertical compressive stress(84.07MPa) and parallel compressive stress (71.10MPa)when fibre volume was 37.5% and have the best impact stress(1.95 KJ/m2) when resin volume was 22.5%.
     (5) In the different fibre enhanced C/C-SiC samples, The friction coefficient of T700 enhanced C/C-SiC fluctuated between 0.5 and 0.73,its friction coefficient and wear rate fluctuated greatly when fibre volume was 10% but fluctuated smallv when fiber volume was 23%. The friction coefficient of preoxidized fibre enhanced. C/C-SiC fluctuated between 0.54 and 0.72,its friction coefficient fluctuated smally when fibre volume was 23%, its wear rate fluctuated greatly when fibre volume was 10% and smally when fibre volume was 15%.Generally,the friction coefficient and wear rate of preoxidized fibre enhanced C/C-SiC were higher.
     (6) In C/C-SiC samples made of different resins, The friction coefficient of C/C-SiC made of boron-modified resin fluctuated between 0.5 and 0.72,its friction coefficient fluctuated smally when resin volume was 40%, its wear rate fluctuated smally when resin volume was 30% and fluctuated greatly when resin volume was 22.5%.The friction coefficient of C/C-SiC made of Inorganic nano-modified resin fluctuated between 0.56 and 0.78,its friction coefficient fluctuated smally when resin volume was 30%, its wear rate fluctuated greatly when resin volume was 40% and smally when resin volume was 37.5%. Generally,the friction coefficient of C/C-SiC made of Inorganic nano-modified resin was higher and its wear rate was lower.
引文
[1]王涛,朱文坚.摩擦制动器—原理、结构与设计[M].广州:华南理工大学出版社,1992:21
    [2]张明喆,杨晓红,刘勇兵,等.摩阻材料的摩擦学[J].汽车工艺与材料,1999,9:22
    [3]许越.半金属摩阻材料的研究及应用[J].碳素,2001,1:15
    [4]张金庆.车辆无石棉摩擦材料的研究进展[J].农业装备与车辆工程,2006,8:36-38
    [5]李绍忠.汽车摩擦材料的变革与非石棉摩擦材料的发展[J].汽车科技,2004,2:4-7
    [6]盛钢,马保吉.制动摩擦材料研究的现状与发展[J].西安工业学院学报,2000,2(1):127-132
    [7]Krenkel W, Heidenreich B, Renz R. C/C-SiC composites for advanced friction systems[J]. Advanced Engineering Materials,2002,4(7):427-436
    [8]王百禄,吴焕德,罗应均,等.摩擦复材之特性与发展趋势[J].高科技纤维与应用,2006,31(5):19-24
    [9]邹林华,黄伯云,黄启忠.C/C复合材料的导热系数[J].中国有色金属学报,1997,7(4):132-134
    [10]Krenkel W, Berndt F. C/C-SiC composites for space applications and advanced friction systems [J]. Materials Science and Engineering A,2005,412(1-2): 177-181
    [11]齐海波,樊云昌,籍凤秋.高速列车制动盘材料的研究现状与发展趋势[J].石家庄铁道学院学报,2001,14(1):52-55
    [12]肖鹏,熊翔,张红波,等.C/C-SiC陶瓷制动材料的研究现状与应用[J].中国有色金属学报,2005,15(5):667-674
    [13]张亚妮,徐永东,楼建军,等.碳/碳化硅复合材料摩擦磨损性能分析[J].航空材料学报,2005,25(2):49-54
    [14]何新波,张长瑞,周新贵.裂解碳涂层对碳纤维增强碳化硅复合材料力学性能的影响[J].高技术通讯,2000,9:92-94
    [15]刘文川,邓景屹.热结构复合材料的低成本制备(高效、低成本、快速制备C/C,C-SiC系列热结构复合材料)[J].材料导报,2000,14(4):59-60
    [16]宋麦丽,王涛,闫联生,等.高性能C/SiC复合材料的快速制备[J].新型炭材料,2001,16(2):57-60
    [17]魏明坤,宋剑敏.纤维增强陶瓷摩擦材料研究现状[J].江苏陶瓷,2006,39(3):1-7
    [18]张兰芝,王占武.炭纤维的品种、质量及生产现状[J].炭素技术,1999,1:22-25
    [19]丁海燕.聚丙烯腈基碳纤维结构与性能相关性研究:[硕士学位论文].济南:山东大学,2006:4
    [20]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004:249
    [21]尹洪峰,任耘,王宏联,等.纤维类型对C/SiC复合材料性能的影响[J].硅酸盐通报,2001,5:43-45
    [22]何新波,杨辉,张长瑞,等.纤维类型对Cf/SiC复合材料力学性能的影响[J].硅酸盐学报,2001,29(4):365-369
    [23]王松,陈朝辉,李钒,等.T300和JC2#纤维增强C/SiC复合材料力学性能对比[J].国防科技大学学报,2006,28(1):23-26
    [24]旷文敏,肖鹏,熊翔,等.纤维分散对C/C-SiC复合材料力学性能的影响[J].粉末冶金材料科学与工程,2007,12(1):53-58
    [25]王松,陈朝辉,索相波,等.T300碳纤维热处理对Cf/SiC复合材料性能的影响[J].材料工程,2004,12:40-43
    [26]王建方,陈朝辉,郑文伟,等.C/SiC制备过程中纤维热应力损伤研究[J].复合材料学报,2001,18(4):68-70
    [27]王林山,熊翔,肖鹏,等.多孔体制备工艺对C/C-SiC复合材料弯曲性能的影响[J].中国有色金属学报,2003,13(5):1196-1201
    [28]唐汉玲,曾燮榕,熊信柏,等.短切碳纤维含量对Csf/SiC复合材料力学性能的影响[J].硅酸盐学报,2007,35(8):1057-1060
    [29]闰联生,李贺军,崔红,等.内部硅化法制备低成本C/SiC复合材料[J].材料工程,2005,9:41-52
    [30]谢建伟.C/SiC复合材料的结构与力学性能:[硕士学位论文].长沙:中南大学,2007:3
    [31]肖鹏,熊翔,任芸芸,等.不同成分对C/C-SiC材料摩擦磨损行为的影响与机理[J].中国有色金属学报,2005,15(7):1040-1044
    [32]吴庆军,熊翔,肖鹏,等.低温模压法制备的C/C-SiC复合材料的摩擦磨损性能[J].粉末冶金材料科学与工程,2005,10(6):365-368
    [33]杨阳.温压—原位反应法制备C/C-SiC制动材料的摩擦磨损性能:[硕士学位论文].长沙:中南大学,2007:20-78
    [34]王秀飞,黄启忠,苏哲安,等.硅含量对C/C-SiC复合材料性能的影响[J].材 料工程,2007,9:47-50
    [35]王零森,黄培云.特种陶瓷[M].长沙:中南大学出版社,2002:543-550
    [36]何新波,张长瑞,周新贵,等.烧结温度对Cf/SiC复合材料界面的影响[J].国防科技大学学报,2000,22(4):34-37
    [37]叶斌,何新波,曲选辉,等.制备工艺对Cf/SiC复合材料力学性能的影响[J].材料工程,2004,8:47-50
    [38]Krenkel W. Cost effective processing of CMC composites by melt infiltration (LSI-process)[J]. Ceramic Engineering and Science Proceeding,2001,22(3): 443-454
    [39]马青松,陈朝辉,郑文伟,等.先驱体转化法制备连续纤维增强陶瓷基复合材料的研究[J].材料科学与工程,2001,19(4):110-115
    [40]Krenkel W, Lutzenburger N. Near net shape manufacture of CMC components [C].12th Proc Internal Conference on Composite Materials(ICCM12). Paris: ICCM,1999:108-123.
    [41]Heidenreich B, Renz R, Krenkel W. Short fiber reinforced CMC materials for high performance brakes [C].4th International Conference on High Temperature Ceramic Matrix Composites(HT-CMC4). Munich, Germany:Europe Ceramic Society,2001:68-74
    [42]Schulte-Fischedick J, Zern A, Mayer J, etc. The morphology of silicon carbide in C/C-SiC composites [J]. Materials Science and Engineering,2002,332(1-2): 146-152
    [43]周长城,周新贵,于海蛟,等.短碳纤维增强碳化硅基复合材料的制备[J].高科技纤维与应用,2004,29(4):35-44
    [44]冉丽萍,易茂中,王朝胜,等.添加Al对MSI制备C/C-SiC复合材料组织和力学性能的影响[J].复合材料学报,2006,23(5):34-37
    [45]张军战,徐永东,张立同,等.反应熔体渗透C/SiC复合材料的摩擦性能[J].材料工程,2005,7:32-35
    [46]于海蛟,周新贵,周长城.短Cf增强SiC基复合材料及制备压力和Cf含量对其性能的影响[J].粉末冶金材料科学与工程,2006,11(1):49-53
    [47]肖鹏,熊翔,任芸芸.制动速度对C/C-SiC复合材料摩擦磨损性能的影响[J].摩擦学学报,2006,26(1):12-15
    [48]许林.炭纤维表面处理及结构与性能的研究[硕士学位论文].长沙:中南大学,2008:12-13
    [49]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002:274
    [50]Curtin W N. Theory of mechanical properties of ceramic-matrix composite [J]. J Am Ceram,1991,74(11):2834-2845
    [51]Evans A G, Zok F W. The physics and mechanics of fiber-reinforced brittle matrix composites[J]. J Mater Sci,1994,29(15):3857-3896
    [52]He M Y, Evans A G, Curtin W. The ultimate tensile strength of metal and ceramic composites[J]. Acta Metal Mater,1993,41(3):871-878
    [53]Favre A, Fuzellier H,Suptil J. An original way to investigate the siliconizing of carbon materials [J]. Ceramics International,2003,29(3):235-243
    [54]陈建军,潘颐,林晶.硅气氛中PAN碳纤维原位生长碳化硅纳米纤维[J].高科技纤维与应用,2006,31(3):11-14
    [55]Vix-Guterl C, Ehrburger P. Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation [J]. Carbon,1997,35(10-11): 1587-1592
    [56]丁学文,陈东,曹建华,等.XRD研究芳基乙炔聚合物炭化过程中的结构变化[J].高分子材料科学与工程,2002,18(2):127-130
    [57]黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社,2003:77-84
    [58]苏震宇,邱启艳.改性双马来酞亚胺树脂的固化特性[J].纤维复合材料,2005,3:24-27
    [59]张明,安学锋,唐邦铭.高性能双组份环氧树脂固化动力学研究和TTT图绘制[J].复合材料学报,2006,23(1):17-25
    [60]王庆,王庭慰,魏无际.不饱和聚醋树脂固化特性的研究[J].化学反应工程与工艺,2005,21(6):492-496
    [61]Maazouz A, Texier C, Taha M, etal. Chemo-rheological study of dicyanate ester for the simulation of the resin-transfer molding process [J]. Compos Sci Tech, 1997,16(4):297-311
    [62]曾秀妮,段跃新.8405环氧树脂体系固化反应特性[J].复合材料学报,2007,24(3):100-104
    [63]Davis J R, Davidge R. Failure of ceramic matrix composites under tensile stresses[J]. J.Mater. Sci.,1994,29(2):413-418
    [64]Evans A G, Dormergue J M. Methodology for relating the tensile constitutive behavior of ceramic matrix composites toconstituent properties[J]. J. Am. Ceram. Soc.,1994,77(6):1425-1435
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.