一类含单参数Hamilton系统在多项式扰动下极限环个数的估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于一类含单参数Hamilton平面向量场的n次多项式扰动系统(?),其中λ为小参数,(?)为扰动参数,0<(?)1,k为充分大的正整数,P,Q为实多项式,且degP,degQ≤n,n为非负整数,本文使用坐标变换将此系统化简为含参数的Bogdonov-Takens系统,(?),其中P~*,Q~*为实多项式,且degP~*,degQ~*≤n,根据系统一阶Mel'nikov函数M_1(h,λ)关于小参数λ的Taylor展开式,直接利用Petrov定理给出了M_1(h,λ)的孤立零点个数上界的估计,即当(?)(m为非负整数)时,B(2,n)≤n+m-1.另外,本文还估算了n=4时扰动系统分岔出极限环个数不超过7,n=3时扰动系统分岔出极限环个数不超过4.
It's studied that the number of isolated zeros of the Mel'nikov function for a one-parameter Hamiltonian system under polynomial perturbations in this paper. The per-turbed system is (?)= -2y + 3λy~2 + (?)P(x, y), (?)= -x - x~2 + (?)Q(x, y), whereλis a small parameter, (?) is a perturbed parameter, (?),k is a positive integer big enough, degP, degQ≤n, and n is a non-negative integer. The system is simplified to a Bogdonov-Takens system with one-parameter by using coordinate transformation, which is (?) = y - 3λy~2 + (?)P~*(x, y), (?)= -x + x~2 + (?)Q~*(x, y), where degP~*, degQ~*≤n. According to the first-order Mel'nikov function M_1(h,λ) in terms of the Taylor expansion about the small parameter A, one upper bound of the number of isolated zeros of M_1 (h,λ) is given by Petrov's theorem. When (?)m/(?)λM_1(h,λ)|_(λ=0) (?)0(m is a non-negative integer), B(2, n)≤n + m-1. Further more, it's obtained that the number of the limit cycles of the perturbed system under quartic polynomial perturbations is no more than 7, and it is no more than 4 under cubic perturbations.
引文
[1] Hilbert H D. Mathmatische Problem [Lecture]. The second International Congress of Mathemati-cians,Paris,1990. G(o|¨)ttinger Nachrichten, 1990:253-297
    
    [2] Il'yashenko Yu S. Finiteness theorems for limit cycles[J]. Russian Math. Surveys, 1990,40: 143-200
    
    [3] Ecalle E J. Finitude des cycles limites et accelerosommation de l'application de retour[J]. Lecture Notes in Math. 1990,1455:74-159
    
    [4] Dulac H. Sur les cycles limites [J]. Bull. Soc. Math. Fr. 1923,51:45-188
    
    [5] 史松龄.平面二次系统存在四个极限环的具体例子.中国科学[J],1979(11):1051-1056
    
    [6] 陈兰荪,王明淑.二次系统研究近况.数学进展[J],1989,18(1):5-21
    
    [7] 陈兰荪,叶彦谦.方程组dx/dt=-y+dx+lx~2+xy+ny~2,dy/dt=x的极限环的唯一性.数学学报[J], 1975,18:219-222
    
    [8] 杨信安,叶彦谦.方程dx/dt=-y+dx+lx~2+xy+ny~2,dy/dt=x的极限环的唯一性.福州大学学报[J],1978(2):122-127
    
    [9] Zhang Zhi-fen. On the uniqueness of the limit cycles of some nonlinera oscillation equations. Doki. Acad. Nauk SSSR[J], 1958,119:659-662
    
    [10] Zhang Zhi-fen. Proof of the uniqueness theorem of limit cycles of generalized Lienard equations. Applicable Analysis [J] ,1986,23:63-67
    
    [11] Smale,Steve. Mathematical problems for the next century[J]. Math. Intelligencer, 1998, 20(2):7-15
    
    [12] Li Chengzhi,Li Weigu,Llibre Jaume,Zhang Zhifen. Polynomial systems: A lower bound for the weakened 16th Hilbert problem [J]. Extracta Math., 2001,16(3):441-447
    
    [13] Christopher C J , Lloyd N G . Polynomial systems: A lower bound for the Hilbert numbers[J]. Proc. Royal Soc. London A[J], 1995,450:219-224
    
    [14] Li Baoyi, Zhang Zhifen.Generic Hamiltonian System with Small Perturbations, Lecture Notes in Pure and Applied Maths[J],1995,176:157-161
    
    [15] Arnold V I. Geometric Methods in the Theory of Ordinary Differential Equations (Second Edition)[M]. New York:Springer-Verlag,1983
    
    [16] Khovansky A G. Real analytic manifolds with finiteness properties and complex Abelian integrals [J]. Funct. Anal. Appl, 1984,18:119-128
    
    [17] Varchenko A N. Estimate of the number of zeros of an Abelian integral depending on a parameter and limit cycles [J]. Funct. Anal. Appl., 1984,18:98-108
    
    [18] Petrov G S.Number of zeros of complete elliptic integrals. Funct. Anal. Appl.[J], 1998,18:148-149
    
    [19] Petrov G S. The Chebyshev property of elliptic integrals. Funct. Anal. Appl.[J],1988,22:72-73
    
    [20] Mardesic P. The Number of limit cycles of polynomial deformations of a Hamiltonian vector field. Ergod. Th. & Dynam. Sys.[J], 1990,10:523-529
    
    [21] Li Baoyi,Zhang Zhifen. A note on a result of G.S. Petrov about the weakened 16th Hilbert problem. JMAA[J], 1995,190:489-516
    
    [22] Drachman B,Zhang Zhi-fen. Abelian integrals for quadratic vector fields. J. Reine. Angew. Math.[J], 1987,382:165-180
    
    [23] Bamon R. A class of planar quadratic vector fields with a limit cycle surrounded by a saddle loop. Proceedings of the AMS.[J], 1983,88:719-724
    
    [24] Zhang Tonghua, Chen Wencheng etc. The abelian integrals of a one-parameter Hamiltonian system under cubic perturbations. International Journal of Bifurcation and Chaos[J] . 2004,14:1853-1862
    
    [25] Zhang Tonghua,Chen Wengheng,Hao Maoan,Zang Hong. The Abelian Integrals of A One-parameter Hamiltonian systems under Polynomial Perturbations. International Journal of Bifurcation and Chaos[J],2004,(14),7:2449-2456
    
    [26] 张芷芬,李承治等.向量场的分岔理论基础[M].北京:高等教育出版社,1997
    
    [27] 李建泉,李宝毅.高阶Mel'nikov函数的两种计算方法.天津师范大学学报(自然科学版)[J],1998,(18)3:6-11.
    [28] Roussarie R. Weak and continuous equivalences for families of line diffeomorphisms. In " Dynamical System and Bifurcation Theory",Camacho,Pacifico ed.,Longman, Scientific and Technical, Pitman Research Notes in Math.l987(160):377-385.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.