转galE和lgtC基因烟草糖组分变化的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
来自大肠杆菌的galE基因,编码UDP-galactose-4-epimerase(EC 5.1.3.2),该酶在正常的代谢途径中催化由UDP-葡萄糖向UDP-半乳糖的可逆转换。来自奈瑟氏脑膜炎球菌的lgtC基因,编码α-1,4-galactosyltransferase(EC 2.4.1.44),该酶催化半乳糖残基从供体分子转移到受体分子上。本工作利用分别转galE基因和lgtC基因的烟草植株研究细胞糖组分的变化,探求galE基因和lgtC基因对转基因植株代谢和生长发育的影响。
     为了准确测定转基因烟草叶片的可溶性总糖组成和含量,本工作利用薄层层析方法分离和鉴定转基因植株的各种糖分,同时采用高效液相色谱分离和示差折光检测器测定技术定量叶片提取液中的蔗糖、葡萄糖和果糖含量,采用反向高效液相色谱分离和光电二极管阵列检测器测定UDP-葡萄糖和UDP-半乳糖的含量。
     转galE基因烟草植株糖分测定以及galE酶活性分析
     本工作首先用RT-PCR方法筛选出galE基因高效表达的烟草转基因株系,然后对这些株系进行可溶性总糖、单糖和二糖以及核苷糖测定。在烟草酶提取液中加入底物UDP-葡萄糖后,反应液中出现产物UDP-半乳糖,即存在galE催化的反应。测定转基因植株的galE在不同条件下的酶活性,得出该酶在pH7-9之间具有活力,最适pH为7.5-8,最适酶反应温度约为20℃。转正义基因株系UDP-半乳糖的生成量是野生型对照和转反义基因株系的1.5-1.6倍。
     转基因烟草植株的糖分分析显示,转正义基因的株系E+41和E+54的可溶性总糖含量较对照株系显著提高,相应的葡萄糖、果糖和蔗糖含量与对照相比均有不同程度的提高;E+41和E+54的UDP-半乳糖含量与野生型相比显著提高,差异达到极显著(P≤0.01);UDP-葡萄糖含量与野生型相比也显著提高。而转反义基因株系E-23的UDP-糖、可溶性总糖以及其它糖分含量均与野生型植株无明显差异。
     转基因植株生长发育观察和光合作用测定表明,向烟草中转入来源于原核生物的galE基因影响植株的生长发育和光合作用。对烟草种子萌发过程和植株生长发育各个时期的形态特征进行观察统计,结果发现,转正义基因植株在生长势方面明显优于野生型对照植株。与野生型对照植株相比,转正义基因植株幼苗具有更长的根系,在旺盛生长期具有更大的叶长、叶宽和叶面积,成熟期具有更高的植株高度,而且开花期相对较早。转正义基因植株的净光合速率明显高于野生型对照植株的。转反义基因植株在长势、开花期和净光合速率上均与野生型无明显差异。
     转lgtC基因烟草糖分的分析
     本工作采用RT-PCR技术选择出lgtC基因高效表达的转基因烟草株系,然后进行糖分测定,研究原核生物lgtC基因的引入对烟草植株体内糖组分及其含量的影响。
     糖分分析显示,转正义基因的株系C+27和C+43的可溶性总糖含量较野生型对照株系显著提高,其中葡萄糖、果糖和蔗糖含量与对照相比也有不同程度的提高;C+27和C+43的UDP-半乳糖和UDP-葡萄糖含量较野生型均显著降低。而转反义基因株系C-32的可溶性总糖含量及葡萄糖、果糖、蔗糖的含量均与对照植株差别不大,但UDP-半乳糖和UDP-葡萄糖含量与野生型相比均有降低。
     本论文分析了分别转galE和lgtC基因的烟草植株糖组分的变化,开展了原核生物糖代谢基因在植物基因工程中应用的尝试,探讨了糖代谢途径的遗传修饰对植株糖分积累和生长发育的影响。不仅为深入研究植物细胞糖代谢的调控机制鉴定出适宜的材料,而且为细胞糖代谢网络及其调控机制的揭示奠定了一定的工作基础,有重要的参考价值。
galE gene, coming from Escherichia coli, encodes UDP-galactose-4-epimerase (EC 5.1.3.2), which catalyzes the reversible conversation of UDP-Glc to UDP-Gal in regular metabolic pathways. lgtC, which comes from Neisseria Meningitidis, encodesα-1,4-galactosyl-transferase (EC 2.4.1.44). This enzyme mediates the transfer of galactosyl residue from donor to acceptor molecules. In this study, the variation of carbohydrate composition of transgenic tobacco cells containing galE or lgtC were studied respectively, in order to reveal the impact of heterologous expression of galE and lgtC gene on the metabolism and growth of transgenic tobacco plants.
     Various carbohydrates in transgenic plants were separated and identified by Thin Layer Chromotography (TLC) to determine the constituent and content of soluble carbohydrates in the leaves of transgenic tobacco accurately. Furthermore, the content of sucrose, glucose and fructose were measured with HPLC-RID, and the content of UDP-Glc and UDP-Gal were measured perfectly with RP-HPLC combining with PDAD.
     Determination of carbohydrate composition and galE enzyme activity in galE transgenic tobacco plants
     In this study, transgenic lines that overexpressed target gene, confirmed by RT-PCR, were chosen for determination of carbohydrate content, including total soluble carbohydrates, monosaccharides, disaccharides and nucleotide sugars. When substrate UDP-Glc were added to the crude protein extracts of transgenic lines, the prospective product of UDP-Gal was detected in the reaction mixture, implying the exist of the reaction catalyzed by galE. The galE activity of transgenic plants was measured under different conditions. The epimerase was active between pH 7and pH9 with optimum at pH 7.5-8, and the optimal reaction temperature of the epimerase was about 20℃. The yield of UDP-Gal in the sense transgenic lines were significantly higher, usually 1.5-1.6 times as that of the antisense transgenic and WT lines.
     The content of total soluble carbohydrates in sense transgenic lines (E+41, E+54) was significantly higher than that of WT. Accordingly, the levels of glucose, fructose and sucrose in these sense transgenic lines were all increased in considerable degrees. The content of UDP-Gal in sense transgenic lines (E+41, E+54) were extremely (P<0.01) higher than that of WT, while the content of UDP-Glc in the two lines were significantly (P<0.05) higher than that of WT also. However, the content of UDP-sugars, total soluble carbohydrates and other carbohydrate composition in the antisense transgenic line E-23 were not significantly different compared with WT plants.
     Observation of growth and measurement of photosynthesis of transgenic lines suggested that the heterologous expression of galE from prokaryote activated the growth and photosynthesis of transgenic tobacco plants. The sense transgenic plants had better growth potential than WT plants. They had longer root system in seedling period, much leaf area in vigorous growing period due to longer and wider leaf, and higher plant height in maturation period, most interesting, the initiation of blossom was much earlier than WT plants. Additionally an obvious increase in net photosynthesis rate had been observed in sense transgenic plants, compared with WT plants. On the other hand, the growth potential, initiation of blossom and net photosynthesis rate of the antisense transgenic plants were not significantly different from WT plants.
     Analysis of carbohydrate composition of lgtC transgenic tobacco plants
     Transgenic lines with overexpression of lgtC gene, confirmed by RT-PCR, were chosen for determination of carbohydrate content, to reveal the effect of lgtC from prokaryote on the composition and content of carbohydrate in transgenic tobacco plants.
     Total soluble carbohydrates of the sense lines (C+27, C+43) were significantly higher than that of WT. The analysis of carbohydrate composition of transgenic tobacco plants indicated that the levels of glucose, fructose and sucrose in these sense lines were increased to some extent. The content of UDP-Gal and UDP-Glc in the two lines were all significantly (P<0.05) lower than that of WT. However, the content of total soluble carbohydrates, as well as glucose, fructose and sucrose in the antisense line C-32 were not significantly different compared with WT plants, while the content of the UDP-Gal and UDP-Glc decreased generally in the antisense line C-32.
     In this study, the variation of carbohydrate composition in galE or lgtC transgenic tobacco plants were investigated, respectively, and the impact of genetic modification of carbohydrate metabolic pathways on carbohydrate accumulation and growth of transgenic plants were also studied, with an attempt to utilize genes from prokaryote involved in carbohydrate metabolism to plant genetic engineering. This research not only provided some productive and useful lines for further study on the controlling mechanism of carbohydrate metabolism in plant cell, but also shed light on the insight into the cellular carbohydrate metabolism network and the controlling mechanism in plant cells, with great potential in the near future.
引文
1.李枞,宋艳茹(1998)新的生物反应器-转基因植物。高技术通讯,5:52-57.
    2.凌华,黄惠琴,鲍时翔(2002)植物生物反应器研究进展。中国生物工程杂志,22(5):21-26.
    3.Haq T A,Mason H S(1995)Oral immunsation with are combinati on bacterial antigen produced in transgenic plants.Science,268:714-716.
    4.何聪芬,冯婷,赵华,董银卯(2003)代谢转基因植物的研究现状与展望。中国生物工程杂志,23(11):19-23.
    5.Van der Meer I M,Ebskamp M J M,Visser R G F,et al.(1996)Fructan as a new carbohydrate sink in transgtnic potato plant.The Plant Cell,6:561-570.
    6.Tackaberry E S,Dudani A K,Prior F,et al.(1999)Development of bio-pharmaceuticals in plant expression systems:Cloning,expression and immunological reactivity of human cytomegalo virus glycoprotein B in seeds of transgenic tobacco.Vaccine,17:3020-3029.
    7.谢铭(2002)转基因植物作为生物反应器的新进展。广西农业科学,2:95-97.
    8.张玉华,凌沛学,籍保平(2005)海藻糖的研究现状及其应用前景。食品与药品,7(3_A):8-13.
    9.Jang I,Oh S,Seok J,Choi W,Song S,Kim C,Kim Y,Seo H,Choi Y,Nahm B,Kim J (2003)Expression of bifunctional fusion of Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth.Plant Physiology,131:516-524.
    10.Arntzen CJ,Mason H S,Lam D M(1992)Expression of hepatitis B surface antigen in transgenic plants.Proc Natl Acad Sci USA,89(24):11745-11749.
    11.Kinney A Y,DeVellis B M,Skrzynia C,et al.(1994)Genetic testing for colorectal carcinoma susceptibility:focus group responses of individuals with colorectal carcinoma and first-degree relatives.Curropin Biotechnology,5:144-146.
    12.Altenback A T,Chong D K(1998)A plant-baced cholera toxin B sub unit insulin fusion protein protects against the development of autoimmune diabetes.Nature Biotechnology,16:934-938.
    13. Kjemtrup S, Borkhsenious O, Raikhel N V, et al. (1995) Targeting and release of phytohemagglutinin from the roots of bean seedlings. Plant Physiology, 109 (2): 603-610.
    14. Falco M, Biassoni R, Bottino C, et al. (1999) Identification and molecular cloning of p75/ AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. The journal of Experimental Medicine, 190 (6): 793-802.
    15. Tacket C O, Mason H S, Losonsky G, et al. (1998) Immunogenicity in humans of are combinant bacterial antigen delivered in a transgenic potato. Nature Medicine, 4:607-609.
    16. Tavladoraki P , Bervenuto E , Trinca S , et al. (1993) Plant expressing fuctional single chain FV antibody are specifically protected virus attack. Nature, 366:469-472.
    17. Ma J K, Lehher T, Sobila P, et al. (1994) Assembly of monochonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants [J]. European Journal of Immunology, 24(1): 131-138.
    18. Ehsani P, Khabiri A, Domansky N N (1997) Polypeptides of hepatitis B surface antigen in transgenic plants [J]. Proc Natl Acad Sci USA, 190:107-111.
    19. Verwoerd TC, Paridon PA, Ooyen AJJ, et al. (1995) Stable accumulation of aspergillus niger phytase in transgenic tobacco leaves. Plant Physiology, 109:1199.
    20. Alexandra J. Scupham, Eric W. Triplett (1997) Isolation and characterization of the UDP-glucose-4-epimerase-encoding gene, galE, from Brucella abortus 2308. Gene, 202: 53-59.
    21. Jeffrey D. Keating, Jamie Robinson, Rodney J. Bothast, John N. Saddler, Shawn D. Mansfield (2004) Characterization of a unique ethanologenic yeast capable of fermenting galactose. Enzyme and Microbial Technology, 35:242-253.
    22. Shivani Agarwal, Keshav Gopal, Tanuja Upadhyaya, Aparna Dixit (2007) Biochemical and functional characterization of UDP-galactose-4-epimerase from Aeromonas hydrophila. Biochimica et Biophysica Acta, 1774 (7): 828-837.
    23. Kerry L. Rossa, Charity N Davisb, Judith L Fridovich-Keila (2004) Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Molecular Genetics and Metabolism, 83: 103-116.
    24. Piller F, Hanlon MH, Hill RL (1983) Co-purification and characterization of UDP-glucose -4-epimerase and UDP-N-acetylglucosamine-4'-epimerase from porcine submaxillary glands. Journal of Biology Chemistry,258:10774-10778.
    25.Nathalie Daude,Timothy K.Gallaher,Michael Zeschnigk,Anna Starzinski-Powitz,Klaus G.Peter,Ian S.Haworth and Juergen K.V.Reichardt(1995)Molecular cloning,characterization and mapping of a full-length cDNA encoding human UDP-galactose -4'-epimerase.Biochemical and Molecular Medicine,56:1-7.
    26.Christine Barber,Johannes Rosti,Arun Rawat,Kim Findlay,Keith Roberts,and Georg J.Seifert(2006)Distinct Properties of the Five UDP-D-glucose/UDP-D-galactose-4-Epimerase Isoforms of Arabidopsis thaliana.The Journal of Biological Chemistry,281(25):17276-17285.
    27.Bhaswati Barat and Debasish Bhattaeharyya(2001)UDP-Galactose-4-Epimerase from Escherichia coli:Formation of Catalytic Site during Reversible Folding.Archives of Biochemistry and Biophysics,391(2):188-196.
    28.Bernhard Seiboth,Levente Karaffa,Erzse'bet Sa'ndor,Christian P.Kubicek(2002)The Hypocrea jecorina gal10(uridine 5'-diphosphate-glucose-4-epimerase-encoding)gene differs from yeast homologues in structure,genomic organization and expression.Gene,295:143-149.
    29.Matthew P.Shaw,Charles S.Bond,Janine R.Roper,David G.Gourley,Michael A.J.Ferguson,William N.Hunter(2003)High-resolution crystal structure of Trypanosoma brucei UDP-galactose-4-epimerase:a potential target for structure-based development of novel trypanocides.Molecular & Biochemical Parasitology,126:173-180.
    30.Vijender Singh,Somisetty V.Satheesh,Mysore L.Raghavendra,Parag P.Sadhale (2007)The key enzyme in galactose metabolism,UDP-galactose-4-epimerase,affects cell-wall integrity and morphology in Candida albicans even in the absence of galactose.Fungal Genetics and Biology,44:563-574.
    31.Xi Chen,Przemyslaw Kowal,Sarah Hamad,Hongni Fan & Peng George Wang(1999)Cloning,expression and characterization of a UDP-galactose 4-epimerase from Escherichia coli.Biotechnology Letters,21:1131-1135.
    32.Janine R.Roper,Michael A.J.Fergnson(2003)Cloning and characterisation of the UDP-glucose-4-epimerase of Trypanosoma cruzi.Molecular&Biochemical Parasitology,132:47-53.
    33.Dongsheng He & Ruizhen Rachel Chen(2002)Functional expression of heterologous UDP-galactose-4-epimerase in Agrobacterium sp.via a broad host-range expression vector.Biotechnology Letters,24:1599-1603.
    34.Blazenka Soido,Claudio Scottil,Dimitri Karamata,Vladimir Lazarevic(2003)The Bacillus subtilis Gne(GneA,GalE)protein can catalyse UDP-glucose as well as UDP-N-acetylglucosamine -4-epimerisation.Gene,319:65-69.
    35.Venkataehari Santhanagopalan,Christopher Coker,Suzana Radulovic(2006)Characterization of RP 333,a gene encoding CapD of Rickettsia prowazekii with UDP-glucose -4-epimerase activity.Gene,369:119-125.
    36.Hongjie Guo,Wen Yi,Lei Li,Peng George Wang(2007)Three UDP-hexose -4-epimerases with overlapping substrate specificity coexist in E.coli O86:B7.Biochemical and Biophysical Research Communications,356:604-609.
    37.Lin MS,Oizumi J,Ng WG,Alti OS,Donnell GN(1978)Assignment of UDP-gal-4-epimerase gene locus to chromosome 1 in man.(Abstract)American Journal of Human Genetics,30:132.
    38.Lin MS,Oizumi J,Ng WG,Alfi OS,Donnell GN(1979)Regional mapping of the gene for human UDP-Gal-4-epimerase on chromosome 1 in mouse-human hybrids.Cytogenetic Cell Genetics,24:217-223.
    39.Maceratesi P,Daude N,Dallapiccola B,Novelli G,Allen R,Okano Y,Reichardt J(1998)Human UDP-galactose-4-prime epimerase(GALE)gene and identification of five missense mutations in patients with epimerase-deficiency galactosemia.Molecular Genetic Metabolism,63:26-30.
    40.Thoden JB,Wohlers TM,Fridovich-Keil JL,Holden HM(2001)Molecular basis for severe epimerase deficiency galactosemia:x-ray structure of the human V94M-substituted UDP-galactose 4-epimerase.Journal of Biology Chemistry,276:20617-20623.
    41.Laetitia L.C.Prestoza,Nathalie Daudea,Isabelle Cournua,Yoon S.Shinh,Klaus G.Petrya(1998)Differential UDP-galactose-4'-epimerase(GALE)enzymatic activity and mRNA expression in the rat mammary gland during lactation.FEBS Letters,431:391-394.
    42.Ronald JFJ Oomen,Bang Dao-Thi,Emmanouil N Tzitzikas,Edwin J Bakx,Henk A Sehois,Richard GF Visser,Jean-Paul Vineken(2004)Overexpression of two different potato UDP-Glc-4-epimerases can increase the galactose content of potato tuber cell walls.Plant Science,166:1097-1104.
    43.Peter Dormann and Christoph Benning(1998)The role of UDP-glucose epimerase in carbohydrate metabolism of Arabidopsis.The Plant Journal,13(5):641-652.
    44.Peter Dormann and Christoph Benning(1996)Functional Expression of uridine 5-diphospho-glucose-4-epimerase(EC 5.1.3.2)from Arabidopsis thaliana in Saccharomyces cerevisiae and Escherichia coll.Archives of Biochemistry and Biophysics,327(1):27-34.
    45.Marc R Lake,Cynthia L Williamson,Robert D Slocum(1998)Molecular cloning and characterization of a UDP-glucose-4-epimerase gene(galE)and its expression in pea tissues.Plant Physiology and Biochemistry,36(8):555-562.
    46.Morten Joersbo,Steen Guldager Pedersen,John E.Nielsen,Jan Marcussen,Janne Brunstedt(1999)Isolation and expression of two cDNA clones encoding UDP-galactose epimerase expressed in developing seeds of the endospermous legume guar.Plant Science,142:147-154.
    47.Qisen Zhang,Maria Hrmova,Neil J.Shirley,Jelle Lahnstein and Geoffrey B.Fincher (2006)Gene expression patterns and catalytic properties of UDP-D-glucose-4-epimerases from barley(Hordeum vulgare L.).Biochemical Journal,394:115-124.
    48.Noboru Endo,Konki Yoshida,Miho Akiyoshi,Yasuko Yosghida and Naoko Hayashi (2005)Putative UDP-galactose Epimerase and Metallothioneine of Paspalum vaginatum enhanced the Salt Tolerance of Rice,Oryza sativa L.from Transplanting to Harvest Stages.Breeding Science,55:163-173.
    49.Hui-li Liu,Xiao-yan Dai,Yun-yuan Xu,Kang Chong(2007)Over-expression of OsUGE-1 altered raffinose level and tolerance to abiotic stress but not morphology in Arabidopsis.Journal of Plant Physiology,164(10):1384-1390.
    50.Pedro M Coutinho,Emeline Deleury,Gideon J Davies and Bernard Henrissat(2003)An evolving hierarchical family classification for glycosyltransferases.Journal of Molecular Biology,328:307-317.
    51.Yang QL,Gotschlich EC(1996)Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases.The Journal of Experimental Medicine,183(1):323-327.
    52. Jennings MP, Srikhanta YN, Moxon ER, Kramer M, Poolman JT, Kuipers B, van der Ley P (1999) The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitides.Microbiology, 145 (11): 3013-3021.
    
    53. Shafer WM, Datta A, Kolli VS, Rahman MM, Balthazar JT, Martin LE, Veal WL, Stephens DS, Carlson R (2002) Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. Journal of Endotoxin Research, 8(1): 47-58.
    54. Lairson LL, Chiu CP, Ly HD, He S, Wakarchuk WW, Strynadka NC, Withers SG (2004) Intermediate trapping on a mutant retaining α-galactosyltransferase identifies an unexpected aspartate residue. Journal of Molecular Biology, 279: 28339-28344.
    55. Wakarchuk WW, Cunningham A, Watson DC, Young NM (1998) Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Engineering, 11 (4): 295-302.
    56. Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG, Strynadka NCJ (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nature Structural Biology, 8 (2): 166-175.
    57. Jing liu and Arcady Mushegian (2003) Three monophyletic superfamilies account for themajority of the known glycosyltransferases. Protein Science, 12:1418-1431.
    58. Lenka Snajdrová, Petr Kulhánek, Anne Imberty and Jaroslav Koca (2004) Molecular dynamics simulations of glycosyltransferase LgtC. Carbohydrate Research, 339: 995-1006
    59. Igor Tvaroska (2004) Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. Carbohydrate Research, 339:1007-1014.
    60. Karl F Johnson (1999) Synthesis of oligosaccharides by bacterial enzymes. Glycoconjugate Journal, 16: 141-146.
    61. Jianwen Fang, Jun Li, Xi Chen, Yingnan Zhang, Jianqiang Wang, Zhengmao Guo,Wei Zhang, Libing Yu, Keith Brew, and Peng George Wang (1998) A highly efficient chemo-enzymatic synthesis of α-galactosyl epitopes with a recombinant α-1,3-galactosyl transferase. Journal of American Chemistry Society, 120: 6635-6638.
    62. Xi Chen, Jianbo Zhang, Przemek Kowal, Ziye Liu, Peter R. Andreana, Yuquan Lu, and Peng George Wang(2001)Transferring a biosynthetic cycle into a productive E.coli strain:large-scale synthesis of galactosides.Journal of American Chemistry Society,123:8866-8867.
    63.Jianbo Zhang,Przemyslaw Kowal,Jianwen Fang,Peter Andreana,Peng George Wang (2002)Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant α-(1,4)-galactosyltransferase.Carbohydrate Research,337:969-976.
    64.Jianbo Zhang,Przemyslaw Kowal,Xi Chen and Peng George Wang(2003)Large-scale synthesis of globotriose derivatives through recombinant E.coli.Org.Biomol.Chem.,1:3048-3053.
    65.Tatiana Antoine,Claude Bosso,Alain Heyraud,Eric Samain(2005)Large scale in vivo synthesis of globotriose and globotetraose by high cell density culture of metabolically engineered Escherichia coli.Biochimie,87(2):197-203.
    66.谭和平,叶善蓉,陈丽,邹燕(2007)茶叶中糖类物质分析方法综述。中国测试技术,33(5):1-4.
    67.Wolf-Dieter Reiter and Gary F.Vanzin(2001)Molecular genetics of nucleotide sugar interconversion pathways in plants.Plant Molecular Biology,47:95-113.
    68.Heather D.Coleman,Dave D.Ellis,Margarita Gilbert and Shawn D.Mansfield(2006)Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and Metabolism.Plant Biotechnology Journal,4:87-101.
    69.Georg J.Seifert,Christine Barber,Brian Wells,Liam Dolan,and Keith Roberts(2002)Galactose Biosynthesis in Arabidopsis:Genetic Evidence for Substrate Channeling from UDP-D-Galactose into Cell Wall Polymers.Current Biology,12:1840-1845.
    70.Georg J Seifert(2004)Nucleotide sugar interconversions and cell wall biosynthesis:how to bring the inside to the outside.Current Opinion in Plant Biology,7:277-284.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.