石墨烯基复合材料的制备及其电学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了氧化石墨烯的制备和还原,石墨烯/Fe3O4、石墨烯/TiO2两种复合材料的制备及其在锂离子电池负极材料的应用,还研究了石墨烯/LDH的制备及其作为超级电容器电极材料的应用。
     本文通过改进的Hummers法,使用浓硫酸插层及高锰酸钾氧化,将天然石墨氧化,后经过超声制得了氧化石墨烯。该氧化石墨烯的水溶液和异丙醇做溶剂通过水热法制取了负载物分散性好的石墨烯/FeOOH复合物,将该复合物在惰性气氛下管式炉600℃处理可得到石墨烯/Fe_3O_4复合材料,通过XRD、SEM、TEM等手段进行表征,证明Fe_3O_4纳米颗粒成功的负载在石墨烯表面。该复合物作为锂离子电池的负极材料在1-3V下,首次充放电容量为1250mAh g~(-1),30次循环后容量930mAh g~(-1),相对以往报道的Fe_3O_4纳米颗粒单独作为锂离子电池负极材料在容量和循环性能都有明显的改进和提升。
     通过醇和酸酯化反应及钛酸四丁酯水解反应的协同作用,使用钛酸四丁酯作为钛源,乙醇和乙酸为反应溶剂,水热釜中120℃反应10h制的了锐钛矿晶型的TiO_2纳米棒和石墨烯的复合产物,该产物作为锂离子电池负极材料,1-3V电压范围内,首次容量约196mAh g~(-1),55次循环后100mAh g~(-1),也表现出较大的容量和较好的循环性能。
     本论文还用氧化石墨烯的水和DMF混合溶液,在加入无机盐和尿素的条件下,180℃下水热48h制得了Ni-Al LDHs/石墨烯复合物。通过XRD、TEM、HRTEM对产物进行了表征,并将该复合物使用微量PVDF粘结在泡沫镍片上,在1M的KOH溶液中进行了电化学的测试。测试表明,该复合物有非常好的电化学性能,在5mv/s的速率下循环伏安测试表现出两对明显的氧化还原峰,分别对应了两个不同环境中镍原子的氧化还原的过程。经过放电曲线的计算,该复合物作为超级电容器电极材料的比容量为486F·g~(-1)。此外,还研究了不同镍铝比例对该复合物电化学性能的影响。通过循环伏安曲线和充放电曲线表明,在镍铝比为3时的复合物具有最大的容量和最高的放电平台电压。
The thesis mainly contains three parts of works: the synthesis andreduction of graphene oxide, the synthesis of graphene/Fe_3O_4、graphene/TiO_2and their properties as an anode materials for lithium ionbatteries, the synthesis of graphene/Ni-Al LDH and its properties asadvanced electrochemical pseudocapacitor material.
     GO is made by an improved Hummers method followed bysupersonic progress. Graphene/FeOOH hybrid composite is prepared bysolvothermal method, in which the aqueous solution of GO andisopropanol act as a solvent and FeCl3as the crystal seeds. Then heat thegraphene/FeOOH hybrid composite at600℃in the inert atmosphere for4-5h and get the product of graphene/Fe_3O_4. The product structure isconfirmed by SEM, TEM and XRD characterizations. Cycled between1and3V at35mA g~(-1)demonstrates a first discharge capacity of1250mAh g~(-1), after30cycles the capacity is also930mAh g~(-1), the hybridmaterial realize a high capacity and good cycling performance.
     Graphene/TiO_2hybrid composite is prepared by solvothermal method, in which the glycol solution of GO and acetic acid act as asolvent and tetrabutyl titanate as the crystal seeds. In the Teflon reactorhydrolysis of titanium tetrachloride and esterification occursimultaneously. The product structure is confirmed by SEM, TEM andXRD characterizations. Cycled between1and3V at30mA g~(-1)demonstrates a first discharge capacity of196mAh g~(-1), after50cycles thecapacity is also100mAh g~(-1)a, the hybrid material realize a high capacityand good cycling performance.
     Moreover, we get Ni-Al LDHs/graphene hybrid material bysolvothermal method in180℃for48h. The product structure isconfirmed by SEM, TEM, HRTEM and XRD characterizations and thendeposite it in nickel foam sheet by PVDF for testing. In the CV cruves,the hybrid shows two redox peaks correspond to two differentNi(II)/Ni(III). The hybrid material performances good electrochemicalcharacteristics as pseudocapacity with a capacitance of486F·g~(-1)。We alsostudy the CV and Discharge cruves of the hybrid material with differentnickel and aluminum rato. The results show that the hybrid material hasthe best performance with the nickel and aluminum rato at3.
引文
[1] Novoselov KS, Geim AK, Morozov SV, et al. Electric Field Effect in Atomically ThinCarbon Films[J]. Science,2004,306:666669.
    [2] Yury Gogotsi. Controlling Graphene Properties Through Chemistry. J. Phys. Chem. Lett.,2011,2(19), pp2509–251..
    [3] Bolotin, K. I, Sikes, K. J, Jiang, Z, Klima, M, Fudenberg, G, Hone, J.; Kim, P, Stormer, H.L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun.2008,114,351–355.
    [4] Lemme, M. C.; Echtermeyer, T. J.; Baus, M.; Kurz, H. A,. Graphene Field-Effect Device.IEEE Electron Device Lett.2007,28,282–284.
    [5] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett.2008,8,902–907.
    [6] Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Energy Band-Gap Engineering of GrapheneNanoribbons. Phys. Rev. Lett.2007,98,206805-4.
    [7]Zhengzong Sun, Dustin K. James, and James M. Tour. Graphene Chemistry: Synthesisand Manipulation. J.Phys.Chem.Lett.,2011,2(19),pp2425-2432
    [8]Tianru Wu, Honglie Shen, Lei Sun, Bin Cheng, Bin Liu, and Jiancang Shen. FacileSynthesis of Ag Interlayer Doped Graphene by Chemical Vapor Deposition UsingPolystyreneAs Solid Carbon Source. ACSAppl.Mater.Interface,2012,4(4),pp2041-2047
    [9] Cai W, Piner RD, Stadermann FJ, et al. Synthesis and solid-state NMR structuralcharacterization of13C-labeled graphite oxide[J]. Science,2008,321:18151817.
    [10] Liu, Z.;Wang, Y.; Zhang, X.; Xu, Y.; Chen, Y.; Tian, J. Nonlinear Optical Properties ofGraphene Oxide in Nanosecond and Picosecond Regimes. Appl. Phys. Lett.2009,94,021902–021903.
    [11] Mkhoyan KA, Contryman AW, Silcox J, et al. Atomic and Electronic Structure ofGraphene-Oxide[J]. Nano Lett,2009,9:10581063.
    [12] Shuangyin Wang, Dingshan Yu, Lingming Dai, Dong Wook Chang, Jong-Beom Beak.Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for OxygenReduction. ACS nano,2011,5(8), pp6202-6209.
    [13] Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L. J. Electrical Detection of DNAHybridization with Single-Base Specificity Using Transistors Based on CVD-GrownGraphene Sheets. Adv. Mater.2010,22,1649–1653.
    [14] Haixin Chang, Longhua Tang, Ying Wang, Jianhui Jiang and Jinghong Li. GrapheneFluorescence Reaonance Enery Transfer Aptansensor for the Thrombin Detection. Anal.Chem.,2010,82(6), pp2341-2346
    [15] Towfiq Ahmed, Svetlana Kilina, Tanmoy Das, Jason T. Haraldsen, John J. Rehr, AlexanderV. Balatsky. Electronic Fingerprints of DNA Bases on Graphene. Nano Lett.,2012,12(2),pp927-931
    [16] Da Young Lee, Zehedina Khatun, Ji-Hoon Lee, Yong-kyu Lee, and Insik In. BloodCompatible Graphene/Heparin Conjugate through Noncovalent Chemistry.Biomacromolecules,2011,12(2), pp336-341
    [17] Mohanty, N.; Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNATransistor:Interfacing Graphene Derivatives with Nanoscale and MicroscaleBiocomponents. Nano Lett.2008,8,4469–4476
    [18] Kyung-Eun Byun, Dong Shin Choi, Eunji Kim, David H. Seo, Heejun Yang, Sunae Seo,and Seunghun Hong. Graphene-Polymer Hybrid Nanosyructure-Based Bioenergy StorageDevice for Real-Time Control of Biological Motor Activity. ACS nano,2011,5(11), pp8656-8664
    [19] Matyba, P.; Yamaguchi, H.; Eda, G.; Chhowalla, M.; Edman, L.; Robinson, N. D. Grapheneand Mobile Ions: The Key toAll-Plastic, Solution-Processed Light-Emitting Devices. ACSNano2010,4,637–642.
    [20] Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation ofSolution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano2008,2,463–470.
    [21] Rakesh K. Joshi, Humberto Gomez, Farah Alvi and Ashok Kumar. Graphene Films andRibbons for Sensing of O2, and100ppm of CO and NO2in practical Conditions. J. Phys.Chem. C,2010,114(14), pp6610-6613
    [22] Eda G, Fanchini G, Chhowalla M. Large-Area Ultrathin Films of Reduced Graphene Oxideas a Transparent and Flexible Electronic Material. Nat. Nanotechnol.2008,3,270–274.
    [23] Tung V C, Chen L-M, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y.Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials forHigh-Performance Transparent Conductors. Nano Lett.2009,9,1949–1955.
    [24] Lemme, M. C.; Echtermeyer, T. J.; Baus, M.; Kurz, H. A Graphene Field-Effect Device.IEEE Electron Device Lett.2007,28,282–284.
    [25] Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-S.; Kudo, T.; Honma, I. Large Reversible LiStorage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries.Nano Lett.2008,8,2277–2282.
    [26] Hummers WS, Offeman RE. Preparation of Graphitic Oxide[J]. J AM CHEM SOC,1958,80:1339.
    [27] Xiaoying Qi, Kan-Yi Pu, Xiaozhu Zhou,et al. Conjugated-Polyelectrolyte-FunctionalizedGraphene Reduced Graphene Oxide with Excellent Solubility and Stability in PolySolvents. Small, Volume6, Issue5, pages663-669, March82010
    [28] Yongchao Si and Edward T. Samulski. Synthesis of Water Soluble Graphene. Nano Lett.,2008,8(6), pp1679–1682
    [29]Zhuang-Jun Fan, Wang Kai, Jun Yan, Tong Wei, Lin-Jie Zhi, Jing Feng, Yue-ming Ren,Li-Ping Song, and Fei Wei. Facile Synthesis of Graphene Nanosheets via Fe Reduction ofExfoliated Graphite Oxide. ACS Nano,2011,5(1), pp191–198
    [30] Chengzhou Zhu, Shaojun Guo, Youxing Fang and Shaojun Dong. Reducing Sugar: NewFunctional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano,2010,4(4), pp2429–2437
    [31]Jinbin Liu, Songhe Fu, Bin Yuan, Yulin Li and Zhaoxiang Deng. Toward a Universal“Adhesive Nanosheet” for the Assembly of Multiple Nanoparticles Based on aProtein-Induced Reduction/Decoration of Graphene Oxide. J. Am. Chem. Soc.,2010,132(21), pp7279–7281
    [32] Zhuangjun Fan, Kai Wang, Tong Wei,Jun Yan, Liping Song, Bo Shao. An environmentallyfriendly and efficient route for the reduction of graphene oxide by aluminum powder.Carbon, Volume48, Issue5, April2010, Pages1686-1689.
    [33] Jianfei Che, Liying Shen and Yinghong Xiao. A new approach to fabricate graphenenanosheets in origanic medium: conbination of reduction and dispersion. J.Mater.Chem.,2010,20,1722-1727
    [34]M. J. Fernández-Merino, L. Guardia, J. I. Paredes*, S. Villar-Rodil, P. Solís-Fernández, A.Martínez-Alonso and J. M. D. Tascón. Vitamin C Is an Ideal Substitute for Hydrazine inthe Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C,2010,114(14), pp6426–6432
    [35] Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by thesolvothermal reduction of colloidal dispersions of graphite oxide[J]. Carbon,2008,46:1994-1998
    [36] Hai Li, Xiehong Cao, Bing Li, Xizozhu Zhou, et al. Single-layer graphene oxide sheet: anovel substrate for dip-pen nanolothography. Chem.Commun.,2011,47,10070-10072
    [37]Denis A. Sokolov, Kristin R. Shepperd, and Thomas M. Orlando. Formation ofGraphene Features from Direct Laser-Induced Reduction of Graphite Oxide. J. Phys.Chem. Lett.,2010,1(18), pp2633–2636
    [38] Yonglai Zhang, Li Guo, Shu Wei, Yingyan He, Hong Xia, Qidai Chen, Hong-BoSun,Feng-Shou Xiao. Direct impringting of micricircuits on graphene oxides film byfemtosecond laser reduction. Nanotoday, Volume5, Issue1, Fabruary2010, Pages15-20.
    [39] Liuyun Chen, Yanghong Tang, Ke Wang, Chenbin Liu, Shenglian Luo. Directelectrodeposition of reduced graphene oxide on glassy carbon electrode and itselectrochemical application. Electrochemistry Commumnications. Volume13, Issue2,Februrary2011, Pages133-137.
    [40] Yanguang Li, Hailiang Wang, et al. MoS2Nanoparticals Grown on Graphene: AnAdvanced Catalyst for the Hydrogen Evolution Reaction[J]. J AM CHEM SOC,2011,130(33):1087610877.
    [41] Yanguang Li, Hailiang Wang, et al. TiO2Nanocrystals Grown on Graphene as AdvancedPhotocatalytic Hybrid Materials[J]. Nano Res.2010,3(10):701-705
    [42] Y.J.Mai, X.L.Wang, J.Y.Xiang, et al. CuO/graphene composite as anode materials forlithium-ion batteries[J]. Electrochimica Acta036(2010)354-358
    [43] Yanfei Xu, Zhibo Liu,Yongsheng Chen, et al. A Graphene Hybrid Material CovalentlyFunctionalized with Porphyrin: Synthesis anf Optical Limiting Property[J]. Adv. Mater.2009,21,1275-1279
    [44]杨婕.锂离子电池的特点与使用[J].现代电视技术,2003.05
    [45]贾恒义.锂离子电池材料的应用与研究[J].电源技术.2011(07)
    [46]邱玉凤,江家发.新型高效绿色能源:锂离子电池.化学教育,2011年,第08期
    [47]乐毅诚,石磊,吴飞.锂离子电池负极材料的研究进展[J].船电技术.2011(06)
    [48] Maier, J. Nanoionics: Ion Transport and Electrochemical Storage in Confined Systems.Nat. Mater.2005,4,805–815.
    [49]何永祥,赵海鹏.锂离子二次电池碳负极材料的研究进展.平顶山工学院学报.2007年,第03期
    [50]谷书华,张文静,王力臻,张林森.锂离子电池石墨负极嵌脱锂机理研究[J].郑州轻工业学院学报,2012年2月,第27卷,第一期.
    [51]姜锐,吴孟超,陈黎,张树人,碳纳米管在锂离子电池正极中的应用研究[J].电子元件与材料,第31卷,第四期.
    [52]王文超,章亮亮,付延鲍,马晓华.锂离子电池锡基负极材料的改性研究进展.电源技术.2012.2, Vol.36No.2
    [53] Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable LithiumBatteries. Nature2001,414,359–367.
    [54] D. H. Gregory, P. M. OMeara, A. G. Gordon, et al. Layeeed temary transition metalnitrides; synthesis, structure and physical properties. J. Alloys and Compounds,237-244(2001):317-318
    [55] M. Nishijima, T. Kagohashi, Y. Takeda, et al. Electrochemiacal studies of a new anodematerial, Li3-xMxN (M: Co, Ni, Cu), J. Power Sources,68(1997):510-514
    [56] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nano-sized trasition-metaloxides as negative-electrod materials for lithium-ion batteries, Nature,407(2000)496-499
    [57] M. S. Wu, P. C. J. Chiang, Electrochemiacally deposited nanowires of manganese oxide asan anode material for liyhium-ion-batteries, Electrochem. Commun.8(2006)383-388
    [58] Lilia V.Kondrachova, R. Alan May, Craig W.Cone, et al. Evaluation of lithium ioninsertion reactivity via electrochromic diffraction-based imaging. Langmuir,2009,25(4),pp2508-2518
    [59] D. Pasero, N. Reeves, A. R. West, Co-doped Mn3O4: a possible anode material for lithiumbatteries, J. Power Source,141(2005)156-158
    [60] CHAN.C.K, YI.C, Peng H L, et al. High-performance lithium battery anodes using siliconnanowires[J]. Nature Nanotechnology,2008(3):31-35.
    [61] Wang G X,Ahn J H,Lindsay M. Graphite-tin composites as anode materials forLithium-ion batteries[J]. J. Power Scources,2001,97一98:211一215
    [62] Noh.M,Kwon Y,Lee H. Amorphous carbon-coated tin anode material for lithiumsecondary battery[J].Chem.Mater.2005,17:1926一1929
    [63] Xiaoming Sun,Junfeng Liu,Yadong Li. Oxides@C Core-Shell Nanostructures: One-PotSynthesis, Rational Conversion, and Li Storage Property. Chem. Mater.2006,18,3486-3494
    [64] Zhong-shuai Wu,WenCai Ren,Lei Wen,Libo Gao,Hui-Ming Cheng. Graphene Anchoredwith Co3O4Nanopaticles as Anode of Lithium Ion Batteries with Enhanced ReversibleCapacity and Cyclic Performance. ACS nano.2010,4(6), pp3187–3194
    [65] Hailiang Wang, Li-Feng Cui, et al, Mn3O4-Graphene Hybrid as a High-Capacity AnodeMaterial for Lithium Ion Betteries. J. AM. CHEM. SOC.2010,132,13978-13980
    [66] Seuing-Min Paek,EunJoo Yoo,Itaru Honma. Enhanced Cyclic Performance and LithiumStorage Capacity of SnO2/Graphene Nanoporous Electrodes With Three-DimensionallyDelaminated Flexible Struture. Nano Lett.2009,Vol.9,No.1,72-75
    [67]刘海晶,夏永姚.混合型超级电容器的研究进展.化学进展,2011年,第ZA期
    [68]蔡国营,王亚军,谢晶等.超级电容器储能特性研究.电源世界,2009年,第01期
    [69]崔淑梅,段甫毅.超级电容器电动汽车的研究进展与趋势.汽车研究与开发.2005年第06期.
    [70] Dang Sheng Su Dr., Robert Schkogl Prof. Nanostructured Carbon and CarbonNanocomposites for Electrochemical Energy Storage Applications. ChemSusChem,Volume3, Issue2, pages136-168, February22,2010.
    [71]梁逵,陈艾,叶芝祥.碳纳米管与活性炭超级离子电容器的频率响应.功能材料与器件学报,2002年第02期
    [72] Li Li Zhang and X. S. Zhao. Carbon-based materials as supercapacitor electrodes. Chem.Soc. Rev.,2009,38,2520-2531
    [73] Mark E.Roberts,David R. Wheeler,Bonnie B.McKenzie,Bruce C.Bunker. High specificcapacitance conducting polymer supercapacitor electrodes based onpoly(tris(thiophenylphenyl)amine). J. Mater. Chem.,2009,19,6977-6979.
    [74] Yoon, Songhun; Lee, Jinwoo; Hyeon, Taeghwan; Oh, Seung M. Electric Double-LayerCapacitor Performance of a New Mesoporous Carbon. J. Electrochem. Soc.,147,2507(2000).
    [75] C.S. Du, J. Yeh, N.Pan. High power density supercapacitors using locally aligned carbonnanotube electrodes. Nanotechnology2005,16,350.
    [76] M. Niu, E.K. Sichel, R. Hoch, D.Moy, H. Tennent. Bias-enhanced nucleation and growthof the aligned carbon nanotubes with open ends under microwave plasma synthesis. Appl.Phys. Lett.1997,70,1480.
    [77] Yuan, C.; Zhang, X.; Su, L.; Gao, B.; Shen, L. Facile synthesis and self-assembly ofhierarchical porous NiO nano/micro spherical superstructures for high performancesupercapacitors. J. Mater. Chem.2009,19,5772–5777.
    [78] Bi. R, Wu. X, Cao. F, Jiang. L, Guo,.Y, Wan.L. Highly dispersed RuO2nanoparticles oncarbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys.Chem.C2010,114,2448–2451.
    [79] Hailiang Wang, Hernan Sanchez Casalongue, Yongye Liang, Hongjie Dai. J. AM. CHEM.SOC.2010,132,7472-7477.
    [80] Sheng Chen, Junwu Zhu, Xiaodong Wu, Qiaofeng Han, Xin Wang, Graphene Oxide-MnO2Nanocomposites for Supercapacitors, ACS Nano,2010,4(5), pp2822–2830
    [81]刘献明,张校刚. CoAL双氢氧化物作超级电容器的电极材料[J].电源技术,2003,27:315-317.
    [82]张校刚,刘献明,包淑娟,王永刚. Ni离子掺杂对CoAL双氢氧化物电化学电容的影响[J].无机化学学报,2004,20:94-98.
    [83] Alexis Bienvenu Beleke, Minoru Mizuhata. Electrochemical properties of nickel-aliminumlayered double hydroxide/carbon composite fabricated by liquid phase deposition. Journalof Power Sources,195(2010)7669-7676
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.