抗肠出血性大肠杆菌O157:H7志贺样毒素Ⅱ基因工程抗体的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠出血性大肠杆菌(EHEC) O157:H7是一种重要的新发人畜共患传染病病原菌。自1975年被首次分离、1982年被确认为致病菌以来的近30年中,世界各地包括中国都有不同规模的暴发流行。EHEC O157:H7感染可使人患腹泻、出血性结肠炎(hemorrhagic colitis , HC) ,还可在5~10%的病例中引发溶血性尿毒综合症(hemolytic uremic syndrome,HUS)及血栓性血小板减少紫癜(thrombotic thrombocytopenic purpura,TTP)等严重并发症,严重者可导致死亡。EHEC O157:H7的感染因具有暴发流行趋势、强烈的致病性与致死性和抗生素治疗可加剧病情的危险性等特点,已经成为全球性的公共卫生问题。我国已将肠出血性大肠杆菌列为21世纪可能对国人卫生健康有重大影响的12种病原微生物之一。同时,O157:H7菌培养容易、繁殖迅速、感染力强、感染途径广泛,使之极有可能作为未来军事斗争中的细菌战剂和生物恐怖战剂。美国疾病预防控制中心(CDC)已将EHEC O157:H7菌列为B类生物恐怖病原体严加防范。
     目前,EHEC O157:H7的全基因组测序已经完成,但对其感染仍缺乏有效的治疗方法。临床上针对O157:H7菌的感染主要采用抗生素治疗及相应的对症治疗。新近的研究发现,抗生素使菌体破裂,导致O157:H7菌志贺样毒素(Shiga like toxin,Stx)的释放水平大大提高,使得抗生素对病程无明显影响甚至导致病程的延长,从而增加发生并发症的危险并引起死亡。人类同感染性疾病作斗争的历史证明,抗体是治疗某些感染性疾病的首选方法。由于O157:H7菌的感染易引起暴发流行,且对其感染尚缺乏有效的治疗方法,治疗性抗体的研究就显得尤为紧迫。
     EHEC O157:H7主要产生两种毒素,分别称为志贺样毒素Ⅰ(Stx1)和志贺样毒素Ⅱ(Stx2)。在细菌体内,Stx2为分泌型表达,Stx1为胞内表达。两种毒素均由1个A亚单位和5个B亚单位组成,A亚单位具有细胞内毒性,能与28S rRNA作用从而抑制蛋白质合成,是大肠杆菌O157:H7引起临床表现的病理基础;B亚单位具有细胞结合特性,能与具有特定糖鞘脂受体(Gb3)的细胞结合,从而引导A亚单位发挥作用,是志贺样毒素致病的关键。多数O157:H7细菌产生Stx2,而且Stx2毒性强于Stx1,与HUS及TTP等严重并发症的相关性更为密切。因此Stx2是该菌致病性的重要物质基础,是理想的制备
Enterohemorrhagic Escherichia coli (EHEC) O157:H7, an emerging pathogen, causes severe hemorrhagic colitis and the life-threatening extraintestinal complication of hemolytic uremic syndrome (HUS) in 5 to 10% of patients. EHEC O157:H7, produce Shiga like toxin 1 or 2 (Stx1 or Stx2, respectively), or both. The source of EHEC O157:H7 is mainly of contaminated food or drinking water. Treatment of infection with EHEC O157:H7 has been difficult because antibiotics do not change the course of the enteritis of EHEC O157:H7 and may increase the incidence of HUS caused by the pathogen. This untoward effect has been proposed to be mediated by antibiotic-induced bacteriolysis and release of intracellular Shiga like toxins.
     Stxs consist of an A-subunit monomer and a B-subunit pentamer. The A subunit’s N-glycosidase activity is activated, resulting in the removal of the adenine group from position 4324 in the eukaryotic 28S rRNA of the 60S ribosomal subunit. The resulting A subunit-mediated inhibition of protein biosynthesisis cytotoxic to the target cell. The B subunit is involved in binding to target cells via its glycolipid receptor, globotriaosylceramide (Gb3-Cer). Stxs can be broadly divided into two groups, Stx1 and Stx2. Stx1 and Stx2 fail to cross neutralize and show differences in biological activities in vitro and in vivo. Since Stx2, but not Stx1, is thought to be a major cause of toxity that induces HUS in humans based on epidemiological analyses and studies on EHEC-infected animals.
     Currently there is no effective treatment or prophylaxis for HUS. As in many toxin-mediated diseases, such as tetanus and botulism, little endogenous serum antibody against Stx is induced following EHEC infection. Nonetheless, passively immune therapy with Stx2-neutralizing antibodies should be very useful in preventing the development of HUS in EHEC infections.Thus a specific therapeutic approach is needed for the prevention of severe disease caused by EHEC infections.
引文
1. Riley LW, Remis RS, Helgerson SD, et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med, 1983, 308: 681-685.
    2. Gianviti A, Rosmini F, Caprioli A, et al. Haemolytic-uraemic syndrome in childhood: surveillance and case-control studies in Italy. Italian HUS Study Group. Pediatr Nephrol, 1994, 8: 705–709.
    3. 周志江主编. 肠道出血性大肠杆菌O157. 第1版,北京:军事医学科学出版社,2002,15.
    4. Grifin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E.coli and the associated hemolytic uraemic syndrome. Epidemiol Rev, 1991, 13: 60-97.
    5. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli-t.htm
    6. 汪华,史智扬. O157:H7大肠杆菌流行病学研究概况. 江苏:卫生保健,2001,3(1):4-5.
    7. WHO Enterohaemorrhagic Escherichic coli infection in Japan. Wkly Epid Rec, 1996, 30: 229.
    8. National Institute of Health and Infectious Diseases Control Division, Ministry of Health and Welfare of Japan. Verocytotoxin-producing Escherichia coli (entero-hemorrhagic E. coli) infections, Japan, 1996-June 1997. Infectious Agents Surveillance Report, 1997, 18: 153-154.
    9. http://www.szed.com/n/ca 505201 .htm
    10. http: //www .eph.org.cn/lee/2.ppt
    11. Bell BP, Griffin PM, Lozano P, et al. Predictors of hemolytic uremic syndrome in children during a large outbreak of Escherichia coli O157:H7 infections. Pediatrics, 1997, 100(1): E12.
    12. Caprioli J, Peng L, Remuzzi G, et al. The hemolytic uremic syndromes. Current Opinion in Critical Care, 2005, 11(5): 487-492.
    13. 李升团,韩光红. 大肠杆菌O157:H7感染的病原学与流行病学. 解放军预防医学杂志,1997,15(5): 387-389.
    14. http://www.bt.cdc.gov/agent/agentlist-category.asp
    15. Cimolai N, Carter JE, Morrison BJ, et al. Risk factors for the progression of Escherichia coli O157:H7 enteritis to hemolytic-uremic syndrome. Pediatric, 1990, 116(4): 589-592.
    16. http://www.moh.gov.cn/jbkz/zcxx/faya/ 200204240028.htm
    17. Marina N, Simona B, Jessica C, et al. Familial haemolytic uraemic syndrome and an MCP mutation. The Lancet, 2003, 362(9395): 1542-1547.
    18. Diana K. Haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. Current Paediatrics, 2002, 12(7): 569-574.
    19. Virginia P, Creydt, Claudia S, et al. Cytotoxic effect of Shiga toxin-2 holotoxin and its B subunit on human renal tubular epithelial cells. Microbes and Infection, 2006, 8(2): 410-419.
    20. Kazuaki Y, Akihide T, Tetsuya A, et al. Shiga toxin 1 and 2 induce apoptosis in the amniotic cell line WISH. Journal of the Society for Gynecologic Investigation, 2002, 9(1): 22-26.
    21. Sharon XW, Louise DT, Nicole AJ, et al. Genetic toxoids of Shiga toxin types 1 and 2 protect mice against homologous but not heterologous toxin challenge. Vaccine, 2006, 24: 1142-1148.
    22. Leomil L, Aidar L, Guth BE, et al. Irino, Frequency of Shiga toxin-producing Escherichia coli (STEC) isolates among diarrheic and non-diarrheic calves in Brazil. Veterinary Microbiology, 2003, 97(1-2): 103-109.
    23. Amornrut L, Manthana P, Boonchuay E, et al. Shiga toxin- and enterotoxin-producing Escherichia coli isolated from subjects with bloody and nonbloody diarrhea in Bangkok, Thailand. Diagnostic Microbiology and Infectious Disease, 2003, 46(3): 173-180.
    24. Tsuyoshi K, Shinobu T, Masamichi M, et al. Role of Shiga toxin 2 (Stx2)-binding protein, human serum amyloid P component (HuSAP), in Shiga toxin-producing Escherichia coli infections: assumption from in vitro and in vivo study using HuSAP and anti-Stx2 humanized monoclonal antibody TMA-15. Biochemical and Biophysical Research Communications, 2003, 305(4): 1057-1060.
    25. Jean M, Kerry C, Dianne F, et al. Human Stx2-Specific Monoclonal Antibodies Prevent Systemic Complications of Escherichia coli O157:H7 Infection. Infect Immun, 2002,70(2): 612–619.
    26. Pirro F, Wieler LH, Failing K, et al. Bauerfeind and G.Neutralizing antibodies against Shiga-like toxins from Escherichia coli in colostra and sera of cattle. Veterinary Microbiology, 1995, 43(2-3): 131-141.
    27. Sylvia F, Florian G, Lothar H, et al. Construction of recombinant Shiga-like toxin-IIv (SLT-IIv) and its use in monitoring the SLT-IIv antibody status of pigs. Veterinary Microbiology, 1995, 43(1): 41-52.
    28. Miho W, Katsura I, Koji M, et al. Structural Analysis of the Interaction between Shiga Toxin B Subunits and Linear Polymers Bearing Clustered Globotriose Residues Infection and Immunity, 2006, 74: 1984-1988.
    29. Tsuyoshi K, Shinobu T, Masamichi M, et al. Role of Shiga toxin 2 (Stx2)-binding protein, human serum amyloid P component (HuSAP), in Shiga toxin-producing Escherichia coli infections: assumption from in vitro and in vivo study using HuSAP and anti-Stx2 humanized monoclonal antibody TMA-15. Biochemical and Biophysical Research Communications, 2003, 305(4): 1057-1060.
    30. Sharon XW, Louise DT, Nicole AJ, et al. Genetic toxoids of Shiga toxin types 1 and 2 protect mice against homologous but not heterologous toxin challenge. Vaccine, 2006, 24(8): 1142-1148.
    31. Stein PE, Boodhoo A, Tyrrell GJ, et al. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature, 1992, 355: 748–750.
    32. Endo Y, Tsurugi K, Yutsudo T, et al. Site of action of a Vero toxin(VT2)from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem, 1988, 171: 45-50.
    33. Shimizu H, Field RA, Homans SW, et al. Donohue-Rolfe, Solution structure of the complex between the B-subunit homopentamer of verotoxin VT-1 from Escherichia coli and the trisaccharide moiety of globotriaosylceramide. Biochemistry, 1998, 37: 11078-11082.
    34. Waddell T, Cohen A, Lingwood CA, et al. Induction of verotoxin sensitivity in receptor-deficient cell lines use the receptor glycolipid globotriosylceramide. Proe. Natl. Acad. Sei. USA, 87: 7898-7901.
    35. Rivas L, Fegan N, Dykes GA, et al. Physicochemical properties of Shiga toxigenicEscherichia coli. Journal of Applied Microbiology, 2005, 99(4): 716-727.
    36. Allen KP, Randolph MM, Fleckenstein JM, et al. Importance of heat-labile enterotoxin in colonization of the adult mouse small intestine by human enterotoxigenic Escherichia coli strains. Infection & Immunity, 2006, 74(2): 869-875.
    37. Cagney C, Crowley H, Duffy G, et al. Prevalence and numbers of Escherichia coli O157:H7 in minced beef and beef burgers from butcher shops and supermarkets in the Republic of Ireland. Food Microbiology, 2004, 21(2): 203-212.
    38. Antonio JP, Ferreira, Waldir P, et al. Culture supernatant of Shiga toxin-producing Escherichia coli strains provoke fluid accumulation in rabbit ileal loops. Immunology and Medical Microbiology, 1997, 19(4): 285-288.
    39. Rivas L, Fegan N, Dykes GA, et al. Physicochemical properties of Shiga toxigenic Escherichia coli. Journal of Applied Microbiology, 2005, 99(4): 716-27.
    40. Cohen A, Madrid MV, Estrov Z, et al. Expression of glycolipid receptors to Shiga-like toxin on human B lymphocyte: a mechanism for the failure of long-lived antibody response to dysenteric disease. Int Immunol, 1998, 2: 11-18.
    41. Louise CH, Obrig TG. Specific interaction of Escherichia coli O157:H7 derived shiga-like toxin Ⅱ with human renal endothelial cell. J Infect dis, 1995, 172: 1397-1401.
    42. Helge K, Phillip IT, Martina B, e al. Enterohaemorrhagic Escherichia coli in human medicine. International Journal of Medical Microbiology, 2005, 295(6-7): 405-418.
    43. Emiko I, Hiroshi I, Kimiharu H, et al. Therapeutic effect of anti-TNF-α antibody and levofloxacin (LVFX) in a mouse model of enterohemorrhagic Escherichia coli O157 infection. Comparative Immunology, Microbiology and Infectious Diseases, 2001, 24(4): 217-231.
    44. Kiyoyuki K, Hironao N, Jun U, et al. Down-regulation of cytochrome P450 proteins and its activities by Shiga-like toxin II from Escherichia coli O157:H7. Biochemical Pharmacology, 2004, 67(8): 1427-1435.
    45. Wilson C, Foster GH, Bitzan M, et al. Silencing of Bak ameliorates apoptosis of human proximal tubular epithelial cells by Escherichia coli-derived Shiga toxin 2. Infection, 2005, 33(5-6): 362-367.
    46. Ying-Lan Zhao, Jun Du, Hiroaki K, et al. Shiga-like toxin II modifies brain distributionof a P-glycoprotein substrate, doxorubicin, and P-glycoprotein expression in mice. Brain Research, 2002, 956(2): 246-253.
    47. Patricia BE, Mary SJ, Kelly JC, et al. Escherichia coli Shiga toxin 1 and TNF-α induce cytokine release by human cerebral microvascular endothelial cells. Microbial Pathogenesis, 2004, 36(4): 189-196.
    48. Fitzpatrick MM. Haemolytic uraemic syndrome: Current views on aetiology, pathogenesis and treatment. Current Paediatrics, 1997, 7(1): 28-31.
    49. Forsyth K, Fitzpatrick MM, Simpson AC, et al. Neutrophil-mediated endothelial injury in haemolytic uraemic syndrome. The Lancet, 1989, 334(8660): 411-414.
    50. Séverine PL, Hélène D, Denis P, et al. Expression of a functional scFv fragment of an anti-idiotypic antibody with a β-lactam hydrolytic activity. Immunology Letters, 2006, 103(1): 39-44.
    51. Sriram S, Ganesan V, Chien-Tsun Kuan, et al. Antiepidermal growth factor variant III scFv fragment: effect of radioiodination method on tumor targeting and normal tissue clearance. Nuclear Medicine and Biology, 2006, 33(1): 101-110.
    52. Vito V, Alessio C, Ilaria F, et al. KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity. Biochemical and Biophysical Research Communications, 2005, 338(4): 1791-1797.
    53. Cemal G, David J, Ellar. Expression in Pichia pastoris and purification of a membrane-acting immunotoxin based on a synthetic gene coding for the Bacillus thuringiensis Cyt2Aa1 toxin. Protein Expression and Purification, 2003, 29(1): 103-116.
    54. Michael S, Mehmet KT, Stefanie S, et al. Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expression and Purification, 2003, 28(2): 211-219.
    55. Shu Shi, Jing-ya Xue, Ke-xing Fan, et al. Preparation and characterization of recombinant protein ScFv(CD11c)-TRP2 for tumor therapy from inclusion bodies in Escherichia coli. Protein Expression and Purification, In Press, Uncorrected Proof, Available online 25 August 2005.
    56. Sally J, DeNardo. Radioimmunodetection and therapy of breast cancer. Seminars in Nuclear Medicine, 2005, 35(2): 143-151.
    57. Dietmar M, Theisen, Carola P, et al. Targeting of HIV-1 Tat traffic and function by transduction-competent single chain antibodies. Vaccine, In Press, Corrected Proof, Available online 9 February 2006.
    58. Shelly SL, Rahely Z, Stephen H, et al. A universal strategy for stable intracellular antibodies. Journal of Immunological Methods, 2005, 303(1-2): 19-39.
    59. Jun-Qing Guo, Qing-Mei Li, Ji-Yong Zhou, et al. Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system. Protein Expression and Purification, 2006, 45(1): 168-174.
    60. Jürgen K, Michaela AE, Bang KV, et al. Efficient killing of CD22+ tumor cells by a humanized diabody–RNase fusion protein. Biochemical and Biophysical Research Communications, 2005, 331(2): 595-602.
    61. Dan Lu, Xenia J, Hai-fan Zhang, et al. Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. Journal of Immunological Methods, 2002, 267(2): 213-226.
    62. 卢圣栋主编. 现代分子生物学实验技术. 第1版,北京:高等教育出版社,1993,378-381.
    63. FM. 奥斯伯著. 颜子颖,王海林译. 精编分子生物学实验指南. 北京:科学出版社,1998,333-351;366-373;408.
    64. 巴德年主编. 当代免疫学技术与应用. 第1版,北京:北京医科大学中国协和医科大学联合出版社,1998.
    65. 汪家政,范明主编. 蛋白质技术手册. 第 1 版,北京:科学出版社,2000,47-50.
    66. Xavier H, Célia P, Olivier L, et al. Two-dimensional structures of the Shiga toxin B-subunit and of a chimera bound to the glycolipid receptor Gb3. Journal of Structural Biology, 2002, 139(2): 113-121.
    67. Hong L, Navraj SP, Amechand B, et al. Glen D Armstrong,A mutant Shiga-like toxin IIe bound to its receptor Gb3: structure of a group II Shiga-like toxin with altered binding specificity. Structure, 2000, 8: 253-264.
    68. Kumar HS, Indrani K, Karunasagar I, et al. Characterisation of Shiga toxin-producing Escherichia coli (STEC) isolated from seafood and beef. FEMS Microbiology Letters, 2004, 233(1): 173-178.
    69. Masatoshi N, Takashi Y, Naomi N, et al. Purification and some properties of Shiga-liketoxin from Escherichia coli 0157:H7 that is immunologically identical to Shiga toxin. Microbial Pathogenesis, 1987, 2(5): 339-349.
    70. 张桥主编. 卫生毒理学基础. 第3版,北京:人民卫生出版社,2001,104-114.
    71. 董德祥主编. 疫苗技术基础与应用. 第1版,北京:化学工业出版社/现代生物技术与医药科技出版中心,2002,250-253.
    72. 金冬雁,黎孟枫等译. 分子克隆实验指南. 第 2 版,北京,科学出版社,1992.
    73. Gyles CL, Grandis SA, MacKenzie C, et al. Cloning and nucleotide sequence analysis of the genes determining verocytotoxin production in a porcine edema disease isolate of Escherichia coli. Microbial Pathogenesis, 1988, 5: 419-426.
    74. Takashi Y, Hisao K, Chihiro S, et al. Masanosuke Yoshikawa, Makoto Cloning of a Vero toxin (VT2) gene from a VT2-converting phage isolated from Escherichia coli 0157: H7. FEMS Microbiology Letters, 1987, 48(1-2): 273-276.
    75. Toru N, Jun F, Shin-ichi Y, et al. Reconstitution of active recombinant Shiga toxin (Stx)1 from recombinant Stx1-A and Stx1-B subunits independently produced by E. coli clones. FEMS Microbiology Letters, 1999, 178(1): 13-18.
    76. Adrienne WP, Paul AM, James CP, et al. Increased oral virulence of Escherichia coli expressing a variant Shiga-like toxin type II operon is associated with both A subunit residues Met4 and Gly102. Microbial Pathogenesis, 1995, 19(3): 185-191.
    77. Dean Nystrom EA. Bovine Escherichia coli O157:H7 infection model. Methods-Mol-Med, 2003, 73: 329-338.
    78. Gunzer F, Hennig PI,Waldmann KH, et al. Gnotobiotic piglets as an animal model for oral infection with O157 and non-O157 serotypes of STEC. Methods Mol Med, 2003, 73: 307-327.
    79. Gunzer F, Hennig PI, Waldmann KH, et al. Gnotobiotic piglets develop thrombotic microangiopathy after oral infection with enterohemorrhagic Escherichia coli. Am J Clin Pathol, 2002, 118(3): 364-375.
    80. 董志伟,王琰主编. 抗体工程. 第2版,北京:北京医科大学出版社,2002,281-282.
    81. Tada H, Shiho O, Kuroshima K, et al. An improved colorimetric assay for interleukin 2. Immunol Methods, 1986, 93(2): 157-165.
    82. Green LM, Reade JL, WARE CF, et al. Rapid dolo-rimetric assay for cell viability application to the quantitation of cytotoxic cand growth ingibitory lymphokines.Immunol Methods,1984, 70(2): 257-268.
    83. Abhineet SS, Susan C, Pradeep S, et al. Stx2-Specific Human Monoclonal Antibodies Protect Mice against Lethal Infection with Escherichia coli Expressing Stx2 Variants. Infection and Immunity, 2003, 71(6): 3125-3130.
    84. Kiyotaka N, koji M, Eiji K, et al. A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-produing Escherichia coli O157:H7. Microbiology, 2002, 99(11): 7669-7674.
    85. 司徒镇强,吴军正主编. 细胞培养. 第 1 版,西安:世界图书出版社,1996,186.
    86. Paola Marcato, George Mulvey, Randy J. Read, et al. Immunoprophylactic Potential of Cloned Shiga Toxin 2 B Subunit. J Infect Dis, 2001, 183:435-443.
    87. Li Y, Frey E, Mackenzie AM, et al. Human response to Escherichia coli O157:H7 infection: antibodies to secreted virulence factors. Infect Immun, 2000, 68(9): 5090-5095.
    88. Nacilla H, Fabrice B, Mohamed A, et al. The B subunit of Shiga toxin coupled to full-size antigenic protein elicits humoral and cell-mediated immune responsesassociated with a Th1-dominant polarization. International Immunology, 2003, 15(10): 1161-1171.
    89. Nacilla H, Emmanuelle B, Sophie B, et al. The B Subunit of Shiga Toxin Fused to a Tumor Antigen Elicits CTL and Targets Dendritic Cells to Allow MHC Class I-Restricted Presentation of Peptides Derived from Exogenous Antigens. The Journal of Immunology, 2000, 165: 3301-3308.
    90. Cornelia M, Zuzana LM, Sandra S, et al. Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Letters, In Press, Corrected Proof, Available online, 13 June 2005.
    91. Leonhard M, Andy Y, Costica A, et al. Antibody-directed therapy for human hepatocellular carcinoma. Gastroenterology, 2004, 127(1): 225-231.
    92. Huai-Jie Hao, Yong-Qiang Jiang, Yu-Ling Zheng, et al. Improved stability and yield of Fv targeted superantigen by introducing both linker and disulfide bond into the targeting moiety. Biochimie, 2005, 87(8): 661-667.
    93. Yong-juan Xia, Wei-hong Wen, Wei-quan Huang, et al. Development of a phagedisplayed disulfide-stabilized Fv fragment vaccine against Vibrio anguillarum. Vaccine, 2005, 23(24): 3174-3180.
    94. Tapan KB, Masanori O, Ulrich B, et al. A bivalent disulfide-stabilized fv with improved antigen binding to erbb2. Journal of Molecular Biology, 1998, 281(3): 475-483.
    95. Michael N, Markus G, Christoph W, et al. Diagnosis of micrometastases by the amplification of tissue-specific genes. Gene, 1995, 159(1): 43-47.
    96. Wei-Ping Lee. Purification, cDNA Cloning, and Expression of Human Sorcin in Vincristine-Resistant HOB1 Lymphoma Cell Lines. Archives of Biochemistry and Biophysics, 1996, 325(2): 217-226.
    97. Ross MT, Walid SA, Connie IL, et al. TrCloning, sequence analysis and confirmation of derived gene sequences for three epitope-mapped monoclonal antibodies against human phagocyte flavocytochrome. Molecular Immunology, In Press, Corrected Proof, Available online 23 March 2006.
    98. Andrew H, Scott H, Robert M, et al. Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. Journal of Immunological Methods, 2003, 276(1-2): 185-196.
    99. Jiannan Feng, Zhigang Xie, Ning Guo, et al. Design and assembly of anti-CD16 ScFv antibody with two different linker peptides. Journal of Immunological Methods, 2003, 282(1-2): 33-43.
    100. Das D, Kriangkum J, Nagata LP, et al. Development of a biotin mimic tagged ScFv antibody against western equine encephalitis virus bacterial expression and refolding. Journal of Virological Methods, 117(2): 169-177.
    101. Gregory PW, Els NT, Susan EN, et al. A single-chain variable region immunoglobulin library from the abomasal lymph node of sheep infected with the gastrointestinal nematode parasite Haemonchus contortus. Veterinary Immunology and Immunopathology, 2001, 78(2): 117-129.
    102. Ivan TN, Melissa MS, Simone S, et al. Evaluation of phage display system and leech-derived tryptase inhibitor as a tool for understanding the serine proteinase specificities. Archives of Biochemistry and Biophysics, 2004, 425(1): 87-94.
    103. Jun-Qing Guo, Shang-You You, Le Li, et al. Construction and high-level expression ofa single-chain Fv antibody fragment specific for acidic isoferritin in Escherichia coli. Journal of Biotechnology, 2003, 102(2): 177-189.
    104. Karl K, Markus F, Arne S, et al. A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB 5 E into pASK85 permits the economical production of Fab fragments and leads to improved recombinant immunoglobulin stability. Biosensors and Bioelectronics, 2002, 17(4): 305-313.
    105. Jonathan PS, Season PP, Christopher D, et al. Evidence for Structural Plasticity of Heavy Chain Complementarity-determining Region 3 in Antibody–ssDNA Recognition. Journal of Molecular Biology, 2005, 347(5): 965-978.
    106. David MW, Andrew HH, Anthony RR, et al. Antibody-antigen interactions. Current Opinion in Structural Biology, 1994, 4(1): 123-129.
    107. Recombinant Phage Antibody System. Amersham Biosciences, 2002, 279400PL Reb-B: 6.
    108. Pack P, Kujau M, Schroeckh V, et al. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fenentation of Escherichia coli. Biotechnology, 1993, 11(11): 1271-1277.
    109. Michael M, Alexej S, Michael T, et al. Monitoring of scFv selected by phage display using detection of scFv–pIII fusion proteins in a microtiter scale assay. Journal of Immunological Methods, 1998, 220(1-2): 51-58.
    110. Kirsch M, Zaman M, Meier D, et al. Parameters affecting the display of antibodies on phage. Journal of Immunological Methods, 2005, 301(1-2): 173-185.
    111. Myung-Hee Kwon, Myung-Shin Lee, Seung-Ho Hong, et al. A visible phagemid system for the estimation of Cre-mediated recombination efficiency. Journal of Immunological Methods, 2003, 280(1-2): 165-173.
    112. Nakanobu H, Sergey K, Patrick F, et al. A single expression system for the display, purification and conjugation of single-chain antibodies. Gene, 1995, 160(1): 129-130.
    113. Sergey MK, Gerhard M, Melvyn L, et al. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. Journal of Immunological Methods, 1997, 200(1-2): 69-77.
    114. Turner DJ, Ritter MA, George AJ, et al. Importance of the linker in expression of single-chain Fv antibody fragments:optimization of peptide sequence using phagedisplay technology. J Immunol method, 1997, 205(3): 43-54.
    115. 陈志南,刘民培主编. 抗体分子与肿瘤. 第1版,北京:人民军医出版社,2001,211-213.
    116. Stefan E, Annemarie H, Andreas P, et al. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods, 2004, 34(2): 184-199.
    117. Sudhir P, Yasuhiro N, Stephanie P, et al. Theory of proteolytic antibody occurrence. Immunology Letters, 2006, 103(1): 8-16.
    118. Huai-Jie Hao, Yong-Qiang Jiang, Yu-Ling Zheng, et al. Improved stability and yield of Fv targeted superantigen by introducing both linker and disulfide bond into the targeting moiety. Biochimie, 2005, 87(8): 661-667.
    1. Huston J, Levinson D, Mudgett M, et al. Protein engineering of antibody binding site:Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Eschenchiacoli. Proc Natl Acad Sci USA, 1988.
    2. Iba Y, Ito W, Kurosawa Y, et al. Expression vector for introduction of highly diverged sequences into the six comlementarity-determining region of an antibody.GENE, 1997, 194(3): 35.
    3. Baldwin E, Schultz G. Generation of acatalytic antibody by site-direced mutagenesis. Science, 1989, 245(26): 1104.
    4. Naouel T, Héla M, Ali J, et al. Expression in Pichia pastoris of a recombinant scFv form of MAb 107, an anti human CD11b integrin antibody. Enzyme and Microbial Technology, 2006, 38(5): 636-642.
    5. Hande S, Manser T. Single amino and substitution in VH CDR2 are sufficient to generate or enancete specificity of two forms of ananti-arsonate antibody variabl eregion for DNA. Molecular Immunolgy, 1997, 34(2): 1281.
    6. Manfield W, Adriana J, Isabel M, et al. Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble,versatile anti-homogalacturonan scFv. Plant Science, 2005, 169(12): 1090-1095.
    7. Xin Xiang Wang, Eric V. The use of scFv-displaying yeast in mammalian cell surface selections.Journal of Immunological Methods, 2005, 304(8): 30-42.
    8. Cornelia M, Zuzana LM, Sandra S, et al. Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. SHORT COMMUNICATION Cancer Letters, In Press, Corrected Proof, Available online 13 June 2005.
    9. Sally J, DeNardo. Radioimmunodetection and therapy of breast cancer. Seminars in Nuclear Medicine, 2005, 35(2): 143-151.
    10. Dietmar M, Theisen, Carola P, et al. Targeting of HIV-1 Tat traffic and function by transduction-competent single chain antibodies. Vaccine, In Press, Corrected Proof, Available online 9 February 2006.
    11. Shelly SL, Rahely Z, Stephen H, et al. A universal strategy for stable intracellular antibodies. Journal of Immunological Methods, 2005, 303(1-2): 19-39.
    12. Jun-Qing Guo, Qing-Mei Li, Ji-Yong Zhou, et al. Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system. Protein Expression and Purification, 2006, 45(1): 168-174.
    13. Jürgen K, Michaela AE, Bang KV, et al. Efficient killing of CD22+ tumor cells by a humanized diabody–RNase fusion protein. Biochemical and Biophysical Research Communications, 2005, 331(2): 595-602.
    14. Kirsch M, Zaman M, Meier D, et al. Parameters affecting the display of antibodies on phage. Journal of Immunological Methods, 2005, 301(1-2): 173-185.
    15. Myung-Hee Kwon, Myung-Shin Lee, Seung-Ho Hong, et al. A visible phagemid system for the estimation of Cre-mediated recombination efficiency. Journal of Immunological Methods, 2003, 280(1-2): 165-173.
    16. Sudhir P, Yasuhiro N, Stephanie P, et al. Theory of proteolytic antibody occurrence. Immunology Letters, 2006, 103(1): 8-16.
    17. Huai-Jie Hao, Yong-Qiang Jiang, Yu-Ling Zheng, et al. Improved stability and yield of Fv targeted superantigen by introducing both linker and disulfide bond into the targeting moiety. Biochimie, 2005, 87(8): 661-667.
    18. Jonathan PS, Season PP, Christopher D, et al. Evidence for Structural Plasticity of Heavy Chain Complementarity-determining Region 3 in Antibody–ssDNA Recognition. Journal of Molecular Biology, 2005, 347(5): 965-978.
    19. 沈倍奋,陈志南,刘民培等. 重组抗体. 第 1 版,北京:科学出版社,2005,5.
    20. 董志伟,王琰主编. 抗体工程. 第2版,北京:北京医科大学出版社,2002,281-282.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.