基于纳米复合材料的电化学生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用纳米材料及其复合材料构建新型传感界面已经成为电化学生物传感领域的主要研究方向之一。纳米材料及其复合材料等新型材料,因其独特的性质,如催化性、磁性、表面功能性等,在传感界面中起到了重要的作用,为进一步提高电化学生物传感器的灵敏度和选择性创造了条件。本文基于二氧化钛/石墨烯纳米带、磁性介孔复合微球、磁性石墨化碳材料构建了几种电化学生物传感器,分别以半胱氨酸、苯酚、葡萄糖为底物,采用循环伏安法、计时安培法、示差脉冲伏安法等电化学分析方法对其性能进行了研究,具体如下:
     一、基于二氧化钛/石墨烯纳米带(TiO2/GNR)的半胱氨酸传感器
     通过超声制备了TiO2/GNR纳米复合材料。石墨烯纳米带能够均匀分散在二氧化钛纳米管表面,它的引入显著提高了二氧化钛的导电性,同时二氧化钛为二维平面的石墨烯纳米带支撑了空间骨架,形成了立体结构,从而更有利于底物扩散进入催化中心发生反应。与单纯二氧化钛的相比,以此复合材料构建的传感器具有更低的检测电位和更小的背景电流,所得的传感器对半胱氨酸检测的线性范围为1μM~0.485mM,灵敏度为7.384μAmM-1,在信噪比为3时最低检测限为0.09μM。
     二、基于介孔二氧化硅磁性复合微球的高灵敏苯酚传感器
     将酪氨酸酶化学交联到磁性核壳微球表面,通过磁性作用将其负载到磁性玻碳电极表面用于苯酚的检测。采用磁强计、氮气吸附脱附等温线、TEM等方法对磁性复合微球进行表征,该微球具有均匀的形貌,较大的比表面积和较强的磁性,无需其他外加固定试剂即可附着在磁性电极表面。与粘着剂固定的传感器相比,该传感器具有更快的响应速度(响应时间小于5s)和更高的灵敏度(78μAmM-1)。基于此磁性材料构建的传感器对苯酚检测的线性范围为1.0nM~101μM,最低检测限为1nM。
     三、基于磁性石墨化碳的葡萄糖传感器
     通过磁性作用将磁性碳片负载到磁性电极表面,利用EDC/NHS(?)将葡萄糖氧化酶与磁性石墨化碳材料交联,以二茂铁甲醛为媒介体对葡萄糖进行电化学分析。传感器对葡萄糖检测的线性范围分别为0.01~1.05mM和1.35~4.85mM,灵敏度分别为0.752μAmM-1和1.89μAmM-1,最低检测限为10μM。说明此材料具有良好的导电性、磁性和生物相容性,在电化学生物传感领域具有良好的应用前景。
The synthesis of novel nanomaterials and the construction of nanomaterial based nano-interface for the development of electrochemical sensors have attracted considerable attentions during the past two decades due to the unique properties of nanomaterials and the good performance of nanomaterial based electrochemical biosensors. In this paper, several electrochemical biosensors were developed based on nanocomposites, including TiO2/graphene nanoribbon composite (GNR), magnetic mesoporous silica and Fe3O4nanoparticle core/shell microspheres, and magnetic graphitized carbon nanosheet, and used for the electrochemical detection of cysteine, phenol, and glucose respectively. The detailed contents are listed as follows:
     (1). The preparation of TiO2/Graphene nanoribbon(TiO2/GNR) nanocomposite and their applications in the selective and sensitive detection of cysteine.
     TiO2/GNR nanocomposite was synthesized by ultrasonically mixing the GNR and TiO2nanotube and used for the development of electrochemical sensor for cysteine detection. The GNR could homogeneously distribute on both the inner and outer surface of TiO2nanotube and form an accessible TiO2/GNR nanostructure, which was verified by the SEM images. After the nanocomposite was introduced on the surface of glassy carbon electrode, the TiO2/GNR nanocomposite modified electrode showed high electrochemically catalytic ability towards the anodic oxidation of cysteine, on which the overpotential for cysteine anodic oxidation has been reduced to+75mV. Under the optimal conditions, the as-prepared nanocomposite modified electrode showed a high sensitivity (7.384μAmM-1), and a low limit of detection (0.09μM, S/N=3). In addition, the sensor also showed a wide linear range from1.0μM to0.485mM, which could satisfy the demand of in vivo analysis real samples.
     (2). Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing.
     A new protocol is proposed for magnetic loading and sensitive electrochemical detection of phenol via the tyrosinase cross-linked mesoporous magnetic core/shell microspheres. The mesoporous magnetic microspheres, characterized by transmission electron microscopy, N2adsorption/desorption isotherms, and magnetic curve displays high capacity for enzyme immobilization and strong magnetism to adhere to the magnetic electrode surface without any additional adhesive reagent. The biosensor exhibits a wide linear response to phenol ranging from1.0nM to1.0μM, a high sensitivity of78μAmM-1, a low detection limit of1nM, and a fast response rate (less than5s). The proposed method is simple, rapid, inexpensive and convenient in electrode renewal, which is recommended as a promising experimental platform for wider applications in biosensing.
     (3). Magnetic loading of glucose oxidase-magenetic graphitized carbon nanosheet for high sensitive electrochemical biosensing of glucose.
     A magnetic glucose biosensor was developed by magnetically loading the glucose oxidase cross-linked magnetic graphitized carbon (GOD-MGC) nanosheet on magnetic electrode surface.. Electrochemical impedance showed the carbon nanosheet had good conductivity, which was even comparable to the carbon nanotube. Due the good electrochemical conductivity and the strong magnetic property of MGC which would adsorb on the magnetic electrode surface without the addition of any additional adhesive reagent, the as-prepared GOD-MGC modified electrode exhibited a high sensitivity of94.63nAmM-1towards the detection of glucose, a linear response ranging from0.01to1.05mM and from1.35to4.85mM, and an acceptable limit of detection of10μM. The proposed method is simple, rapid, inexpensive and convenient in electrode renewal, which is recommended as a promising experimental platform for wider applications in biosensing.
引文
[1]Ronghui Wang, Chuanmin Ruan, Damira Kanayeva. TiO2 Nanowire Bundle Microelectrode Based Impedance Immunosensor for Rapid and Sensitive Detection of Listeria monocytogenes[J]. Nano Lett.,2008,8:2625-2631.
    [2]T. A. Sergeyeva,O.A. Slinchenko, L. A. Gorbach. Catalytic molecularly imprinted polymer membranes:Development of the biomimetic sensor for phenols detection[J]. Analytica Chimica Acta,2010,659:274-279.
    [3]Jhindan Mukherjee, Claudine Y. Lumibao Application of a thiol-specific electrocatalytic electrode for real-time amperometric monitoring of enzymatic hydrolysis [J]. Analyst,2009,134:582-586.
    [4]Mir Reza Majidi, Karim Asadpour-Zeynali, Sima Gholizadeh. Nanobiocomposite Modified Carbon-Ceramic Electrode Based on Nano-Ti02-Plant Tissue and Its Application for Electrocatalytic Oxidation of Dopamine [J]. Electroanalysis,2010,22:1772-1780.
    [5]Yu Lei, Wilfred Chenb, Ashok Mulchandani. Microbial biosensors [J]. Analytica Chimica Acta,2006,568:200-210.
    [6]Chao Chen, Yang Liu, Hai-Ying Gu. Cellular biosensor based on red blood cells immobilized on Fe304 Core/Au Shell nanoparticles for hydrogen peroxide electroanalysis[J]. Microchim Acta,2010,171:371-376.
    [7]VAMVAKAKI V, HATZIMARINAKI M, CHANIOTAKIS N. Biomimetically synthesized silica-carbon nanof iber architectures for the development of highly stable electrochemical biosensor systems. Analytical Chemistry,2008,80:5970-5975.
    [8]Clark L C, Lyons C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery[J]. Ann N Y Acad Sci,1962,102:29.
    [9]Yuqing Miao, Xiaohua Wu, Jianrong Chen et al. Preparation of polypyrrole composite nanoparticles and study of their electrocatalytical reduction to oxygen with (without) lacasse [J]. Gold Bulletin,2008,41:336-340.
    [10]Rooma Devi, Sandeep Yadav, C. S. Pundir. Au-colloids-polypyrrole nanocomposite film based xanthine biosensor [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2012, 394:38-45.
    [11]Xiangling Ren, Fangqiong Tang, Rui Liao et al. Using gold nanorods to enhance the current response of a choline biosensor [J]. Electrochimica Acta,2009,54:7248-7253
    [12]Feng Li, Yan Feng, Zhen Wang et al. Direct electrochemistry of horseradish peroxidase immobilized on the layered, calcium carbonate-gold nanoparticles inorganic hybrid composite [J]. Biosensors and Bioelectronics,2010,25:2244-2248.
    [13]Fernando Patolsky, Yossi Weizmann, Itamar Willner. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors [J].Angew. Chem. Int. Ed,2004,43:2113-2117
    [14]Yan Wang, Yongjian Yao. Direct electron transfer of glucose oxidase promoted by carbon nanotubes is without value in certain mediator-free applications [J]. Microchim Acta, 2012,176:271-277.
    [15]Jinping Liu, Chunxian Guo, Chang Ming Li et al. Carbon-decorated ZnOnanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications [J]. Electrochemistry Communications,2009,11:202-205.
    [16]Anand Gole, Chandravanu Dash, Vidya Ramakrishnan et al. Pepsin-Gold Colloid Conjugates:Preparation, Characterization, and Enzymatic Activity [J].Langmuir 2001,17: 1674-1679.
    [17]Anand Gole, Santosh Vyas, Sumant Phadtare et al. Studies on the formation of bioconjugates of Endoglucanase with colloidal gold [J]. Colloids and Surfaces B: Biointerfaces,2002,25:129-138.
    [18]Cun-Xi Lei, Shun-Qin Hu, Na Gao et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode [J]. Bioelectrochemistry,2004,65:33-39.
    [19]Feng Li, Yan Feng, Pingjun Dong et al. Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor [J]. Biosensors and Bioelectronics,2011,26: 1947-1952.
    [20]Tapas Kuila, Saswata Bosea, Partha Khanra, et al. Recent advances in graphene-based biosensors [J]. Biosensors and Bioelectronics,2001,26:4637-4648.
    [21]Christopher B. Jacobs, M. Jennifer Peairs, B. Jill Venton. Review:Carbon nanotube based electrochemical sensors for biomolecules [J]. Analytica Chimica Acta,2010,662:105-127.
    [22]Yong Liu, Dingshan Yu, Chao Zeng, et al. Biocompatible Graphene Oxide-Based Glucose Biosensors [J].Langmuir,2010,26(9):6158-6160.
    [23]T. Basu, Pratima R. Solanki, B. D. Malhotra. Recent Advances in Carbon Nanotubes Based Biosensors [J].Sensors,2008,8:1-34
    [24]Jian Li, Yue-Bo Wang, Jian-Ding Qiu, et al. Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor [J].Anal Bioanal Chem,2005,383:918-922.
    [25]Chunping You, Xin Xu, Bozhi Tian, et al. Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions [J].Talanta,2009,78:705-710.
    [26]Shuo Wu, Huangxian Ju, Ying Liu. Conductive Mesocellular Silica-Carbon Nanocomposite Foams for Immobilization, Direct Electrochemistry, and Biosensing of Proteins [J].Adv. Funct. Mater.,2007,17,585-592.
    [27]Haruo Takahashi, Bo Li, Toshiya Sasaki, et al. Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent [J]. Microporous and Mesoporous Materials,2001,44:755-762.
    [28]Haipeng Yang, Yongfa Zhu. Glucose biosensor based on nano-SiO2 and unprotected Pt nanoclusters [J]. Biosensors and Bioelectronics,2007,22:2989-2993.
    [29]A. K. M. Kafi, Guosheng Wu, Paul Benvenuto, et al. Highly sensitive amperometric H2O2-biosensor based on hemoglobin modified TiO2 nanotubes [J]. Journal of Electroanalytical Chemistry,2011,662:64-69.
    [30]Jing Xu, Changhua Liu, Zongfang Wu. Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film [J].Microchim Acta,2011,172:425-430.
    [31]Yang Wang, Wen Wang, Wenbo Song. Binary CuO/Co3O4 nanofibers for ultrafast and amplified electrochemical sensing of fructose [J].Electrochimica Acta,2011,56:10191-10196.
    [32]Jin Chen, Wei-De Zhang, Jian-Shan Ye. Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite [J]. Electrochemistry Communications,2008,10:1268-1271.
    [33]Xiaoling Xiao, Qingfen Luan, Xin Yao et al. Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase [J]. Biosensors and Bioelectronics,2009,24:2447-2451
    [34]G. Sumana, Maumita Das, Saurabh Srivastava et al. A novel urea biosensor based on zirconia [J].Thin Solid Films,2010,519:1187-1191
    [35]Georges Istamboulie, Silvana Andreescu, Jean-Louis Marty, et al. Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase [J]. Biosensors and Bioelectronics,2007,23:506-512.
    [36]Shihong Chen, Ping Fu, Bing Yin et al. Immobilizing Pt nanoparticles and chitosan hybrid film on polyaniline naofibers membrane for an amperometric hydrogen peroxide biosensor [J]. Bioprocess Biosyst Eng,2011,34:711-719
    [37]XU Ying, ZHAO Kun, ZHANG Xiao-Yan et al. Amperometric Glucose Biosensor Based on Palladium Nanoparticles Combined Aligned Carbon Nanotubes Electrode [J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES,2010.4:672-678
    [38]L. Y. Chen, X. Y. Lang, T. Fujita, et al. Nanoporous gold for enzyme-free electrochemical glucose sensors [J].Scripta Materialia,2011,65:17-20.
    [39]Suhee Jo, Haesang Jeong, Si Ra Bae, et al. Modified platinum electrode with phytic acid and single-walled carbon nanotube:Application to the selective determination of dopamine in the presence of ascorbic and uric acids [J]. Microchemical Journal,2008,88:1-6.
    [40]Suhee Jo, Haesang Jeong, Si Ra Bae et al. Modified platinum electrode with phytic acid and single-walled carbon nanotube:Application to the selective determination of dopamine in the presence of ascorbic and uric acids [J]. Microchemical Journal,2008,88: 1-6.
    [41]Jianshe Huanga, Yang Liua, Haoqing Hou et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode [J]. Biosensors and Bioelectronics,2008,24:632-637.
    [42]Hanzi Li, Hao Wen, Scott Calabrese Barton. NADH Oxidation Catalyzed by Electropolymerized Azines on Carbon Nanotube Modified Electrodes [J]. Electroanalysis,2012, 24:398-406.
    [43]Ying Wang, Wanzhi Wei, Xiaoying Liu et al. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique [J]. Materials Science and Engineering C,2009,29:50-54.
    [44]Wenrong Yang, Kyle R. Ratinac, Simon P. Ringer et al. Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene? [J].Angew. Chem. Int. Ed. 2010,49:2114-2138.
    [45]Kai Guo, KunQian, Song Zhang et al. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes [J].Talanta,2011,2:1174-1179.
    [46]Yu Zhang, Ruo Yuan, Yaqin Chai et al. Simultaneous voltammetric determination for DA, AA and NO2- based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform [J]. Biosensors and Bioelectronics,2011,26:3977-3980.
    [47]Shuo Wu, Xiaoqin Lan, Li jun Cui et al. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide [J].Analytica Chimica Acta,2011,699:170-176.
    [48]Siyuan Zhang, Sheng Tang, Jianping Lei et al. Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing [J]. Journal of Electroanalytical Chemistry,2011,656:285-288.
    [49]Jianshe Huang, Yang Liu, Tianyan You. Carbon nanofiber based electrochemical biosensors:A review [J]. Anal. Methods,2010,2:202-211.
    [50]Jianfeng Ping, Shiping Ru, Kai Fan et al. Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide [J]. Microchim Acta,2010,171:117-123.
    [51]彭芳,纳米氧化钛/β-环糊精膜光电化学传感器的研究[D],纳米氧化钛/β-环糊精膜光电化学传感器的研究中南大学,分析化学,2008.
    [52]Peng Si, Shujiang Ding, Jun Yuan et al. Hierarchically Structured One-Dimensional TiO2 for Protein Immobilization, Direct Electrochemistry, and Mediator-Free Glucose Sensing [J].Nano,2011,5:7617-7626.
    [53]Qian Li, Kui Cheng, Wenjian Weng et al. Highly sensitive hydrogen peroxide biosensors based on TiO2 nanodots/ITO electrodes [J].J. Mater. Chem.,2012,22:9019-9026.
    [54]Liangsheng Hu, Kaifu Huo, Rongsheng Chen et al. Recyclable and High-Sensitivity Electrochemical Biosensing Platform Composed of Carbon-Doped TiO2 Nanotube Arrays [J]. Anal. Chem.,2011,83:8138-8144.
    [55]Dan Du, Minghui Wang, Yuehua Qin et al. One-step electrochemical deposition of Prussian Blue-multiwalled carbon nanotube nanocomposite thin-film:preparation, characterization and evaluation for H2O2 sensing [J]. J. Mater. Chem.,2010,20:1532-1537.
    [56]Murielle Dequaire, Chantal Degrand, Benoi"t Limoges. An Electrochemical Metalloimmunoassay Based on a Colloidal Gold Label [J].Anal. Chem.2000,72:5521-5528.
    [57]Joseph Wang, Danke Xu, Abdel-Nasser Kawde et al. Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization [J].Anal. Chem. 2001,73:5576-5581.
    [58]姜炜.纳米磁性粒子和磁性复合粒子的制备及其应用研究[D].南京:南京理工大学,2005.
    [59]Deng Zhang, Michael C. Huarng, Evangelyn C. Alocilja. A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens [J]. Biosensors and Bioelectronics,2010,26:736-1742.
    [60]Hailan Lin, Qingzhu Lu, Shutian Ge, et al. Detection of pathogen Escherichia coli 0157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe304 nanoparticles [J]. Sensors and Actuators B,2010,147:343-349.
    [61]Song Qu, Joseph Wang, Jilie Kong, et al. Magnetic loading of carbon nanotube/nano-Fe304 composite for electrochemical sensing [J].Talanta,2007,71: 1096-1102.
    [62]Jian-Ding Qiu, Hua-Ping Peng, Ru-Ping Liang, et al. Facile preparation of magnetic core-shell Fe304@Au nanoparticle/myoglobin biofilm for direct electrochemistry [J]. Biosensors and Bioelectronics,2010,25:1447-1453.
    [63]Noelia A. Martinez, Rudolf J. Schneider, German A. Messina, et al. Modified paramagnetic beads in a microf iuidic system for the determination of ethinylestradiol (EE2) in river water samples [J].Biosensors and Bioelectronics,2010,25:1376-1381.
    [64]I-Ming Hsing, Ying Xu, Wenting Zhao. Micro- and Nano- Magnetic Particles for Applications in Biosensing [J].Electroanalysis,2007,19:55-768.
    [65]Ronit Hirsch, Eugenii Katz, Itamar Willner. Magneto-Switchable Bioelectrocatalysis [J].J. Am. Chem. Soc.,2000,122:12053-12054.
    [66]Eugenii Katz, Itamar Willner. Magnetic control of chemical transformations: application for programmed electrocatalysis and surface patterning [J]. Electrochemistry Communications,2002,4:201-204.
    [67]Mustafa Musameh, Joseph Wang. Magnetically Induced Carbon Nanotube-Mediated Control of Electrochemical Reactivity [J]. Langmuir,2005,21:8565-8568.
    [68]Dale A. C. Brownson, Craig E. Banks. Graphene electrochemistry:Fabricating amperometric biosensors [J]. Analyst,2011,136:2084-2089.
    [69]Sen Liua, Jingqi Tian, Lei Wang, et al. Self-assembled graphene platelet-glucose 4491-4496.
    [70]Suhee Jo, Haesang Jeong, Si Ra Bae, et al. Modified platinum electrode with phytic acid and single-walled carbon nanotube:Application to the selective determination of dopamine in the presence of ascorbic and uric acids [J]. Microchemical Journal,2008,88:1-6.
    [71]Qiong Zeng, Jin-Sheng Cheng, Xiao-Fei Liu, et al. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor [J]. Biosensors and Bioelectronics,2011,26:3456-3463.
    [72]Jing Xu, Changhua Liu, Zongfang Wu. Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film [J]. Microchim Acta,2011,172:425-430.
    [73]Xinhuang Kang, Jun Wang, Hong Wu, et al. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J]. Biosensors and Bioelectronics,2009,25:901-905.
    [74]Yong Liu, Dingshan Yu, Chao Zeng, et al. Biocompatible Graphene Oxide-Based Glucose Biosensors [J].Langmuir,2010,26(9):6158-6160.
    [75]Xiaoli Cui, Zhizhou Li, Yanchao Yang, et al. Low-Potential Sensitive Hydrogen Peroxide Detection Based on Nanotubular TiO2 and Platinum Composite Electrode [J]. Electroanalysis,2008,20:970-975.
    [76]Elizabeth V. Milsom, Jan Novak, Munetaka Oyama, et al. Electrocatalytic oxidation of nitric oxide at TiO2-Au nanocomposite film electrodes [J]. Electrochemistry Communications,2007,9:436-442.
    [77]Yan-Yan Song, Zhi-Da Gao, Patrik Schmuki. Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays:A refreshable platform for methanol electrooxidation [J]. Electrochemistry Communications,2011,13:290-293.
    [78]Yan-Yan Song, Zhida Gao, Kiyoung Lee, et al. A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles [J]. Electrochemistry Communications,2011,13:1217-1220.
    [79]Jun-Yong Sun, Ke-Jing Huang, Su-Fang Zhao, et al. Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode [J]. Bioelectrochemistry,2011,82:125-130.
    [80]Kun Wang, He-Nan Li, Jun Wu, et al. TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor [J].Analyst, 2011,136:3349-3354.
    [81]Wenwen Tu, Jianping Lei, Lin Ding, et al. Sandwich nanohybrid of single-walled carbon nanohorns-TiO2-porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol [J].Chem. Commun.,2009,4227-4229.
    [82]Wenjuan Li, Ruo Yuan, Yaqin Chai, et al. Reagentless Electrochemical Hydrogen Peroxide Biosensor Based on Toluidine Blue-Derived Organic Material and Functionalized Gold Nanoparticles [J].Journal of The Electrochemical Society,2008,155(5):F97-F103.
    [83]Yang Li, Xiaoyan Liu, Hongyan Yuan, et al. Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite [J].Biosensors and Bioelectronics,2009,24:3706-3710.
    [84]Raju Khan, Marshal Dhayal. Electrochemical studies of novel chitosan/TiO2 bioactive electrode for biosensing application [J]. Electrochemistry Communications, 2008,10:263-267.
    [85]Wen-Hui Zhou, Chun-Hua Lu, Xiu-Chun Guo, et al. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition [J].J. Mater. Chem.,2010,20:880-883.
    [86]Hong Fan, Zhong-Qin Pan, Hai-Ying Gu. The self-assembly, characterization and application of hemoglobin immobilized on Fe304@Pt core-shell nanoparticles [J]. Microchim Acta,2010,168:239-244.
    [87]Dawei Qi, Huaiyuan Zhang, Jia Tang, et al. Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins [J].J. Phys. Chem. C,2010,114:9221-9226.
    [88]Yu-Ho Won, Ho Seong Jang, Seung Min Kim, et al. Biomagnetic Glasses:Preparation, Characterization, and Biosensor Applications [J]. Langmuir,2010,26(6):4320-4326.
    [89]Zhimin Liu, YanliLiu, Haifeng Yang, et al. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode [J]. Analytica Chimica Acta,2005,533:3-9.
    [90]Xue-Cai Tan, Jin-Lei Zhang, Sheng-Wei Tan, et al. Amperometric Hydrogen Peroxide Biosensor Based on Immobilization of Hemoglobin on a Glassy Carbon Electrode Modified with Fe304/Chitosan Core-Shell Microspheres [J]. Sensors,2009,9:6185-6199.
    [91]Zhi-Min Liu, Hai-Feng Yang, Yin-Feng Li, et al. Core-shell magnetic nanoparticles applied for immobilization of antibody on carbon paste electrode and amperometric immunosensing [J]. Sensors and Actuators B,2006,113:956-962.
    [92]Hua-Ping Peng, Ru-Ping Liang, Jian-Ding Qiu. Facile synthesis of Fe304@A1203 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry [J]. Biosensors and Bioelectronics,2011,26 3005-3011.
    [93]Jiang Chumming, Lin Xiangqin. Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2 [J]. J Solid State Electrochem,2009,13:1273-1278.
    [94]Jianping Li, Huiling Gao, Zhiqiang Chen, et al. An electrochemical immunosensor for carcinoembryonic antigen enhanced by self-assembled nanogold coatings on magnetic particles [J].Analytica Chimica Acta,2010,665:98-104.
    [95]Chun-Mei Yu, Jian-Wei Guo, Hai-Ying Gu. Direct electrochemical behavior of hemoglobin at surface of Au@Fe304 magnetic nanoparticles [J]. Microchim Acta, 2009,166:215-220.
    [96]Wenbin Liang, Weijing Yi, Yan Li, et al. A novel magnetic Fe304@gold composite nanomaterial:Synthesis and application in regeneration-free immunosensor [J]. Materials Letters,2010,64:2616-2619.
    [97]Yu-Ho Won, Ho Seong Jang, Seung Min Kim, et al. Biomagnetic Glasses:Preparation, Characterization, and Biosensor Applications [J]. Langmuir,2010,26:4320-4326.
    [98]Can Zou, Yingchun Fu, Qingji Xie, et al. High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J]. Biosensors and Bioelectronics, 2010,25:1277-1282.
    [99]Jingjing Yu, Jiaxing Tu, Faqiong Zhao. Direct electrochemistry and biocatalysis of glucose oxidase immobilized on magnetic mesoporous carbon [J]. J Solid State Electrochem, 2010,14:1595-1600.
    [100]Yuxiao Cheng, Yajun Liu, Jingjing Huang, et al. Amperometric tyrosinase biosensor based on Fe304 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms [J]. Electrochimica Acta,2009,54:2588-2594.
    [101]Hailan Lin, Zhang Chen, Qingzhu Lu, et al. A wireless and sensitive sensing detection of polycyclic aromatic hydrocarbons using humic acid-coated magnetic Fe304 nanoparticles as signal-amplifying tags [J]. Sensors and Actuators B,2010,146:154-159.
    [102]Xiaoli Zhu, Kun Han, Genxi Li. Magnetic Nanoparticles Applied in Electrochemical Detection of Controllable DNA Hybridization [J].Anal. Chem.,2006,78:2447-2449.
    [103]H. Ben Fredj, S. Helali, C. Esseghaier, et al. Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications [J].Talanta,2008,75:740-747.
    [104]Chunping You, Xin Xu, Bozhi Tian, et al. Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions [J]. Talanta,2009,78:705-710.
    [105]Haruo Takahashi, Bo Li,Toshiya Sasaki, et al. Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent [J]. Microporous and Mesoporus Materials,2001,44:755-762.
    [106]Shuo Wu, Lili Zhang, Lin Qi, et al. Ultra-sensitive biosensor based on mesocellular silica foam for organophosphorous pesticide detection [J]. Biosensors and Bioelectronics, 2011,26:2864-2869.
    [107]Jing Chen, Yeling Jin. Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode [J]. Microchim Acta,2010, 169:249-254.
    [108]Justin Kemmegne Mbouguen, Emmanuel Ngameni, Alain Walcarius. Quaternary ammonium functionalized clay film electrodes modified with polyphenol oxidase for the sensitive detection of catechol [J]. Biosensors and Bioelectronics,2007,23:269-275.
    [109]Shuo Wu, Xiaoqin Lan, Wei Zhao, et al. Controlled immobilization of acetylcholinesterase on improved hydrophobic gold nanoparticle/Prussian blue modified surface for ultra-trace organophosphate pesticide detection [J].Biosensors and Bioelectronics,2011,27:82-87.
    [110]Fei Xiao, Faqiong Zhao, Deping Mei, et al. Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film [J]. Biosensors and Bioelectronics, 2009,24:3481-3486.
    [111]Feng Li, Zhen Wang, Wei Chen, et al. A simple strategy for one-step construction of bienzyme biosensor by in-situ formation of biocomposite film through electrodeposition [J]. Biosensors and Bioelectronics,2009,24:3030-3035.
    [112]Mengyao Li, Guoqing Zhao, Zenglian Yue, et al. Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and Prussian blue [J]. Microchim Acta,2009,167:167-172.
    [113]B. X. Gu, C. X. Xu, G. P. Zhu, et al. Tyrosinase Immobilization on ZnO Nanorods for Phenol Detection [J]. J. Phys. Chem. B,2009,113:377-381.
    [114]J. M. Macak, F. Schmidt-Stein, P. Schmuki. Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles [J]. Electrochemistry Communications, 2007,9:1783-1787
    [115]Liangsheng Hu, Kaifu Huo, Rongsheng Chen, et al. Recyclable and High-Sensitivity Electrochemical Biosensing Platform Composed of Carbon-Doped TiO2 Nanotube Arrays [J]. Anal. Chem.,2011,83:8138-8144.
    [116]Qiang Gao, Yanyan Guo, Jing Liu, et al. A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer [J]. Bioelectrochemistry,2011,81:109-113.
    [117]Yavor Ivanov, Ivaylo Marinov, Katya Gabrovska, et al. Amperometric biosensor based on a site-specific immobilization of acetylcholinesterase via affinity bonds on a nanostructured polymer membrane with integrated multiwall carbon nanotubes [J]. Journal of Molecular Catalysis B:Enzymatic,2010,63:141-48.
    [118]李铁津,长春纳米功能材料-有序分子膜[J].国际学术动态,1998,4
    [119]Zhanfang Ma, Jinru Li, Long Jiang. Monolayer Consisting of Two Diacetylene Analogues and Dioctadecyl Glyceryl Ether- -glucosides [J].Langmuir,1999,15:489-493
    [120]Bikash Kumar Jena, C. Retna Raj. Electrochemical Biosensor Based on Integrated Assembly of Dehydrogenase Enzymes and Gold Nanoparticles [J].Anal. Chem. 2006,78:6332-6339.
    [121]Hai-Ying Gu, Ai-Min Yu, Hong-Yuan Chen. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode [J]. Journal of Electroanalytical Chemistry,2001,516:119-126.
    [122]Jiu-Ju Feng, Ge Zhao, Jing-Juan Xu, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan [J]. Analytical Biochemistry,2005,342:280-286.
    [123]Yingying Sun, HaiyingWang, Changqing Sun et al. Amperometric glucose biosensor based on layer-by-layer covalent attachment of AMWNTs and I04-oxidized GOx [J]. Bioelectrochemistry,2005,67:15.
    [124]Ying Liu, Shuo Wu, Huangxian Ju et al. Amperometric Glucose Biosensing of Gold Nanoparticles and Carbon Nanotube Multilayer Membranes [J]. Electroanalysis (NY), 2007,19:986.
    [125]Ning Gan, Xin Yang, Donghua Xie, et al. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode, Sensors,2010,10:625-638.
    [126]Noelia A. Martinez, Rudolf J. Schneider, German A. Messin, et al. Modified paramagnetic beads in a microfluidic system for the determination of ethinylestradiol (EE2) in river water samples [J]. Biosensors and Bioelectronics,2010,25:1376-1381.
    [127]ailan Lin, Qingzhu Lu, Shutian Ge, et al. Detection of pathogen Escherichia coli 0157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe304 nanoparticles [J].Sensors and Actuators B,2010,147:343-349.
    [128]Jiuhong Yu, Songqin Liu, Huangxian Ju. Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol/gel membrane [J]. Biosensors and Bioelectronics,2003,19:401-409.
    [129]Maria Suzana P. Francisco, William S. Cardoso, Lauro T. Kubota, et al. Electrocatalytic oxidation of phenolic compounds using an electrode modified with Ni(Ⅱ) porphyrin adsorbed on Si02/Nb2O5-phosphate synthesized by the sol-gel method [J]. Journal of Electroanalytical Chemistry,2007,602:29-36.
    [130]Patrik Onnerfjord, Jenny Emnus, Gy6rgy Marko-Varga, et al. Tyrosinase graphite-epoxy based composite electrodes for detection of phenols [J]. Biosensors Bioelectronics,1995,10:607-619.
    [131]Jing Zhang, Jianping Lei, Yiyin Liu, et al. Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanof iber composite [J]. Biosensors and Bioelectronics,2009,24:1858-1863.
    [132]Yongchao Zhang. Electro-Induced Covalent Cross-Linking of Chitosan and Formation of Chitosan Hydrogel Films:Its Application as an Enzyme Immobilization Matrix for Use in a Phenol Sensor [J]. Anal. Chem.2010,82:5275-5281
    [133]Shengfu Wang, Yumei Tan, Dongming Zhao, et al. Amperometric tyrosinase biosensor based on Fe304 nanoparticles-chitosan nanocomposite [J]. Biosensors and Bioelectronics, 2008,23:1781-1787.
    [134]Dan Du, Minghui Wang, Yuehua Qin, et al. One-step electrochemical deposition of Prussian Blue-multiwalled carbon nanotube nanocomposite thin-film:preparation, characterization and evaluation for H202 sensing [J]. J. Mater. Chem.,2010,20:1532-1537.
    [135]Qingfen Luan, Jun Li, Xin Yao. Fabrication of Fe(CN)63- Functionalized PDDA/CdTe Layer-by-layer Film with Good Electron Transfer Ability [J]. Electroanalysis, 2009,21:1799-1804.
    [136]Yingying Sun, Haiying Wang, Changqing Sun. Amperometric glucose biosensor based on layer-by-layer covalent attachment of AMWNTs and 104--oxidized GOx [J]. Biosensors and Bioelectronics,2008,24:22-28.
    [137]Qi Rui, Kikuo Komori, Yang Tian, et al. Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets [J]. Analytica Chimica Acta,2010,670:57-62.
    [138]Dan Du, Xiaoxue Ye, Jie Cai, et al. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates [J]. Biosensors and Bioelectronics,2010,25:2503-2508.
    [139]Yue Wanga, Yasushi Hasebe. Carbon felt-based biocatalytic enzymatic flow-through detectors:Chemical modification of tyrosinase onto amino-functionalized carbon felt using various coupling reagents [J]. Talanta,2009,79:135-1141.
    [140]张淑平,基于碳纳米管的电流型生物传感器及在农药检测中的应用研究[D].上海:上海大学材料科学与工程学院,2008.
    [141]张伟,杨秀山.酶的固定化技术及其应用[J].自然杂志,2000,22:282-286.
    [142]Juan C. Vidal, Silvia Esteban, Javier Gil et al. A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide [J]. Talanta,2006,68:791-799
    [143]S. G. Wang, Qing Zhang, Ruili Wang, et al. Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors [J]. Electrochemistry Communications, 2003,5:800-803.
    [144]Pierre Karam, Yan Xin, Sarah Jaber, et al. Active Pt Nanoparticles Stabilized with Glucose Oxidase [J]. J. Phys. Chem. C,2008,112:13846-13850.
    [145]Min-Hua Xue, Qin Xu, Mi Zhou, et al. In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection [J]. Electrochemistry Communications, 2006,8:1468-1474.
    [146]Yueming Tan, Wenfang Deng, Chao Chen, et al. Immobilization of enzymes at high load/activity by aqueous electrodeposition of enzyme-tethered chitosan for highly sensitive amperometric biosensing [J]. Biosensors and Bioelectronics,2010,25:2644-2650.
    [147]Min Wang, Zhuyun Li. Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion [J]. Sensors and Actuators B,2008,133:607-612.
    [148]L.Y. Chen, X.Y. Lang, T. Fujita, et al. Nanoporous gold for enzyme-free electrochemical glucose sensors [J]. Scripta Materialia,2011,65:17-20.
    [149]Francesca Berti, Silvia Todros, Dhana Lakshmi, et al. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing [J]. Biosensors and Bioelectronics,2010,26:497-503.
    [150]Shuo Wu, Xiaoqin Lan, Feifei Huang, et al. Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon [J]. Biosensors and Bioelectronics, 2012,32:293-296.
    [151]Feng Li, Yan Feng, Limin Yang, et al. A selective novel non-enzyme glucose amperometric biosensor based on lectin-sugar binding on thionine modified electrode [J]. Biosensors and Bioelectronics,2011,26:2489-2494.
    [1]Xiaoqiang Liu, Heqing Feng, Jiamei Zhang, et al. Hydrogen peroxide detection at a horseradish peroxidase biosensor with a Au nanoparticle-dotted titanate nanotube|hydrophobic ionic liquid scaffold [J]. Biosensors and Bioelectronics, 2012,32:188-194.
    [2]Yibing Xie, Limin Zhou, Haitao Huang. Bioelectrocatalytic application of titania nanotube array for molecule detection [J]. Biosensors and Bioelectronics, 2007,22:2812-2818.
    [3]Yan-Yan Song, Zhida Gao, Kiyoung Lee, et al. A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles [J]. Electrochemistry Communications,2011,13:1217-1220.
    [4]Anwei Zhu, Yongping Luo, Yang Tian. Plasmon-Induced Enhancement in Analytical Performance Based on Gold Nanoparticles Deposited on TiO2 Film [J]. Anal. Chem.2009,81: 7243-7247.
    [5]Elizabeth V. Milsom, Jan Novak, Munetaka Oyam, et al. Electrocatalytic oxidation of nitric oxide at TiO2-Au nanocomposite film electrodes [J]. Electrochemistry Communications,2007,9:436-442.
    [6]Raju Khan, Marshal Dhayal. Electrochemical studies of novel chitosan/TiO2bioactive electrode for biosensing application [J]. Electrochemistry Communications, 2008,10:263-267.
    [7]Yao Wang, Xiaoling Ma, Ying Wen, et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite [J]. Biosensors and Bioelectronics,2010,25:2442-2446.
    [8]Qing Xie, Yingying Zhao, Xu Chen, et al. Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor [J]. Biomaterials,2011,32:6588-6594.
    [9]Meichuan Liu, Guohua Zhao, Kunjiao Zhao, et al.Direct electrochemistry of hemoglobin at vertically-aligned self-doping Ti02 nanotubes:A mediator-free and biomolecule-substantive electrochemical interface [J]. Electrochemistry Communications, 2009,11:1397-1400.
    [10]Guohua Zhao, Yanzhu Lei, Yonggang Zhang, et al. Growth and Favorable Bioelectrocatalysis of Multishaped Nanocrystal Au in Vertically Aligned TiO2 Nanotubes for Hemoprotein [J]. J. Phys. Chem. C 2008,112:14786-14795.
    [11]Nannan Wei, Xin Xin, Jiangyan Du, et al. A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film [J].Biosensors and Bioelectronics, 2011,26:3602-3607.
    [12]Xiaoli Cui, Zhizhou Li, Yanchao Yang, et al. Low-Potential Sensitive Hydrogen Peroxide Detection Based on Nanotubular TiO2 and Platinum Composite [J]. ElectrodeElectroanalysis,2008,20:970-975.
    [13]Yanru Yuan, Ruo Yuan, Yaqin Chai, et al. A Reagentless Amperometric Immunosensor for Alpha-Fetoprotein Based on Gold Nanoparticles/Ti02 Colloids/Prussian Blue Modified Platinum Electrode [J]. Electroanalysis,2007,19:1402-1410.
    [14]Wenjuan Li, Ruo Yuan, Yaqin Chai, et al. Reagentless Electrochemical Hydrogen Peroxide Biosensor Based on Toluidine Blue-Derived Organic Material and Functionalized Gold Nanoparticles [J]. Journal of The Electrochemical Society,2008,155:97-103.
    [15]Songqin Liu,Aicheng Chen. Coadsorption of Horseradish Peroxidase with Thionine onTi02 Nanotubes for Biosensing [J].Langmuir 2005,21:8409-8409.
    [16]Po-Hsun Lo, S. Ashok Kumar, Shen-Ming Chen. Amperometric determination of H202 at nano-TiO2/DNA/thionin nanocomposite modified electrode [J]. Colloids and Surfaces B: Biointerfaces,2008,66:266-273.
    [17]Peng Si, Shujiang Ding, Jun Yuan et al. Hierarchically Structured One-Dimensional TiO2 for ProteinImmobilization, Direct Electrochemistry, and Mediator-Free Glucose Sensing [J]. ACS Nano,2011,9:7617-7626.
    [18]Jun-Yong Sun, Ke-Jing Huang, Su-Fang Zhao, et al. Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2 -graphene nanocomposite film modified electrode [J]. Bioelectrochemistry,2011,82:125-130.
    [19]Kun Wang, He-Nan Li, Jun Wu, et al. Ti02-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor [J]. Analyst, 2011,136:3349-3354.
    [20]Yang Li, Xiaoyan Liu, Hongyan Yuan, et al. Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite [J]. Biosensors and Bioelectronics,2009,24:3706-3710.
    [21]Towfiq Ahmed, Svetlana Kilina, Tanmoy Das, et al. Electronic Fingerprints of DNA Bases on Graphene [J]. Nat. Nanotechnol,2011,6:162-165.
    [22]Dong, H. F., Ding, L., Yan, F., et al. Biomaterials,2011,32:3875-3882.
    [23]Xiaoqiang Chen, Sung-Kyun Ko, Min Jung Kim et al. A thiol-specific fluorescent probe and its application for bioimaging [J]. Chem. Commun,2010,46:2751-2753.
    [24]Shuo Wu, Xiaoqin Lan, Feifei Huang, et al. Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon [J]. Biosensors and Bioelectronics, 2012,32:293-296.
    [25]Alexander Sinitskii, Dmitry V. Kosynkin, Ayrat Dimiev et al. Corrugation of Chemically Converted Graphene Monolayers on SiO2 [J]. J.M.ACS Nano,2010,4:5405.
    [26]北京师范大学,南京师范大学,华中师范大学.无机化学[M].北京:高等教育出版社第四版,2003.
    [27]Ming Zhou, Jie Ding, Li-ping Guo et al. Electrochemical Behavior of L-Cysteine and Its Detection at Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode [J]. Anal. Chem.2007,79:5328-5335.
    [28]Min-Ling Ye, Bin Xu, Wei-De Zhang. Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine [J]. Microchim Acta, 2011,172:439-446.
    [29]MA Song-jiang, LUO Sheng-lian, ZHOU Hai-hui et al. Electrocatalytic oxidation behavior of L-cysteine at Pt microparticles modified nanofibrous polyaniline film electrode [J]. J. Cent. South Univ. Technol,2008,15:170-175.
    [30]M. Mazloum Ardakani, A. Talebi, H. Naeimi et al. Fabrication of modified Ti02 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and L-cysteine [J]. J Solid State Electrochem,2009,13:1433-1440.
    [31]Pitchaimani Dharmapandiana, Seenivasan Rajesha, Sarkkarai Rajasingh et al. Electrochemical cysteine biosensor based on the selective oxidase-peroxidase activities of copper, zinc superoxide dismutase [J]. Sensors and Actuators B,2010,148:17-22.
    [32]Palraj Kalimuthu, S. Abraham John. Nanostructured electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole on glassy carbon electrode for the selective determination of L-cysteine [J]. Electrochemistry Communications,2009,11:367-370.
    [33]Joseph C. Obirai, Tebello Nyokong. Thiol oxidation at 2-mercaptopyrimidine-appended cobalt phthalocyanine modified glassy carbon electrodes [J]. Journal of Electroanalytical Chemistry,2007,600,251-256.
    [34]By Xuanhua Li, Guangyu Chen, Liangbao Yang et al. Multifunctional Au-Coated TiO 2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection [J]. Adv. Funct. Mater,2010,20:2815-2824.
    [1]QU S. HUANG F, Chen G, et al. Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme [J]. Electrochemistry Communications, 2007,9:2812-2816.
    [2]MAVRE F, BONTEMPS M, AMMAR-MERAH S, et al. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis [J]. Analytical Chemistry,2007,79:187-194.
    [3]LIU ZM, LIU YL, YANG HF, et al. A phenol biosensorbased on immobilizing tyrosinase to modified core-shellmagnetic nanoparticles supported at a carbon paste electrode [J]. Analytica Chimica Acta,2005,533:3-9.
    [4]MIYABAYASHI A, MATTIASSON B. An enzyme electrode based on electromagnetic entrapment of the biocatalyst bound to magnetic beads [J]. Analytica Chimica Acta, 1988,213:121-130.
    [5]YU D, BLANKERT B, BODOKI E, et al. Amperometric biosensor based on horseradish peroxidase-immobilised magnetic microparticles [J]. Sensors and Actuator B, 2006,113:749-754.
    [6]ZOU C, FU YC, XIE QJ, et al. High performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J]. Biosensors and Bioelectronics, 2010,25:1277-1282.
    [7]QU S, WANG J, KONG JL, et al. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing [J]. Talanta,2007,71:1096-1102.
    [8]TIAN H, LI JJ, SHEN Q, et al. Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media [J]. Journal of Hazardous Materials, 2009,171:459-464.
    [9]GAI SL, YANG PP, LI CX, et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers [J]. Advanced Functional Materials,2010,20:1166-1172.
    [10]KIM J, KIM HS, LEE N. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery [J]. Angewandte Chemie Inter Edition.2008,10,8438-8441.
    [11]LEE J, LEE D, OH E. Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam [J]. Angewandte Chemie Inter Edition,2005,44:427-7432.
    [12]DENG YH, QI DW, DENG CH, et al. Superparamagnetic high-magnetization microspheres with a Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J]. Journal of American Chemical Society,2008,130:28-31.
    [13]Shuo Wu, Lili Zhang, Lin Qi et al. Ultra-sensitive biosensor based on mesocellular silica foam for organophosphorous pesticide detection [J]. Biosensors and Bioelectronics, 2011,26,2864-2869.
    [14]Yiying Liu, Jianping Lei, Huangxian Ju. CuO Doped Mesoporous Silica Hybrid for Rapid and Sensitive Amperometric Detection of Phenolic Compounds [J]. Electroanalysis 2010,22:2407-2412.
    [15]SNCHEZ-PANIAGUA M, LOPEZA, TAMIMIB F, et al. Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement [J]. Biosensors and Bioelectronics,2009,24,2574-2579.
    [16]HAN E, SHAN D, XUE HG, et al. Hybrid material based on chitosan and layered double hydroxides:characterization and application to the design of amperometric phenol biosensor [J]. Biomacromolecules,2007,8:971-975.
    [17]BRU R, SANCHEZ-FERRER A, GARCIA-CARMONA F, et al. Characteristics of tyrosinase in AOT-isooctane reverse micelles [J]. Biotechnology and Bioengineering,1989,34,304-308
    [18]GU BX, XU CX, ZhU GP, et al. Tyrosinase immobilization on ZnO nanorods for phenol detection [J]. Journal of Physical Chemistry B,2009,113:377-381.
    [19]CHENG YX, LIU YJ, HUANG JJ, et al, Carbon ceramic electrodes modified with laccase from trametes hirsuta:fabrication, characterization and their use for phenolic compounds detection [J]. Electrochimica Acta,2009,54:2588-2594.
    [20]WANG SF, TAN YM, ZHAO DM, et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite [J]. Biosensors and Bioelectronics, 2008,23:1781-1787.
    [21]BEHZAD H, RAHMATI-PANAH A, SHLEEV S, et al. Carbon ceramic electrodes modified with laccase from trametes hirsuta:fabrication, characterization and their use for phenolic compounds detection [J]. Electroanalysis,2007,19:907-917.
    [1]Hajar Zarei, Hedayatollah Ghourchian, Khadijeh Eskandari, et al. Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe304 as a platform for electrochemical immunoassay [J]. Analytical Biochemistry,2012,421:446-453.
    [2]Rongjing Cui, Zhida Han, Jie Pan, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on helical carbon nanotubes modified magnetic electrodes [J]. Electrochimica Acta,2011,58:179-183.
    [3]Dawei Qi, Huaiyuan Zhang, Jia Tang, et al. Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core-Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins [J]. J. Phys. Chem. C,2010,114:9221-9226.
    [4]Song Qu, Fei Huang, Gang Chen et al. Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme [J]. Electrochemistry Communications, 2007,9:2812-2816.
    [5]Yaping He, Qinglin Sheng, Jianbin Zheng et al. Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application [J]. Electrochimica Acta, 2011,56:2471-2476.
    [6]Jianhua Shen, Yihua Zhu, Kangfu Zhou et al. Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres [J]. J. Mater. Chem.,2012,22:545-550.
    [7]Guanghui Zhao, Yanfeng Li, Jianzhi Wang et al. Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer [J]. Appl Microbiol Biotechnol,2011,91:591-601.
    [8]Reynaldo Villalonga, Mar a L. Villalonga, Paula D ez et al. Decorating carbon nanotubes with polyethylene glycol-coated magnetic nanoparticles for implementing highly sensitive enzyme biosensors [J]. J. Mater. Chem.,2011,21:12858-12864.
    [9]Shuo Wu, Hainan Wang, Shengyang Tao et al. Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing [J]. Analytica Chimica Acta,2011,686:81-86.
    [10]K. M. Manesh, Hyun Tae Kimb, P. Santhosh et al. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane [J]. Biosensors and Bioelectronics,2008,23:771-779.
    [11]Rongjing Cui, Zhida Han, Jie Pan et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on helical carbon nanotubes modified magnetic electrodes [J]. Electrochimica Acta,2011,58:179-183.
    [12]MoonⅡKim, Youngjin Ye, Byoung Yeon Won et al. A Highly Efficient Electrochemical Biosensing Platform by Employing Conductive Nanocomposite Entrapping Magnetic Nanoparticles and Oxidase in Mesoporous Carbon Foam [J]. Adv. Funct. Mater.2011, 21:2868-2875.
    [13]Jingjing Yu, Donglei Yu, Tian Zhao et al. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix [J].Talanta,2008,74:1586-1591.
    [14]Xiaoqing Liu, Lihong Shi, Wenxin Niu et al. Amperometric glucose biosensor based on single-walled carbon nanohorns [J]. Biosensors and Bioelectronics,2008,23:1887-1890.
    [15]R. M. Pemberton, R. Pittson, N. Biddle et al. Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis [J]. Biosensors and Bioelectronics,2009,24:1246-1252.
    [16]Yong Liu, Dingshan Yu, Chao Zeng et al. Biocompatible Graphene Oxide-Based Glucose Biosensors [J]. Langmuir,2010,26:6158-6160.
    [17]Bao-Yan Wu, Shi-Hua Hou, Min Yu et al. Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications [J]. Materials Science and Engineering C,2009,29:346-349.
    [18]Sen Liu, Jingqi Tian, Lei Wang et al. Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing [J]. Biosensors and Bioelectronics,2011,26: 4491-4496.
    [19]Zhenhai Wen, Suqin Ci, Jinghong Li. Pt Nanoparticles Inserting in Carbon Nanotube Arrays:Nanocomposites for Glucose Biosensors [J]. J. Phys. Chem. C,2009,113:13482-13487.
    [20]Changsheng Shan, Huafeng Yang, Jiangfeng Song et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene [J]. Anal. Chem. 2009,81:2378-2382.
    [21]Jianshe Huang, Yang Liu, Tianyan You. Carbon nanofiber based electrochemical biosensors:A review [J]. Anal. Methods,2010,2:202-211.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.