细水雾大空间局域环境调节的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖和空气污染是人类当前面临的两大严重环境问题,城市高温所带来的夏季能耗问题逐渐突出。细水雾蒸发降温具有节能环保、无污染的优点,可用于大空间局域环境的调节。本文围绕该技术对细水雾气液两相流动和大空间局域环境调节进行数值模拟和实验研究。针对细水雾大空间局域环境调节的关键问题,进行了以下探索:
     (1)对不同粒径尺寸液滴在非稳态蒸发过程中的传热传质规律进行研究。通过分析单液滴非稳态蒸发过程的数学模型,对不同粒径尺寸的雾滴在室外环境中的蒸发过程进行了数值求解,分析液滴表面温度、液滴直径随时间变化的发展规律,获得了液滴非稳态蒸发时间与液滴寿命之间的关系。
     (2)对大空间局域环境降温增湿的模拟技术进行了探索。应用FLUENT软件对大空间局域环境的喷雾两相流场进行数值模拟,分析了不同雾化参数和气相参数下的温度场和湿度场。对人体感知区域的温湿度分布进行对比分析,获得了细水雾在大空间局域环境条件下弥散、蒸发的一般规律。
     (3)建立射流式低压旋流雾化降温系统和立柱式高压雾化降温系统,对细水雾在大空间局域环境条件下的降温效果和输运特性进行实验研究,获得了不同雾化参数和气相参数对大空间局域环境降温效果的影响规律。优化了高压雾化降温系统中的喷嘴布置;将实验结果和数值模拟结果进行了对比分析研究。
     (4)提出喷雾降温调节系统的设计方法,建立了细水雾大空间局域环境调节的数学模型。根据建立的细水雾大空间局域环境弥散输运数学模型,分析了半室外环境降温过程中环境湿度的变化规律,通过设定配风量和降温终端的工作频率来控制环境中的湿度变化,使降温空间的相对湿度能够保持在容许范围之内。通过对不同降温形式能耗的比较,分析了细水雾大空间局域环境降温的节能效果。
     (5)提出以人体舒适度指数作为评价细水雾降温系统性能及调节效果的依据,将细水雾环境降温效果进行量化,为大空间局域环境调节提供了研究方法和理论基础。应用人体舒适度指数模型对降温后的局域环境进行人体舒适度分析,验证了细水雾大空间局域环境调节技术的可行性。将降温前后的人体舒适度指数进行对比后发现:细水雾大空间局域环境调节技术能够改变局域环境的人体舒适度指数,环境质量得到明显改善。
The global warming and air pollution have become the two most serious problems. The effect of high temperature in summer on energy consumption of cooling is increasing. The fine water mist regulation in large space of local environment is a type of non-emission and environmentally-benign technology. Based on a series of experimental study and numerical simulation, the gas-liquid two-phase flow of fine water mist and regulation in large space of local environment are studied in this dissertation. In view of the main problems of the fine water mist regulation in large space of local environment, we carried out the study as follows:
     (1) The heat and mass transfer characteristic of droplets with different diameter in the unsteady evaporation period is investigated. Based on the analysis of unsteady evaporation mathematical model of single droplet, the numerical analysis on evaporation of droplets with different diameter is proposed. After the discussion of evolution of surface temperature and diameter of single droplet, the correlation of droplets lifetime and unsteady evaporation period is analyzed.
     (2) The numerical simulation of fine water mist cooling and humidity adjusting in large space of local environment is presented. Based on the simulations of two-phase flow field of spray cooling in large space of local environment is finished by using software FLUENT, the effect of different atomization parameters and gas-phase parameters on temperature field and humidity field is analyzed. According to the discussion of temperature and humidity distribution on the vertical axial cross sections and horizontal plane that a human being could sense, the dispersion and evaporation of fine water mist in large space of local environment is obtained.
     (3) The experimental systems of low pressure swirl spray cooling and pillar design high pressure spray cooling are adopted to study the spray cooling effect and mass flux of fine water mist in large space of local environment. The experiment is conducted for the effect of different atomization parameters and gas-phase parameters on the cooling effect of large space of local environment and the arrangement of nozzles of high pressure cooling system is optimized. Some of the experimental results are compared with the numerical simulation results. The mass flux and diffusion of fine water mist in the space is described and investigated.
     (4) A mathematical model of cooling, humidity adjusting and humidity regulation in large space of local outdoor/semi-outdoor environment is established in this dissertation. The design method of system that has the function of cooling, relative humidity adjusting and regulation in humidity is proposed. According to the dispersion and transportation model of fine water mist, the evolution of humidity of environment and the water mist evaporation mass flow rate are studied. The evolution of humidity of environment is controlled by setting the ventilation rate and the performance frequency of cooling system and the humidity of environment would be maintained at a comfortable level. The effect of energy saving of spray cooling is analyzed by comparing the energy consumption of different cooling methods.
     (5) In order to quantify the spray cooling effect, the human comfort index is put forward as the basis of evaluation for performance and effect of fine water mist cooling system. The human comfort index model is adopted in the analysis of human comfort of cooling space to validate the feasibility of fine water mist cooling for regulation in large space of local environment. Based on the comparison of human comfort index around the spray cooling, the fine water mist regulation in large space of local environment would descend the human comfort index of local environment. The quality of environment should be improved significantly. It provides the regulation in large space of local environment with research method and theoretical basis.
引文
[1]刘建军,郑有飞,吴荣军.热浪火害对人体健康的影响及其方法研究[J].自然灾害学报,2008,17(2):151-156.
    [2]朱岳梅,姚杨,马最良等.室外环境热舒适性模型的建立[J].建筑科学,2007,23(6):1-3.
    [3]钱炜,唐鸣放,郑怀礼.城市户外热环境的舒适性研究[J].重庆环境科学,2002,24(2):88-89
    [4]Edward Arens,Peter Bosselmann.Wind,Sun and Temperature Predicting the Thermal Comfort of People in outdoor Space.Building & Environment,1989,24(4):315-320.
    [5]黄晨,龙惟定.建筑环境学[M1.北京:机械:I:业出版社,2001,37-38.
    [6]武振霞,李鹏.珠二角高层住宅设计与空调能耗问题研究[J].住宅科技,2008,(9):12-16.
    [7]国家统计局.中国统计年鉴2001[M].北京:中国统计出版社,2001.
    [8]李兆坚,江亿,雷毅.对空调舒适性的伦理学思考[J].暖通空调,2008,38(5):38-43.
    [9]Faeth GM.Evaporation and combustion of sprays.Prog Energy Combust Sci 1983,9,1-76.
    [10]Maisel D.S.,Sherwood T.K.Effect of air turbulence on rate of evaporation of water.Chem.Eng.Prog,1950,Vol.46,no.4,pp.172-175.
    [11]Hsu N.T,Sage B.H.Thermal and material transfer in turbulent gas stream:Local transport from spheres,A.I.Ch.E.Journal,2004,Vol.3,no.3,pp.405-410.
    [12]Brown R.A,Sato K,Sage B.H.Material transfer in turbulent gas stream:effect of turbulence on macroscopic transport from spheres.Chem.Eng.Data Series,1958,Vol.3,pp.263-272.
    [13]Yuge T,Experimental on heat transfer of sphere,including combined natural and forced convection.J.Heat Transfer,1960,Vol.82,pp.214-220.
    [14]Yuge T,Experimental on Heat Transfer of Sphere-Report 3(Influence of Free Stream Turbulence at Higher Reynolds Numbers).Rep.Inst.High Sp.Mech.Japan,1959,Vol.11,209-230.
    [15]Lavender W.J,Pei D.C.The effect of fluid turbulence on the rate of heat transfer from spheres,Int.J.Heat Transfer,1967,Vol.10,pp.529-539.
    [16]Hayward,G.L Pei,D.C,Local heat transfer from a single sphere to a turbulent air stream,Int.J.Heat Transfer,1978,Vol.21,pp.35-41.
    [17]Raithby G.D,Eckert E.R.G,The effect of turbulence parameters and support position on the heat transfer from spheres,Int.J.Heat Transfer,1968,Vol.11,pp.1233-1252.
    [18]Birouk M,G(o|¨)kalp I.Current status of droplet evaporation in turbulent flows.Progress in Energy and Combustion,Vol.32(4),pp.408-423.
    [19]Renksizbulut M.,Yuen M.C.Numerical study of droplet evaporation in high temperature air stream,J.of heat transfer,1983,Vol.105,pp.384-388.
    [20]Ohta.Y,Shimoyama K,Ohigashi S.V.Vaporization and combustion of single liquid fuel droplets in turbulent environment.Bulletin of JSME,1975,Vol.18,pp.47-56.
    [21]G6kalp I,Chauveau C,Simon O,Cheseneau X.Mass transfer from liquid fuel droplets in turbulent flow,Combust.Flame,1992,Vol.89,pp.286-298.
    [22]Hiromitsu N,Kawaguchi O.Influence of flow turbulence on the evaporation rate of suspended droplet in a hot air flow,Heat Transfer Japanese Research,1995,Vol.24,pp.689-700.
    [23]Birouk M,G6kalp I.A new correlation for turbulent mass transfer from liquid droplets.Int.J.Heat Transfer,2002,Vol.45,pp.37-45.
    [24]Wu J S,Lin Y J,Sheen H J.Effect of Ambient Turbulence and Fuel Properties on the Evaporation Rate of Single droplets,Int.J.Heat Mass Transfer,2001,Vol.44.pp.4593-4603.
    [25]Wu J S,Hsu K H,Sheen H J.Evaporation model of a single hydrocarbon fuel droplet due to ambient turbulence at intermediate Reynolds numbers.Int.J.Heat Mass Transfer,2003,Vol.46.pp.4741-4745.
    [26]刘大有.二相流体动力学[M].北京:高等教育出版社.1993年1月.
    [27]Chow L.C,Sehmbey M.S,Pais M.R,High heat flux spray cooling,Ann.Rev.Heat Transfer,1997,(8):291-318.
    [28]Sehmbey M.S,Chow L.C,Hahn O.J,et,al.Effect of spray characteristics on spray cooling with liquid nitrogen,J.Thermophys.Heat Transfer,1995,9(4):757-765.
    [29]Rini D.P,Chen R.-H,Chow L.C,Bubble behavior and nuclear boiling heat transfer in saturated FC-72 spray cooling,J.Heat Transfer,2002,124:63-72.
    [30]Rini D.P,Chen R.-H,Chow L.C,Bubble behavior and heat transfer mechanism in FC-72pool boiling,Exp.Heat Transfer,2001,14:27-44.
    [31]Kopchikov L.A,Voronin G.I,Kolach T.A,et,al,Liquid boiling in a thin film,Int.J.Heat Mass Transfer,1969,12:791-796.
    [32]Toda S,Uchida H,Study of liquid film cooling with evaporation and boiling,Heat Transfer -Jpn.Res,1973,2:44-62.
    [33]Toda S,A study of mist cooling,1st report:investigation of mist cooling,Heat Transfer-Jpn.Res,1972,1:39-50.
    [34]Toda S,A study of mist cooling,2nd report:theory of mist cooling and its fundamental experiments,Heat Transfer-Jpn.Res,1974,3:1-44.
    [35]Sehmbey M.S,Chow L.C,Hahn O.J,et,al.Spray cooling of power electronics at cryogenic temperatures,AIAA J.Thermophys.Heat Transfer,1995,9:123-128.
    [36]Halvorson P.J,Carson R.J,Jeter S.M,et,al.Critical heat flux limits for a heated surface impacted by a stream of liquid droplets,J.Heat Transfer,1994,116:679-685.
    [37]Pals M.R,Chow L.C,Mahefkey E.T,Surface roughness and its effect on the heat transfer mechanism in spray cooling,J.Heat Transfer,1992,114:211-219.
    [38]K.A.Estes,I.Mudawar,Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces,Int.J.Heat Mass Transfer,1995,38:2985-2996.
    [39]La′szlo′E.Kolla′r,Masoud Farzaneh.Modeling the evolution of droplet size distribution in two-phase flows.International Journal of Multiphase Flow,2007,33:1255-1270.
    [40]Collin A,Boulet P,Parent G.M.R,et,al.Dynamics and thermal behavior of water sprays.International Journal of Thermal Sciences,2008,47:399-407.
    [41]Ruey Hung Chen,Louis C.Chow,et,al.Effects of spray characteristics on critical heat flux in subcooled water spray cooling.International Journal of Heat and Mass Transfer,2002,45:4033-4043.
    [42]Ruey Hung Chen,Louis C.Chow,et,al.Optimal spray characteristics in water spray cooling.International Journal of Heat and Mass Transfer 2004,47:5095-5099.
    [43]W.Jia,Qiu H H.Experimental investigation of droplet dynamics and heat transfer in spray cooling.Experimental Thermal and Fluid Science 2003,27:829-838.
    [44]赵德菱,高崇义,梁建.温室内高压喷雾系统降温效果初探[J].农业工程学报,2000,16(1):87-89.
    [45]Katsoulas N.,Baille A,Kittas C,.Effect of misting on transpiration and conductance of a greenhouse rose canopy.Agriculture and Forest Meteorology,2001,106(3),233-247.
    [46]姬永兴.两相射流促进细水雾灭火技术发展[J].中国安全科学学报,2005,15(10):48-52.
    [47]魏彤彤.细水雾与油池火相互作用的数值模拟[硕士学位论文].辽宁:大连理工大学2007.6.
    [48]梁清水,梁清泉,徐文毅.细水雾特性及其灭火机理分析[J].消防科学与技术,2005,24(4):447-451.
    [49]黄绪通,梁庆,温甜1国.碾压混凝十夏季高温施工工艺试验研究与应用[J].水利水电技术,2000,11(3):5-9.
    [50]涂志军.涌溪三级电站大坝碾压混凝土夏季施工[J].云南水力发电,1999,15(2):4-7.
    [51]Sethi V P,Sharma S K.Survey of cooling technologies for worldwide agricultural greenhouse applications.Solar Energy,2007(81):1447-1459.
    [52]赵德菱,罗成定,高秋艳等.水雾在温室降温中的应用[J].中国农机化,2003,3:14-16.
    [53]Reilly A.Temperature,humidity,and cooling:practical application.International Conference on Greenhouse Systems:Automation,Culture,and Environment,July,New Jersey,1994,pp.176-188.
    [54]Li S,Willits D.H.Comparing low-pressure and high-pressure fogging systems in naturally ventilated greenhouses.Biosystems Engineering,2008,101:69-77.
    [55]Abdel Ghany A.M,Kozai T.Cooling Efficiency of Fogging Systems for Greenhouses.Biosystems Engineering,2006,94(1):97-109.
    [56]Toida H,Ohyama K,Kozai T,et,al.A Method for measuring Dry-bulb Temperatures during the Operation of a Fog System for Greenhouse Cooling.Biosystems Engineering,2006,93(3):347-351.
    [57](O|¨)zt(u|¨)rk H H.Evaporative cooling efficiency of a fogging system for greenhouses.Turkey Journal of Agriculture and Forestry,2003,27:49-57.
    [58]Giacomelli G A,Giniger M S,Krass A E,Mears D R.Improved methods of greenhouse evaporative cooling.Acta Horticulturae,1985,174:49-55.
    [59]Montero J I,Anton A,Biel C,et,al.Cooling of greenhouses with compressed air fogging nozzles.Acta Horticulturae,1990,281:199-209.
    [60]Hayashi M,Sugahara T,Nakajima H.Temperature and humidity environments inside a naturally ventilated greenhouse with the evaporative fog cooling system.Environmental Control in Biology,1998,(36):97-104.(in Japanese)
    [61]Giacomelli G A,Roberts W(1989).Try alternative methods of evaporative cooling.Acta Horticulturae,257:29-32.
    [62]Arbel A,Yekutieli O,Barak M.Performance of a fog system for cooling greenhouses.Journal of Agricultural.Engineering Research,1999,72,129-136.
    [63]Arbel A,Barak M,Shklyar A.Combination of Forced Ventilation and Fogging Systems for Cooling Greenhouses.Biosystems Engineering,2003,84(1):45-55.
    [64]沈明卫,陈志银,苗香雯.连栋温室遮阳网上喷雾降温性能研究[J].农业机械学报,2003,34(2):65-68.
    [65]Keesung Kim,Jeong-Yeol Yoon,Hyuck-Jin Kwon,et,al.3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers.BIOSYSTEMS ENGINEERING,2008,100:245-255.
    [66]Keesung Kim,Gene A.GIACOMELII1,Jeong-Yeol Yoon,et,al.CFD Modeling to Improve the Design of a Fog System for Cooling Greenhouses.JARQ 2007,41(4):283-290.
    [67]Simo Hostikkaa,Kevin McGrattan.Numerical modeling of radioactive heat transfer in water sprays.Fire Safety Journal,2006,41:76-86.
    [68]Zhigang Liu,Don Carpenter,Andrew K.Kim.Cooling characteristics of hot oil pool by water mist during fire suppression.Fire Safety Journal,2008,43:269-281.
    [69]Yoon S.S,Hewson,DesJardin P.E.Numerical modeling and experimental measurements of a high speed solid-cone water spray for use in fire suppression applications.International Journal of Multiphase Flow,2004,30:1369-1388.
    [70]Yao B,Chow W.K.Numerical modeling for compartment fire environment under a solid-cone water spray.Applied Mathematical Modelling,2006,30:1571-1586
    [71]Novozhilov V,D.J.E.Harvie,J.H.Kent.A Computational Fluid Dynamics Study of Wood Fire Extinguishment by Water Sprinkler.Fire Safety Journal,1997,29:259-282.
    [72]Bruce Downie,Constantine Polymeropoulos.Interaction of a Water Mist with a Buoyant Methane Diffusion Flame.Fire Safety Journal,1995,24:359-381.
    [73]K.C.Adiga,Robert F,Hatcher Jr.A computational and experimental study of ultra fine water mist as a total flooding agent.Fire Safety Journal,2007,42:150-160.
    [74]Sung Chan Kim,Hong Sun Ryou.An experimental and numerical study on fire suppression using a water mist in an enclosure.Building and Environment,2003,38:1309-1316.
    [75]Kuldeep Prasadn,Gopal Patnaik.A numerical study of water-mist suppression of large scale compartment fires.Fire Safety Journal,2002,37:569-589.
    [76]刘乃玲,杨勇,张旭,等.细水雾在高温狭长空间降温效果的实验研究[J].山东建筑大学学报,2006,22(8):312-315.
    [77]刘乃玲,张旭,杨勇.螺旋型喷嘴雾滴分布特性实验研究[J].山东建筑大学学报,2006,21(4):346-349.
    [78]Ire'ne Allais,Graciela Alvarez,Denis Flick.Modelling cooling kinetics of a stack of spheres during mist chilling.Journal of Food Engineering,2006,72:197-209.
    [79]Moureha J,Letanga G;Palvadeaua et,al.Numerical and experimental investigations on the use of mist flow process in refrigerated display cabinets.International Journal of Refrigeration,2009,32:203-219.
    [80]Ghassem Heidarinejad,Mohammad Heidarinjad,Shahram Delfani et,al.Feasibility of using various kinds of cooling systems in a multi-climates country.Energy and Buildings,2008,40:1946-1953.
    [81]Pearlmutter D,Erell E,Etzion Y,et,al.Refining the use of evaporation in an experimental down-draft cool tower.Energy and Buildings,1996,23:191-197.
    [82]Abd.Halid,Hbdullah,Qinglin Meng,et,al.Filed study on indoor thermal environment in an atrium in tropical climates.Building and Environment,2009,44:431-436.
    [83]Bowman N,Lomas K,M Cook,et,al.APPLICATION OF PASSIVE DOWNDRAUGHT EVAPORATIVE COOLING(PDEC) TO NON-DOMENSTIC BUILDINGS.Renewable Energy,1997,10:191-196.
    [84]Brian Ford,Nimish Patel,Parul Zaveri,et,al.Cooling without air conditioning the Torrent Research Centre,Ahmadabad,India.Renewable Energy,1998,15:177-182.
    [85]Correia da Silva J.J.Passive downdraught evaporative cooling applied to an auditorium.International Conference "Passive and Low Energy Cooling for the Built Environment",May 2005,Santorini,Greece.555-560.
    [86]R.Sureshkumar,Kale S.R,Dhar P.L.Effects of spray modeling on heat and mass transfer in air-water spray systems in parallel flow.International Communications in Heat and Mass Transfer,2007,34:878-886.
    [87]Kachhwaha S.S,Dhar EL,Kale S.R.Experimental studies and numerical simulation of evaporative cooling of air with a water spray-I.Horizontal parallel flow.International Heal Mass Transfer,1998,Vol.41,No.2,pp.447-464,.
    [88]Kachhwaha S.S,Dhar EL,Kale S.R.Experimental studies and numerical simulation of evaporative cooling of air with water spray-II.Horizontal counter flow.International Heal Mass Transfer,1998,Vol.41,No.2,pp.465-474,.
    [89]R.Sureshkumar,Kale S.R,Dhar P.L Heat and mass transfer processes between a water spray and ambient air-I.Experimental data.Applied Thermal Engineering,2008,28:349-360.
    [90]R.Sureshkumar,Kale S.R,Dhar EL Heat and mass transfer processes between a water spray and ambient air-II.Simulations.Applied Thermal Engineering,2008,28:361-371.
    [91]Rafik Belarbi,Cristian Ghiaus,Francis Allard.Modeling of water spray evaporation Application to passive cooling of buildings.Solar Energy,2006,80:1540-1552.
    [92]杨洋,黄晨,王丽慧,等.世博轴喷雾降温前期调研及试验结果分析[J].制冷技术,2008,28(1):6-10.
    [93]Barrow H,Pope C.W.Droplet evaporation with reference to the effectiveness of water-mist cooling.Journal of APPLIED ENERGY,2007,(84):404-412.
    [94]村上周三.CFD与建筑环境设计(朱清宇等译)[M].北京:中国建筑工业出版社,2007.
    [95]袁江涛,杨立,孙嵘.高温气流内雾滴运动与蒸发特性的理论分析[J].海军工程大学学报,2008,20(2):5-8.
    [96]马斯托思 K 喷雾干燥手册[M].北京:中国建筑工业出版社.1983.
    [97]Wood B J,Wise H,Inami S H.Heterogeneous Combustion of Multicomponent Fuels,NASA TND-206,1959.
    [98]赵荣义,范存养,薛殿华,等.空气调节(第三版).北京:中国建筑工业出版社,1994.
    [99]Lefebvre A H.Atomization and Sprays[M].Hemisphere Publication Corporation,1989.
    [100]Chin J S,Lefebvre A H.The Role of the Heat-up Period in Fuel Drop Evaporation,int.J.Turbo.let Engine,Vol.2,1984,pp.837-846.
    [101]Probert R P.Philos.Mag,Vol.37,1946,p.94.
    [102]Pantankar SV.传热与流体流动的数值计算(张政译)[M].北京:科学出版社,1984.
    [103]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1989.
    [104]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001,374-376.
    [105]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社,2004,125-126.
    [106]A.Haider,O.Levenspiel.Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles.Powder Technology,58:63-70,1989.
    [107]Jennifer Spagnolo,Richard de Dear.A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia.Building and Environment,2003,(38):721-738.
    [108]Fiala D,L.K.J.,Application of a computer model predicting human thermal responses to the design of sport stadia.Presented at Chartered Institution of Building Services Engineers National Conference(CIBSE '99),Harrogate,UK,1999.
    [109]沈维道,蒋智敏,童钧耕.工程热力学[M].第3版.北京:高等教育出版社,2000:356-357.
    [110]朱颖心.建筑环境学[M].北京:中国建筑工业出版社,2005:26-27.
    [111]陆亚俊,马最良,邹平华.暖通空调[M].北京:中国建筑工业出版社,2007:200-201.
    [112]秦海超,王玮,周晖.人体舒适度在短期电力负荷预测中的应用[J].电力学报,2006,21(2):143-145.
    [113]谈建国,邵德民,马雷鸣,等.人体热量平衡模型及其在人体舒适度预报中的应用[J],南京气象学院学报,2001,24(9):384-390.
    [114]Fanger PO.Thermal comfort.New York:McGraw Hill;1972.
    [115]Gagge AP,Fobelets AP,Berglund LG.A standard predictive index of human response to the thermal environment.ASHRAE Transactions,1986,92:709-31.
    [116]Spagnolo J,de Dear RJ.A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney,Australia.Building and Environment,2003,38:21-38.
    [117]VDI.Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning.Part Ⅰ:climate.VDI guideline 3787,Part 2.Berlin:Beuth;1998.
    [118]Tzu-Ping Lin,Andreas Matzarakis,Ruey Lung Hwang.Shading effect on long-term outdoor thermal comfort.Building and Environment,2009,45(1):213-221.
    [119]Matzarakis A,Rutz F,Mayer H.Modeling radiation fluxes in simple and complex environments-application of the Ray Man model.International Journal of Biometeorology,2007,51:323-334.
    [120]H(o|¨)ppe P.The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal environment.Intational Journal of Biometeorol,1999,43:71-75.
    [121]Thorsson S,Honjo T,Lindberg F,et,al.Thermal comfort and outdoor activity in Japanese urban public places.Environment and Behavior,2007,39:660-684.
    [122]Andrade H,Alcoforado M J.Microclimatic variation of thermal comfort in a district of Lisbon(Telheiras) at night.Theoretical and Applied Climatology,2007,92:225-237.
    [123]Oliveira S,Andrade H.An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon.International Journal of Biometeorology,2007,52:69-84.
    [124]Gulyas A,Unger J,Matzarakis A.Assessment of the microclimatic and human comfort conditions in a complex urban environment:modeling and measurements.Building and Environment,2006,41:1713-1722.
    [125]Thorsson S,Honjo T,Lindberg F,et al.Thermal comfort and outdoor activity in Japanese urban public places.Environment and Behavior,2007,39:660-684.
    [126]Matzarakis A,Rutz F,Mayer H.Estimation and calculation of the mean radiant temperature within urban structures.Selected papers from the ICB-ICUC'99 conference,Sydney,WCASP-50,WMO/TD No.1026.Geneva:World Meteorological Organization;2000.
    [127]Grahame M.Budd.Wet-bulb globe temperature(WBGT)---its history and its limitations.Journal of Science and Medicine in Sport,2008,11:20-32.
    [128]Hatch TF.Design requirements and limitations of a single-reading heat stress meter.Am Ind Hyg Assoc J,1973,(34):66-72.
    [129]Macpherson RK.Physiological responses to hot environments.An account of work done in Singapore,1948-1953,at the Royal Naval Tropical Research Unit,with an appendix on preliminary work done at the National Hospital for Nervous Diseases,London.London:Her Majesty's Stationery Office;1960.
    [130]Minard D.Effective temperature scale and its modifications.Research Report MR 005.01-0001.01,Report No.6.Bethesda,MD:Naval Medical Research Institute;1964.
    [131]Ramanathan NL,Belding HS.Physiological evaluation of the WBGT index for occupational heat stress.Am Ind Hyg Assoc J,1973,34:375-383.
    [132]ISO 7243.Hot environments estimation of the heat stress on working man,based on the WBGT-index(wet bulb globe temperature).Geneva:International Organization for Standardization;1989.
    [133]Ramsey JD.Appendix C.Standards Advisory Committee on heat stress.Recommended standard for work in hot environments.In:Horvath SM,Jensen RC,editors.Standards for occupational exposures to hot environments.Proceedings of symposium.HEW Publication Number(NIOSH) 76-100.Cincinnati:National Institute for Occupational Safety and Health,1976.pp.191-204.
    [134]Candas V,Hoeft A.Clothing,assessment and effects on thermo physiological responses of man working in humid heat.Ergonomics,1995,38(1):115-127.
    [135]吴兑.多种人体舒适度预报公式讨论[J],气象科技,2003,31(6):370-372.
    [136]姚启润.旅游与气候[M].北京:气象出版社,1983:289-291.
    [137]王金亮,王平.香格里拉旅游气候的适宜度[J].热带地理,1999,19(3):235-239.
    [138]李秀存,苏志.广西夏季旅游气候舒适度的模糊综合评判[J].热带地理,1999,(2):184-187.
    [139]刘文杰,李红梅.西双版纳旅游气候资源[J].自然资源,1997,(2):62-66.
    [140]钱妙芬,叶梅.旅游气候宜人度评价方法研究[J].成都气象学院学报,1996,11(3): 128-134.
    [141]廖善刚.福建省旅游气候资源分析[J].福建师范大学学报,1998,14(1):93-97.
    [142]郭成香,石风云.四川省夏季气候舒适度的探讨[J].成都气象学院学报,1997,12(3):234-240.
    [143]张清.从人体舒适度看高温及其影响[J].北京气象,1997,4:10-11,14.
    [144]陈桂标.人体舒适度的预报方法[J].广东气象,2004,4,29-30.
    [145]王欣睿,景元书.我国东部城市冬夏季人体舒适度比较[J1.广东气象,2005,15(4):34-36.
    [146]刘梅,于波,姚克敏.人体舒适度研究现状及其开发应用前景[J].气象科技,2002,30(1):11-14.
    [147]徐竞成,朱晓燕,李光明.城市小型景观水体周边滨水区对人体舒适度的影响[J],中国给水排水,2007,23(10):101-104.
    [148]王远飞,沈愈.上海市夏季温湿效应与人体舒适度[J].华东师范大学学报(自然科学版),1998,(3):60-66.
    [149]张书余.医疗气象预报基础[M].北京:气象出版社,1999:38-42.
    [150]袁飞,肖品,卢毅.基于人体舒适度指数的夏季负荷特性分析[J].江苏电机工程,2005,24(6):5-7.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.