中药单体化合物中CFTR激活剂的筛选及药理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CFTR(cystic fibrosis transmembrane conductance regulator)即囊性纤维化跨膜电导调节因子,是一种受cAMP调节的氯离子通道,在呼吸道、胃肠道、胰腺、睾丸及汗腺等处的上皮细胞广泛表达,主要参与电解质及液体的转运。该通道活动的异常与多种疾病的病理发生相关,CFTR氯离子通道功能丧失或活性降低可导致囊性纤维化、慢性胰腺炎、男性不孕、便秘和干眼病等,而功能的过度激活则与分泌性腹泻、多囊肾病等疾病的发生关系密切,因此CFTR氯离子通道高效、特异性调节剂的发现对于研究这些疾病的病理机制和治疗有重要价值。
     本文的目的之一是从中药单体化合物库中筛选wt-CFTR氯离子通道的激活剂并对其分子药理学特征进行系统研究。利用碘离子高度敏感的wt-CFTR氯离子通道荧光测定细胞模型,对386种中药单体化合物进行了筛选,得到了14种能够明显促进碘离子转运的单体化合物,它们在结构上分别属于香豆素类、蒽醌类、生物碱类、黄酮类及萜类等5个天然化合物家族。活性最高的是香豆素类化合物,其中的蛇床子素对wt-CFTR的EC50约为100nM/L,是迄今为止发现的对wt-hCFTR亲和力最高的天然激活剂。动物体外研究表明蛇床子素能够刺激小鼠咽喉部粘膜下腺液体的分泌以及大鼠肠粘膜上皮的氯离子短路电流,这些结果揭示了香豆素类化合物的新药理作用,并且为将它们开发为与CFTR氯离子通道功能障碍相关疾病治疗的药物提供了理论依据。另外,蒽醌类化合物也是wt-CFTR氯离子通道的有效激活剂,该类化合物是大黄类导泻药的活性成份,被广泛用于便秘的治疗,但其发挥导泻作用的确切靶点尚不清楚。本研究通过大鼠结肠短路电流分析及小鼠结肠液体分泌研究,推测大黄等中草药发挥泻下作用的主要机制之一可能是大黄酸等蒽醌类化合物对CFTR氯离子通道的直接激活。
     本文的另一目的是筛选?F508-CFTR氯离子通道的天然激活剂(Potentiator)及蛋白质质膜转运障碍纠正剂(Corrector)并对其分子药理学特征进行系统研究。CFTR基因突变致使其离子通道功能丧失或活性降低,从而导致囊性纤维化,该疾病影响多种器官的生理功能。其中最常见的是?F508-CFTR这种缺失突变,至少存在于90%的囊性纤维化患者的一个等位基因上,第508位苯丙氨酸的缺失在两个方面对CFTR的功能产生影响并最终造成CFTR的Cl-转运功能丧失,一方面蛋白质无法正常到达质膜,另一方面即使是能够到达质膜,通道的氯离子转运活性也明显降低。尽管目前国际上已经发现了一些能够纠正?F508-CFTR功能缺陷的小分子化合物,但在天然产物的研究方面进展甚微。本研究利用碘离子高度敏感的?F508-CFTR氯离子通道荧光测定细胞模型,从386种中药单体化合物中筛选获得了14种能够显著促进?F508-CFTR通道离子转运活性的化合物,分别属于香豆素类、蒽醌类、生物碱类、黄酮类及萜类等5个天然化合物家族。其中活性最强的是欧前胡素,EC50约为15μM/L,它们对?F508-CFTR的激活作用依赖于cAMP,且具有快速和可逆的特点,对细胞内cAMP的浓度没有影响,且与IBXM及forskolin的混合激活剂有相加作用,表明它们可能是通过与?F508-CFTR直接结合而起到激活作用的。通过构-效关系分析,推测该类化合物母核结构的第六、七、八位取代基性质共同决定了其激活作用的强弱,疏水性越强活性越高。通过扩大筛选规模或以欧前胡素为先导化合物进行结构优化,应该能够得到亲和力更高的激活剂。同时,我们也对386种中药单体化合物的?F508-CFTR质膜运送障碍纠正剂的活性进行了筛选,发现仅有白杨素能够在一定程度上促进?F508-CFTR向质膜的运送,但是与以往发现的组合小分子纠正剂相比活性较弱。通过结构修饰增强白杨素的活性可能使其在囊性纤维化及相关疾病的机理研究和药物治疗方面发挥作用。
     本研究通过对天然中药单体化合物进行筛选,得到了多种野生型和突变CFTR氯离子通道激活剂并对它们的激活作用进行了系统的药理学研究,这些天然化合物对于囊性纤维化及其它CFTR相关疾病的机理研究和治疗具有重要价值,同时也为将天然产物资源用于现代药物发现提供了依据。
CFTR( cystic fibrosis transmembrane conductance regulator) is a chloride channel regulated by cAMP. It is expressed by epithelium lined airway, gastrointestinal tract, pancreatic, sweat gland, testis,et al, and involved in transport of electrolyte and fluid. The abnormal activity of CFTR chloride channel is related to pathogenesis of several diseases. Disfunction will result in cystic fibrosis, chronic pancreatitis, male sterility,constipation, et al. Overactivity has important role in the generation of diarrhea, ADPKD. So the modulators of this ion channel is valuable to the theraphy of these diseases.
     One purpose of this paper is to identify natural compounds from Chinese herbs that can stimulate the activity of wt-hCFTR chloride channel and to characterize their molecular pharmacological activity systematically. We use a FRT cell line stably coexpressing wt-hCFTR and a ultra-high halide sensitive (YFP-H148Q) EYFP and find 14 compounds which can stimulate iodide transport mediated by wt-CFTR from 386 natural compounds. They belong to coumarin, alkaloid, flavonoid and terpenoid and the most potential compounds are coumarins. Among them, EC50 value of osthole is only 100nM/L and is the most high affinity natural activator for wt-hCFTR at present. Osthole can stimulate the fluid secretion of submucosal gland at mouse pars laryngea pharyngis and elevate short circuit current across rat colonic mucosal epithelium. These results show the new pharmacological action of osthole and evaluate its potential therapeutic value for chronic pancreatitis and male sterility. We identified several anthraquinone compounds as wt-CFTR activators, as as Rhein, Aloe-emodin. They are also the effective constituents of cathartic herbs, but it is not clear for its definite target as catharsis. Our detailed study prove that the direct activation of Rhein to wt-CFTR is one mechanism of rhubarb as eliminate.
     Another purpose of this paper is to identify natural compounds from Chinese herbs that can correct defectiveΔF508-CFTR channel gating and membrane trafficking and also to evaluate their potential as therapeutic agents. CFTR mutations result in cystic fibrosis disease which influences functions of many organs. ?F508-CFTR is the most common mutation and is present in at least one allele in 90% of CF patients. Deletion of phenylalanine at 508 position causes two distinct defects in CFTR: (i) defect trafficking to plasma membrane and (ii) impaired intrinsic Cl- conductance (reduced open channel probability) after reaching cell surface.At present, several compounds correcting the function of ?F508-CFTR have been found,but most of them belong to synthetic compounds and are difficult to be developed as medicine. We use a FRT cell line stably coexpressingΔF508-CFTR and a ultra-high halide sensitive (YFP-H148Q/I152L) EYFP and find 14 compounds which can facility iodide transport mediated byΔF508-CFTR from 386 natural compounds. They belong to coumarin, alkaloid, flavonoid and terpenoid and the most potential compounds are coumarins. Pharmacological properties of these compounds were characterized systematically. Imperatorin is the most potential compound and EC50 is 15μM/L. Their action is dependent on forskolin, action quickly and reversibly. We suppose these potentiators activate ?F508-CFTR by directly binding, because they cannot elevate cAMP concentration and have additive effection with mixture of forskolin and IBMX. After structure and activity relationship analysis, we find the hydrophobicity of substitutions at six, seven, eight postion together decides the strong or weak activity. Additionally, we screen correctors of ?F508-CFTR and find Chrysin at higher concentration can promote ?F508-CFTR trafficking to plasma membrane at some extend. By larger screening or optimized the structure of Imperatorin and Chrysin, better activity and higher affinity potentiators and correctors should be found and as candidate for CFTR related disease therapy.
     We identify several CFTR potentiators from natural Chinese medicine compounds and identify their pharmacological activity. These compounds are very valuable to treat cystic fibrosis and other CFTR related diseases. Our study also affords a theory basis for the utilization of traditional Chinese medicine in modern drug discovery.
引文
[1]Rommens J M, Iannuzzi M C,Kerem B,et al.Identification of the cystic fibrosis gene: Chromosome walking and jumping[J].Science, 1989,245:1059-1065.
    [2]Riordan J R,Rommens J M,Kerem B,et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA[J]. Science,1989,245: 1066-1073.
    [3]Kerem B, Rommens J M, Buchanan J A,et al. Identification of the cystic fibrosis gene: Genetic analysis[J]. Science,1989,245: 1073-1080.
    [4]Zielenski J, Rozmahel R, Bozon D,et al.Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene[J]. Genomics,1991,10:214-228.
    [5]Anderson M P, Gregory R J, Thompson S,et al.Demonstration that CFTR is a chloride channel by alteration of its anion selectivity[J]. Science,1991,253: 202-205.
    [6]Cheung M, Akabas M H. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment[J]. Biophys J,1996, 70:2688-2695.
    [7]Sheppard D N, Rich D P, Ostedgaard L S, et al. Mutations in CFTR associated with mild disease form Cl- channels with altered pore properties[J].Nature,1993,362: 160-164.
    [8]Linsdell P, Zheng S X, Hanrahan J W. Possible contribution of the peptide backbone to CFTR anion selectivity [J]. Pediatr. Pulmonol,1997,14:214.
    [9]Mansoura M K,Smith S S,Choi A D,et al.Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore[J]. Biophys J,1998,74:1320-1332.
    [10]Anderson M P, Berger H A, Rich D P,et al. Nucleoside triphosphates are required to open the CFTR chloride channel [J]. Cell,1991,67: 775-784.
    [11]Hwang T C, Nagel G, Nairn A C,et al. Regulation of the gating of CFTR Cl- channels by phosphor- ylation and ATP hydrolysis[J]. Proc Natl Acad Sci USA, 1994,91: 4698-4702.
    [12]Baukrowitz T, Hwang T C, Nairn A C,et al.Coupling of CFTR Cl- channel gating to an ATP hydrolysis cycle[J].Neuron,1994,12: 473–482.
    [13]Li C, Ramjeesingh M, Wang W,et al.ATPase activity of the cystic fibrosis transmembrane conductance regulator[J].J Biol Chem,1996,271:28463-28468.
    [14] Gunderson K L,Kopito R R. Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis[J].Cell,1995,82: 231-239.
    [15]Ko Y H,Pederson P L. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase[J]. J Biol Chem,1995, 270: 22093-22096.
    [16]Venglarik C J,Schultz B D,Frizzell R A,et al. ATP alters current fluctuations of cystic fibrosis transconductance regulator: evidence for a three-state activation mechanism[J]. J Gen Physiol,1994,104: 123-146.
    [17]Winter M C, Welsh M J. Stimulation of CFTR activity by its phosphorylated R domain[J]. Nature, 1997,389:294-296.
    [18]Picciotto M R, Cohn J A, Bertuzzi G, et al. Phosphorylation of the cystic fibrosis transmembrane conductance regulator[J]. J Biol Chem, 1992,267: 12742-12752.
    [19]Berger H A, Anderson M P, Gregory R J, et al. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel[J]. J Clin Invest,1991,88: 1422- 1431.
    [20]Chan X B, Tabcharani J A, Hou Y X, et al. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites[J]. J Biol Chem,1993,268: 11304-11311.
    [21]Hwang T C, Horie M, Gadsby D C. Functionally distinct phospho-forms underlie incremental activation of protein kinase regulated Cl- conductance in mammalian heart[J]. J Gen Physiol,1993,101: 629-650.
    [22]Rich D P, Berger H A, Cheng S H, et al. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain[J]. J Biol Chem, 1993,268: 20259-20267.
    [23]Tabcharani J A, Chang X B, Riodan J R,et al. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene[J]. Nature,1991,352: 628-631.
    [24]Wilkinson D J, Strong T V, Mansoura M K, et al. CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain[J]. Am J Physiol, 1997, 273(Lung Cell. Mol. Physiol. 17): 127-133.
    [25]Cantiello H F.Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator[J]. Exp Physiol,1996,81(3):505-514.
    [26]Benharouga M, Sharma M, So J,et al. The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia[J]. J Biol Chem,2003,278(24):22079-22089.
    [27]Kwon S H, Pollard H, Guggino W B. Knockdown of NHERF1 enhances degradation of temperature rescued DeltaF508 CFTR from the cell surface of human airway cells[J]. Cell Physiol Biochem, 2007,20(6):763-772
    [28]Rossmann H, Jacob P, Baisch S, et al. The CFTR associated protein CAP70 interacts with the apical Cl-/HCO3- exchanger DRA in rabbit small intestinal mucosa.Biochemistry[J]. 2005,44(11):4477- 4487.
    [29]Tandon C, De Lisle R C, Boulatnikov I,et al.Interaction of carboxyl-terminal peptides of cytosolic-tail of apactin with PDZ domains of NHERF/EBP50 and PDZK-1/CAP70[J]. Mol Cell Biochem, 2007, 302(1-2):157-167.
    [30]Wolde M, Fellows A, Cheng J,et al.Targeting CAL as a negative regulator of DeltaF508-CFTR cell-surface expression: an RNA interference and structure-based mutagenetic approach[J]. J Biol Chem, 2007,282(11):8099-8109.
    [31]Piserchio A, Fellows A, Madden D R, et al. Association of the cystic fibrosis transmembrane regulator with CAL: structural features and molecular dynamics.Biochemistry[J]. 2005,44(49):16158-16166.
    [32]Naren A P, Quick M W, Collawn J F, et al. Syntaxin 1A inhibits CFTR chloride channels by means of domain-specific protein-protein interactions[J]. Proc Natl Acad Sci,1998,95(18):10972-10977.
    [33]Naren A P, Di A, Cormet-Boyaka E, et al . Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl(-) currents[J]. J Clin Invest. 2000,105(3):377-386.
    [34] Vais H, Zhang R, Reenstra W W. Dibasic phosphorylation sites in the R domain of CFTR have stimulatory and inhibitory effects on channel activation[J].Am J Physiol Cell Physiol,2004,287(3): 737-745.
    [35]Cheng S H, Rich D P, Marshall J, et al. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel[J]. Cell,1991,66:1027-1036.
    [36]Greger R. Role of CFTR in the colon[J].Annu Rev Physiol, 2000, 62:467-491.
    [37]Kunzelmann K, Mall M, Briel M, et al.The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes[J]. Pflugers Arch,1997, 435:178-181.
    [38]Mall M, Kunzelmann K, Hipper A, et al. Overexpression and cAMP stimulation of CFRR in Xenopus oocytes activates a chromanol-inhibitable K+ conductance[J]. Pflugers Arch,1996,432:516-522.
    [39] Mall M, Hipper A, Greger R, et al. Wild type but not ΔF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes[J]. FEBS Lett,1996,381:47-52.
    [40] McNicholas C M, Wang W, Ho K, et al. Regulation of ROMK1 K+ channelactivity involves phosphorylation processes[J]. Proc Natl Acad Sci USA,1994,91:8077-8081.
    [41] Schreiber R, Greger R, Nitschke R, et al. Cystic fibrosis tranmembrane conductance regulator activates water conductance in Xenopus oocytes[J]. Pflugers Arch,1997,434:841-847.
    [42] Stuuts M J, Canessa C M, Olsen J C, et al. CFTR as a cAMP-dependent regulator of sodium channels [J]. Science,1995,269:847-850.
    [43]Schwiebert E M, Egan M E, Hwang T H, et al. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP[J]. Cell,1995,81(7):1063-1073.
    [44]Jovov B, Ismailov I, Benos D J. ystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia[J]. J Biol Chem,1995, 270(4): 1521-1528.
    [45]Jovov B, Ismailov II, Berdiev B K,et al. Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels[J].J Biol Chem,1995,270(49): 29194-29200.
    [46]Lu M, Leng Q, Egan M E, et al. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney[J]. J Clin Invest,2006,116(3):797-807.
    [47]Robert R, Norez C, Becq F. Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl- transport of mouse aortic smooth muscle cells[J]. J Physiol,2005,568(Pt 2): 483-495.
    [48]Robert R, Thoreau V, Norez C, et al. Regulation of the cystic fibrosis transmembrane conductance regulator channel by beta-adrenergic agonists and vasoactive intestinal peptide in rat smooth muscle cells and its role in vasorelaxation[J]. J Biol Chem,2004,279(20):21160-21168.
    [49]Gao Z, Sun H Y, Lau C P, et al. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes[J]. J Mol Cell Cardiol, 2007,42(1):98-105.
    [50]Xu W M, Shi Q X, Chen W Y, et al. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility[J]. Proc Natl Acad Sci U S A,2007,104(23):9816-9821.
    [51]Hernández-González E O, Trevi?o C L, Castellano L E, et al. Involvement of CFTR in Mouse Sperm Capacitation[J]. J Biol Chem,2007,282(33):24397-24406.
    [52]Grubb B R, Rogers T D, Kulaga H M, et al. Olfactory epithelia exhibit progressive functional and morphological defects in CF mice[J]. Am J Physiol Cell Physiol,2007,293(2):C574-C583.
    [53]Dif F, Marty C, Baudoin C, et al. Severe osteopenia in CFTR-null mice[J].Bone.2004,35(3):595-603
    [54]Zheng X Y, Chen G A, Wang H Y. Expression of cystic fibrosis transmembrane conductance regulator in human endometrium[J]. Hum Reprod,2004,19(12):2933-2941.
    [55]Brochiero E, Dagenais A, Privé A, et al. Evidence of a functional CFTR Cl(-) channel in adult alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol,2004, 287(2):L382-L392.
    [56]Robert R, Norez C, Becq F. Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl- transport of mouse aortic smooth muscle cells[J]. J Physiol,2005,568(Pt 2): 483-495.
    [57]Robert R, Thoreau V, Norez C, et al. Regulation of the cystic fibrosis transmembrane conductance regulator channel by beta-adrenergic agonists and vasoactive intestinal peptide in rat smooth muscle cells and its role in vasorelaxation[J]. J Biol Chem,2004,279(20):21160-21168.
    [58]Gao Z, Sun H Y, Lau C P, et al. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes[J]. J Mol Cell Cardiol, 2007 ,42(1):98-105.
    [59]Xu W M, Shi Q X, Chen W Y, et al. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility[J]. Proc Natl Acad Sci,2007,104(23):9816-9821.
    [60]Hernández-González E O, Trevi?o C L, Castellano L E, et al. Involvement of CFTR in Mouse Sperm Capacitation[J]. J Biol Chem.2007,282(33):24397-24406.
    [61]Grubb B R, Rogers T D, Kulaga H M, et al. Olfactory epithelia exhibit progressive functional and morphological defects in CF mice. Am J Physiol Cell Physiol. 2007,293(2):C574-83.
    [62]The Cystic Fibrosis Genetic Analysis Consortium. Cystic Fibrosis Mutation Data Base. http://www. genet. sickkids.on.ca/cftr.
    [63]Tsui L C and Durie P. Genotype and phenotype in cystic fibrosis[J]. Hosp Pract (Off Ed), 1997,15: 115-142.
    [64]Tsui L C: The spectrum of cystic fibrosis mutations[J].Trends Genet, 1992, 8:392-398.
    [65]Welsh M J, Smith A E: Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis[J]. Cell,1993,73:1251-1254.
    [66]Zielenski J, Tsui L C. Cystic fibrosis: Genotypic and phenotypic variations[J]. Annu Rev Genet,1995, 29:777-807.
    [67]The cystic fibrosis genotype-phenotype consortium. Correlation between genotype and phenotype in cystic fibrosis[J]. N Engl J Med, 1993, 329: 1308-1313.
    [68]Zielenski J. Genotype and phenotype in cystic fibrosis[J].Respiration, 2000,67(2):117-133.
    [69]Hamosh A, Rosenstein B J, Cutting G R.CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in nasal epithelial cells[J]. Hum Mol Genet,1992, 1:542-544.
    [70] Hamosh A, Trapnell B C, Zeitlin P L, et al. Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis[J]. J Clin Invest,1991, 88:1880-1885.
    [71] Hull J, Shackleton S , Harris A. Abnormal mRNA splicing resulting from three different mutations in the CFTR gene[J]. Hum Mol Genet,1993,2:689-692.
    [72]Howard M, Frizzell R A, Bedwell D M. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations[J].Nature Med,1996,4: 467-469.
    [73] Bedwell D M, Kaenjak A, Benos D, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line[J]. Nature Med,1997,3: 1280-1284.
    [74] Wilschanski M, Famini C, Blau H, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations[J]. Am J Respir Crit Care Med, 2000,161: 860-865.
    [75]Clancy J P, Bebok Z, Ruiz F,et al.Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis[J]. Am J Respir Crit Care Med,2001,163:1683-1692.
    [76]Clancy J P, Bebok Z, Jones J, et al. A controlled trial of gentamicin to suppress premature stop codons in CF patients[J]. Pediatr Pulmonol,1999,239-240.
    [77]Wilschanski M,Yahav Y, Yaacov Y, et al. Gentamicin induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations[J]. N Engl J Med,2003,349: 1433-1441.
    [78]Keeling K, Manuvakhova M, Bedwell D M.Structural features of aminoglycosides that mediate the suppression of premature stop mutations within disease models[J]. Pediatr Pulmonol,1999,19:239.
    [79]Thomas P J, Pedersen P L. Effects of the ΔF508 mutation on the structure, function, and folding of the first nucleotide-binding domain of CFTR[J]. J Bioenerg Biomembr,1993, 25:11-19.
    [80]Cheng S H, Gregory R J, Marshall J, et al.Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis[J]. Cell,1990, 63:827-834.
    [81]Ward C L, Kopito R R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins[J]. J Biol Chem,1994, 269(41):25710-25718.
    [82]Ward C L, Omura S, Kopito R R.Degradation of CFTR by the ubiquitinproteasome pathway[J]. Cell,1995, 83:121-127.
    [83]Xiong X, Chong E, Skach W R. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductanceregulator is linked to retrograde translocation from the ER membrane[J]. J Biol Chem,1999, 274:2616-2624.
    [84]Yang Y,Janich S,Cohn J A,et al. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment[J]. Proc Natl Acad Sci,1993,90: 9480-9484.
    [85]Brown C R, Hong-Brown L Q, Welch W J. Correcting temperature-sensitive protein folding defects[J].J Clin Invest,1997,99:1432-1444
    [86]Egan M E, Schwiebert E M, Guggino W B:Differential expression of ORCC and CFTR induced by low temperature in CF airway epiethelial cells[J]. Am J Physiol,1995,268:C243-C251.
    [87]Brown C R, Hong-Brown L Q,Biwersi J, et al. Chemical chaperones correct the mutant phenotype of the ΔF508 cystic fibrosis transmembrane conductance regulator protein [J].Cell Stress Chaperones,1996, 1:117-125.
    [88] Sato S, Ward C L, Krouse M E, et al. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation [J]. J Bio Chem,1996,271:635-638.
    [89]Bebok Z, Venglarik C J, Panczel Z, et al. Activation ofΔF F508 CFTR in an epithelial monolayer[J]. Am J Pysiol,1998,275:C599-C607.
    [90]Wang X T, Leung S, Guggino S E . Organic solutes repaire the processing defect ofΔF508 cystice fibrosis transmembrane conductance regulator protein[J]. Pediatr Plulmonol,1999,S19:169.
    [91]Fulmer S B, Schwiebert E M, Morales M M,et al. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents[J]. Proc Natl Acad Sci USA,1999,92:6832-6836.
    [92]McNicholas C M, Guggino W B, Schwiebert E M,et al.Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP binding cassette transporter cystic fibrosis transmembrane regulator[J]. Proc Natl Acad Sci USA,1996,93: 8083 - 8088.
    [93]Reenstra W W, Yurko-Mauro K, Dam A, et al. CFTR chloride channel activation by genistein: the role of serine/threonine protein phosphatases[J]. Am J Physiol.1996,271:650-657.
    [94]Yang I C, Cheng T H, Wang F, et al.Modulation of CFTR chloride channels by calyculin A and genistein[J]. Am J Physiol.1997, 272:142-155.
    [95]Weinreich F, Wood P G, Riordan J R, et al. Direct action of genistein on CFTR[J]. Pflugers Arch, 1997,434:484-491.
    [96]Randak C, Auerswald E A, Assfalg-Machleidt I, et al. Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein[J]. Biochem J,1999, 340: 227- 235.
    [97]Illek B, Zhang L, Lewis N C, et al. Defective function of the cystic fibrosis causing missense mutation G551D is recovered by genistein[J]. Am J Physiol,1999, 277: C833- C839.
    [98] Akabas M H, Kaufmann C, Cook T A, et al. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator[J]. J Biol Chem,1994,269:14865-14868.
    [99] Vankeerbergher A, Wei L, Jaspers M, et al. Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator[J]. Hum Mol Genst,1998a,7:1761-1769.
    [100] Vankeerbergher A, Wei L, Teng H, et al. Characterization of mutations located in exon 18 of the CFTR gene[J]. FEBS Lett,1998b,437:1-4.
    [101]Drumm M L, Steagall W K, Kelley T J, et al. Phosphodiesterase inhibitor stimulated chloride secretion from gut and respiratory epithelial[J] . Pediatr Pulmonol, 1998,S17:168-169.
    [102] Clancy J P, Ruiz F E, Sorscher E J. Adenosine and its nucleotides activate wild-type and R117H CFTR through an A2B receptor-coupled pathway[J]. Am J Physiol, 1999,276:C361-C369.
    [103] Chiba-Falek O, Kerem E, Shoshani T, et al.The molecular basis of disease variability among cystic fibrosis patients carrying the 3849+10 kb C -T mutation[J]. Genomics,1998, 53:276-283.
    [104] Chiba-Falek O, Parad R B, Kerem E, et al.Variable levels of normal RNA in different fetal organs carrying a cystic fibrosis transmembrane conductance regulator splicing mutation[J]. Am J Respir Crit Care Med,1999, 159:1998-2002.
    [105]de Meeus A, Guittard C, Desgeorges M, et al. Genetic findings in congenital bilateral aplasia of vas deferens patients and identification of six nove mutations[J]. Hum Mutat, 1998,11:480.
    [106]Lissens W, Mahmoud K Z, EI Gindi, et al. Molecular analysis of the cystic fibrosis gene reveals a high frequency of the intron 8 splice variant 5T in Egyptian males with congenital bilateral absence of the vas deferens[J]. Mol Hum Reprod, 1999,5:10-13.
    [107] De Braekeleer M, Allard C, Leblanc JP, et al.Genotype-phenotype correlation in cystic fibrosis patients compound heterozygous for the A455E mutation[J]. Hum Genet,1997,101:208-211.
    [108] Sheppard D N, Ostedgaard L S, Winter M C et al. Mechanism of dysfunction of two nucleotide binding domain mutations in cystic fibrosis transmembrane conductance regulator that are associated with pancreatic sufficiency[J].EMBO J ,1995,14:876-883.
    [109]Maitra R, Shaw C, Stanton B A, et al.Increases in CFTR mRNA expression, protein trafficking and functional membrane expression by systemic chemotherapy drugs[J]. Pediatr Pulmonol,1999, 19:187.
    [110] Cafferata E G, Gonzalez-Guerrico A M, Giordano L, et al.Interleukin-1beta regulates CFTR expression in human intestinal T84 cells[J]. Biochim Biophys Acta ,2000, 1500:241-248.
    [111] Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway[J]. Science,1999,286:1882-1888.
    [112] Thibodeau P, Brautigam C A, Machius M,et al. Side chain and backbone contributions of Phe508 to CFTR folding[J]. Nat Struct Mol Biol, 2005,12:10-16.
    [113] Lewis H A, Buchanan S G, Burley S K,et al. Structure of nucleotide binding domain 1 of the cystic fibrosis transmembrane conductance regulator[J]. J EMBO, 2004,23:282-293.
    [114] Qu B H, Thomas PJ. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway[J]. J Biol Chem.1996,271:7261-7264.
    [115] Du K, Sharma M, Lukacs G L. TheΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR[J]. Nat Struct Mol Biol,2005,12: 17-25.
    [116] Chen E Y, Bartlett M C, Loo T W,et al. TheΔF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator[J].J Biol Chem,2004, 279:39620- 39627.
    [117]Meacham G C, Patterson C, Zhang W, et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation[J].Nat Cell Biol, 2001,3:100-105.
    [118] Younger J M, Ren H Y, Chen L,et al. A foldable CFTR ΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase[J].J Cell Biol,2004,167:1075-1085.
    [119] Dalemans W. Altered chloride ion channel kinetics associated with theΔF508 cystic fibrosis mutaion[J]. Nature, 1991,354:526-528.
    [120]Haws C M, Nepomuceno I B, Krouse M E,et al. ΔF508-CFTR channels: kinetics,activation by forskolin,and potentiation by xanthines[J]. Am J Physiol,1996,270:C1544-C1555.
    [121] Fei Wang, Shawn Zeltwanger, Shenghui Hu, et al. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels[J].Journal of Physiology.2000,524,3: 637-648.
    [122] Li C, Ramjeesingh M, Reyes E, et al. The cystic fibrosis mutation (ΔF508) does not influence the chloride channel activity of CFTR[J]. Nat Genet,1993,3:311-316.
    [123] Kleizen B, Braakman I, de Jonge H R. Regulated trafficking of the CFTR chloride channel[J]. Eur J Cell Biol,2000,79:544-556.
    [124] Sharma M, Benharouga M, Hu W,et al. Conformational and temperature-sensitive stability defects of theΔF508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments [J]. J Biol Chem,2001,276:8942-8950.
    [125] Lukacs G L, Chang X B, Bear C, et al. TheΔF508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells[J]. J Biol Chem,1993,268:21592-21598.
    [126] Heda G D, Tanwani M, Marino C R. The ΔF508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells[J]. Am J Physiol Cell Physiol,2001,280: C166-C174.
    [127]Swiatecka-Urban A, Brown A, Moreau-Marquis S, et al . The short apical membrane half-life of rescuedΔF508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis ofΔF508-CFTR in polarized human airway epithelial cells[J]. J Biol Chem,2005,280(44): 36762-36772.
    [128] Zhang X M, Wang X T, Yue H, et al. Organic solutes rescue the functional defect in ΔF508 cystic fibrosis transmembrane conductance regulator[J]. J Biol Chem,2003,278:51232-51242.
    [129]Gekko K, Timasheff S N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol–water mixtures[J]. J Biochemistry, 1981, 20: 4667-4676.
    [130] Gekko K, Ito H. Competing solvent effects of polyols and guanidine hydrochloride on protein stability[J]. J Bio chem.(Tokyo),1990,107:572-577.
    [131] Dormer R L, Dérand R, McNeilly C M, et al. Correction ofΔF508-CFTR activity with benzo(c) quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells[J]. J Cell Sci,2001, 114:4073-4081.
    [132]Marivingt-Mounir C, Norez C, Dérand R, et al. Synthesis, SAR,crystal structure,and biological evaluation of benzoquinoliziniums as activators of wild-type and mutant cystic fibrosis transmembrane conductance regulator channels[J]. J Med Chem,2004, 47: 962-972.
    [133]Dormer R L, Harris C M, Clark Z,(2005) Sildenafil (Viagra) correctsΔF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis[J].Thorax,2005,60:55-59.
    [134]Pedemonte N, Lukacs G L, Du K, et al. Small-molecule correctors of defectiveΔF508-CFTR cellular processing identified by high-throughput screening[J]. J Clin Invest,2005,115:2564-2571.
    [135]Loo T W, Bartlett M C, Clarke D M. Rescue of folding defects in ABC transporters using pharmaco- logical chaperones[J]. J Bioenerg Biomembr,2005,37:501-507.
    [136]Van Goor F, Straley K S, Cao D, et al. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules[J]. Am J Physiol Lung Cell Mol Physiol,2006,290: L1117-L1130.
    [137]Wang Y, Bartlett M C, Loo T W, et al. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones[J]. Mol Pharmacol,2006,70:297-302.
    [138] Loo T W, Bartlett M C, Wang Y, et al. (2006) The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants[J]. Biochem J,2006,395:537-542.
    [139] Graner M W, Bigner D D. Chaperone proteins and brain tumors: potential targets and possible therapeutics[J]. Neuro-oncol,2005,7, 260-278.
    [140] Jiang C, Fang S L, Xiao Y F,et al. Partial restoration of cAMP-stimulated CFTR chloride channel activity in delta F508 cells by deoxyspergualin[J]. Am J Physiol,1998,275:C171-C178.
    [141] R C Rubenstein, M E Egan, and P L Zeitlin . In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR[J]. J Clin Invest, 1997, 100(10):2457-2465.
    [142] Roy J, Denovan-Wright E M, Linsdell P,et al. Exposure to sodium butyrate leads to functional downregulation of calcium-activated potassium channels in human airway epithelial cells[J]. Pflugers Arch. 2006, 453(2):167-176.
    [143] Amaral M D. Therapy through chaperones: sense or anti-sense? Cystic fibrosis as a model disease[J]. J Inherit Metab Dis.2006,29:477-487.
    [144] Farinha C M, Nogueira P, Mendes F,et al. The human DnaJ homologue (Hdj)-1/heatshock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70[J]. Biochem J,2002 ,366(Pt 3):797-806.
    [145] Roy J, Denovan-Wright E M, Linsdell P, et al.Exposure to sodium butyrate leads to functional downregulation of calcium-activated potassium channels in human airway epithelial cells[J]. Pflugers Arch.,2006,453(2):167-176.
    [146] Egan M E, Pearson M, Weiner S A, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects[J]. Science,2004,304:600-602.
    [147]Norez C, Antigny F, Becq F, et al. Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenousΔF508-CFTR trafficking in airway epithelial cells[J]. Traffic,2006,7:562-573.
    [148]Norez C, Noel S, Wilke M , et al. Rescue of functionalΔF508-CFTR channels in cystic fibrosis epithelial cells by the a-glucosidase inhibitor miglustat[J]. FEBS Lett,2006,580:2081-2086.
    [149]Norez C, Noel S , Wilke M , et al. Rescue of functionalΔF508-CFTR channels in cystic fibrosis epithelial cells by the a-glucosidase inhibitor miglustat[J]. FEBS Lett,2006,580:2081-2086.
    [150] Farinha C M, Amaral M D. Most ΔF508-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin[J]. Mol Cell Biol ,2005,25:5242-5252.
    [151]Wang W K, Bernard G Li, K L Kirk,et al. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains[J]. J Biol Chem,2007, 282:4533-4544.
    [152]Grubb B R, Gabriel S E, Mengos A,et al. SERCA pump inhibitors do not correct biosynthetic arrest ofΔF508 CFTR in cystic fibrosis[J]. Am J Respir Cell Mol Biol,2006,34: 355-363.
    [153] Mall M, Kunzelmann K. Correction of the CF defect by curcumin: hypes and disappointments[J]. Bioessays,2005, 27:9-13.
    [154] Grubb B, Lazarowski E, Knowles M,et al. Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia[J]. Am J Respir Cell Mol Biol,1993,8 :454-460.
    [155]Kelley T J, Al-Nakkash L, Drumm M L. CFTR-mediated chloride permeability is regulated by type III phosphodiesterases in airway epithelial cells[J]. Am J Respir Cell Mol Biol,1995,13:657-664.
    [156]Kelley T J, Nakkash L Al, Cotton C U,et al. Activation of endogenousΔF508 cystic fibrosis transme- mbrane conductance regulator by phosphodiesterase inhibition[J]. J Clin Invest,1996,98:513-520.
    [157]Illek B, Fischer H, Machen T E. Alternate stimulation of apical CFTR by genistein in epithelia[J]. Am J Physiol,1996,270:265-275.
    [158]Illek B, Fischer H. Flavonoids stimulate Cl- conductance of human airway epithelium in vitro and in vivo[J]. Am J Physiol,1998,275:902-910.
    [159] Galietta L J, Springsteel M R, Eda M,et al.Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds[J]. J Biol Chem,2001,276:19723-19728.
    [160] Springsteel M, Galietta L J, Ma T,et al. Benzoflavone activators of the cystic fibrosis transmembrane conductance regulator: a pharmacophore model of flavone-CFTR binding[J]. Bioorgan Med Chem, 2003, 11:4113-4120.
    [161]Gribkoff V K, Champigny G, Barbry P,et al.The substituted benzimidazolone NS004 is an opener of the cystic fibrosis chloride channel[J]. J Biol Chem, 1994,269(15):10983-10986.
    [162] Galietta L J, Springsteel M F, Eda M,et al.Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds[J]. J Biol Chem, 2001,276(23):19723-19728.
    [163] Ma T, Vetrivel L, Yang Y, et al.High-affinity activators of CFTR chloride conductance identified by high-throughput screening[J]. J Biol Chem,2002,277:37235-37241.
    [164] Berger A L, Randak C O, Ostedgaard L S, et al. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity[J]. J Biol Chem, 2005,280(7):5221-5226.
    [165] Ai T, Bompadre S G, Wang X, et a1. Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents[J]. Mol Pharmacol,2004, 65(6): 1415-1426.
    [166] Blumenthal M. Asian ginseng: potential therapeutic uses. Adv Nurse Pract,2001,9(2):26-33.
    [167]Lee B H, Jeong S M, Ha T S, et al. Ginsenosides regulate ligand-gated ion channels from the outside. Mol Cells,2004,18(1):115-121.
    [168]deCarvalho A C, Ndi C P, Tsopmo A,et al. A novel natural product compound enhances cAMP- regulated chloride conductance of cells expressing CFTR[delta]F508[J]. Mol Med, 2002 ,8(2):75-87.
    [169]Fischer H, Schwarzer C, Illek B.Vitamin C controls the CFTR chloride channel[J]. Proc Natl AcadSci,2004,101(10):3691-3696.
    [170] Sousa M, Ousingsawat J, Seitz R,et al. An extract from the medical plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion.A potential treatment for cystic fibrosis[J]. Mol Pharmacol, 2007,71(1):366-376.
    [171] Khan T Z,Wagener J S, Bost T, et al. Early pulmonary inflammation in infants with cystic fibrosis[J]. Am J Respir Crit Care Med, 1995,151:1075-1082.
    [172] Imundo L, Barasch J, Prince A, et al. Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface[J]. Proc Natl Acad Sci USA, 1995,92:3019-3023.
    [173] Smith J J, Travis S M, Greenberg E P, et al. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid[J]. Cell, 1996,85:229-236.
    [174] Kopelman H, Durie P, Gaskin K, et al. Pancreatic fluid secretion and protein hyper concentration in cystic fibrosis[J]. N Engl J Med, 1985,312:329-334.
    [175]Lanng S, Thornsteinsson B, Lund-Anderen C, et al. Diabetes mellitus in Danish cystic fibrosis patients: prevalence and late diabetic complications[J]. Acta Paediatr,1994,83: 72-77.
    [176]Holl R W, Wolf A, Thon A, et al. Insulin resistance with altered secretory kinetics and reduced proinsulin in cystic fibrosis patients[J].J Pediatr Gastroenterol Nutr,1997,25(2):188-193.
    [177] Eggermont E, De Boeck K. Small-intestinal abnormalities in cystic fibrosis patients[J]. Eur J Pediatr,1991,150(12):824-828.
    [178]Shwachman H, I Antonowicz. Studies on meconium. In: Gastroenterology and Nutrition in Infancy[J], edited by E. Lebenthal. New York: Raven, 1981, p. 83-93.
    [179]Park R W, Grand R J. Gastrointestinal manifestations of cystic fibrosis: a review[J]. Gastroenter- ology,1981,81(6):1143-1161.
    [180]Knowles M R, M J Stutts, A Spock, et al. Abnormal ion permeation through cystic fibrosis respiratory epithelium[J]. Science, 1983,221: 1067-1070.
    [181]Quinton P M. Chloride impermeability in cystic fibrosis[J]. Nature,1983,301(5899):421-422.
    [182] Cohn J A, Strong T V, Picciotto M R,et al. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells[J]. Gastroenterology,1993,105(6):1857-1864.
    [183] Peters R H, French P J, van Doorninck J H, et al. CFTR expression and mucin secretion in cultured mouse gallbladder epithelial cells[J].Am J Physiol,1996,271(6 Pt 1):1074-1083.
    [184]Roy C C, Weber A M, Morin C L, et al.Abnormal biliary lipid composition in cystic fibrosis. Effect of pancreatic enzymes[J]. N Engl J Med, 1977 ,15; 297(24): 1301-1305.
    [185]Nagel R A, Westaby D, Javaid A,et al. Liver disease and bile duct abnormalities in adults with cystic fibrosis[J]. Lancet,1989,2(8677):1422-1425.
    [186]O'Brien S, Keogan M, Casey M, et al.Biliary complications of cystic fibrosis[J]. Gut,1992,33(3): 387-391.
    [187] Oppenheimer E H, J R Esterly. Pathology of cystic fibrosis; review of the literature and comparison with 146 autopsied cases. In: perspectives in pediatric pathology, edited by H. S. Rosenberg and R. Bolande. New York: year Book, 1976,p.241-278.
    [188]McCaffery K, Olver R E, Franklin M, et al. Systematic review of antistaphylococcal antibiotic therapy in cystic fibrosis[J]. Thorax, 1999,54:380-383.
    [189]Mukhopadhyay S, Singh M, Cater J I, et al. Nebulised anti-pseudomonal antibiotic therapy in cystic fibrosis: a meta-analysis of benefits and the risks[J]. Thorax ,1996,551:364-368.
    [190]Armstrong D S, Grimwood K, Carlin J B, et al. Lower airway inflammation in infants and young children with cystic fibrosis[J]. Am J Resp Crit Care Med, 1997,156:1197-1204.
    [191]Konstan M W, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and aetiology[J]. Pediatr Pulmonol,1997,24:137-161.
    [192] Zahm J M, Gaillard D, Dupuit F, et al. Early alterations in airway mucociliary clearance and inflammation in the lamina propia in CF mice[J]. Am J Physiol (Cell Physiol 41),1997,2724: C853-C859.
    [193]Tabary O, Zahm J M, Himrasky J, et al. Selective upregulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro[J]. Am J Pathol,1998,153:921-930.
    [194] Knowles M R, Olivier K N, Hohneker K W, et al.Pharmacologic treatment of abnormal ion transport in the airway epithelium in cystic fibrosis[J]. Chest,1995, 107: S71-S76.
    [195]Hofmann T, Stutts M J, Ziersch A, et al. Effects of topically delivered benzamil and amiloride on nasal potential difference in cystic fibrosis[J]. Am J Respir Crit Care Med, 1998, 157: 1844-1849.
    [196]Mall M, Wissner A, Kühr J, et al. Inhibition of amiloride sensitive epithelial Na+ absorption by extracellular nucleotides in human normal and CF airways[J]. Am J Respir Cell Mol Biol, 2000, 23: 755-761.
    [197]Devor D C , Pilewski J M. UTP inhibits Na+ absorption in wild-type andΔF508 CFTR-expressing human bronchial epithelia[J]. Am J Physiol, 1999, 276: C827-C837.
    [198]Sabater J R, Mao Y M, Shaffer C, et al. Aerosolization of P2Y2-receptor agonists enhances mucociliary clearance in sheep[J]. J Appl Physiol,1999, 87: 2191-2196.
    [199]Clarke L L, Boucher R C. Chloride secretory response to extracellular ATP in human normal and cystic fibrosis nasal epithelia[J]. Am J Physiol,1992,263: C348-C356.
    [200]Knowles M R, Clarke L L, Boucher R C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis[J]. N Engl J Med,1991, 325: 533-538.
    [201]Benali R, Pierrot D, Zahm J M, et al. Effect of extracellular ATP and UTP on fluid transport by human nasal epithelial cells in culture[J]. Am J Respir. Cell Mol Biol,1994, 10: 363-368.
    [202]Singh A K, Devor D C, Gerlach A C, et al. Stimulation of Cl- secretion by chlorzoxazone[J]. J Pharmacol Exp Ther, 2000, 292: 778-787.
    [203]Devor D C, Singh A K, Frizzell R A, et al. Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca2+-dependent K+ channel [J]. Am J Physiol,1996,271: L775-L784.
    [204] Mall M, Wissner A, Schreiber R, et al. Role of KVLQT1 in cAMP mediated Cl- secretion in human airways[J]. Am J Respir Cell Mol Biol, 2000, 23: 283-289.
    [205] Castellani C, GomezLira M, Frulloni L,et al.Analysis of the entire coding region ofthe cystic fibrosis transmembrane regulator gene in idiopathic pancreatitis[J].Hum Mutat,2001,18:166.
    [206]OckengaJ, SfuhrmannM, BallmannM,et al.Mutations of the cystic fibrosis gene, but not cationic trypsinogengene,are associated with recurrent or chronic idiopathic pancreatitis[J]. Am J Gastroenterol, 2000, 95: 2061-2067.
    [207]Audrezet M P, Chen J M, Le Marechal C, et al. Determination of the relative contribution of three genes: the cystic fibrosis transmembrane conductance regulator gene, the cationic trypsinogengene,and the pancreatic secretory trypsin inhibitor gene-to the etiology of idiopathic chronic pancreatitis[J].Eur J Hum Genet,2002,10:100-106.
    [208]Maire F, Bienvenu T, Ngukam A, et al. Frequency of CFTR gene mutations in idiopathic pancreatitis [J]. Gastroenterol Clin Biol,2003,27:398-402.
    [209]Cohn J A,Friedman K J,Noone P G,et al.Relation between Mutations of the cystic fibrosis gene and idiopathic pancreatitis[J]. N Engi J Med, 1998,339:653-658.
    [210]Kostuch M, Rudzki S, Semczuk A, et al. CFTR gene mutations in patients suffering from acute pancreatitis [J]. Med Sci Monit, 2002, 8: BR369-BR372.
    [211]Pezzilli R, Morselli-Labate A M,Mantovani V,et al. Mutations of the CFTR gene in pancreatic disease[J]. Pancreas, 2003, 27:332-336.
    [212]Heaton N D, Pryor J P. Vasa aplasia and cystic fibrosis[J]. Br J Urol,1990,66(5):538-540.
    [213]Anguiano A, Oates R D, Amos J, et al. Congential bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis[J]. JAMA,1992,267: 1794-1797.
    [214] Chillon M, Casals T, Mercier B, et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens[J]. N Engl J Med,1995,332: 1475-1480.
    [215]Giannella R A. Pathogenesis of acute bacterial diarrheal disorders[J].Annual Review of Medicine, 1981,32:341-357.
    [216] Resta-Lenert S, Barrett K E.Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2[J]. Gastroenterology,2002, 122:1070-1087.
    [217]de Zoysa I, Feachem R.Interventions for the control of diarrhoeal diseases among young children: rotavirus and cholera immunization[J]. Bull World Health Organ, 1985, 63:569-583.
    [218] Morris A P, Scott J K, Ball J M,et al.NSP4 elicits age-dependent diarrhea and Ca2R-mediated IS influx into intestinal crypts of CF mice[J]. Am J Physiol,1999,277:431-444.
    [219]Kunzelmann K, Mall M: Electrolyte transport in the mammalian colon: mechanisms and implications for disease[J]. Physiol Rev,2002, 82:245-248.
    [220]O’Donnell E K, Sedlacek R L, Singh A K, et al. Inhibition of enterotoxin-induced porcine colonic secretion by diarylsulfonylureas in vitro[J]. Am J Physiol,2000,279:1104-1112.
    [221] Ma T, Thiagarajah J R, Yang H, et al.Thiazolidinone CFTR inhibitor identified by highthroughput screening blocks cholera-toxin induced intestinal fluid secretion[J].J Clin Invest,2002, 110:1651-1658.
    [222] Sullivan L P,Wallace D P and Grantham J J . Epithelial Transport in Polycystic Kidney Disease . Physiol Rev, 1998,78:1165-1191.
    [223] Gabriel S E, Brigman K N, Koller B H,et al.Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science,1994 Oct 7;266(5182):107-109.
    [224] Inagaki N, Gonoi T,Clement J P,et al.Reconstitution of KATP:an inward rectifier subunit plus the sulfonylurea receptor [J]. Science,1995,270(17):1166-1170.
    [225] Taddei A, Folli C, Zegarra-Moran O,et al.Altered channel gating mechanism for CFTR inhibition by a high-affinity thiazolidinone blocker[J]. FEBS Lett, 2004,558(1-3):52-56.
    [226] Sonawane N D, Muanprasat C, Nagatani R Jr,et al. In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents[J.]J Pharm Sci, 2005,94(1): 134-143.
    [227] Muanprasat C, Sonawane N D, Salinas D,et al. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy[J]. J Gen Physiol,2004 ,124(2): 125-137.
    [228] Sonawane N D, Hu J, Muanprasat C,et al. Luminally active, nonabsorbable CFTR inhibitors as potential therapy to reduce intestinal fluid loss in cholera[J]. FASEB J,2006,20(1):130-132.
    [229] Sonawane N D, Zhao D, Zegarra-Moran O,et al.Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera[J]. Gastroenterology.2007,132(4): 1234- 1244.
    [230] Muanprasat C, Kaewmokul S, Chatsudthipong V.Identification of new small molecule inhibitors of cystic fibrosis transmembrane conductance regulator protein: in vitro and in vivo studies[J]. Biol Pharm Bull,2007,30(3):502-507.
    [231]Routaboul C, Norez C, Melin P,et al. Discovery of alpha-aminoazaheterocycle-methylglyoxal adducts as a new class of high-affinity inhibitors of cystic fibrosis transmembrane conductance regulator chloride channels[J]. J Pharmacol Exp Ther, 2007,322(3):1023-1035.
    [232] Fuller M D, Zhang Z R, Cui G,et al. Inhibition of CFTR channels by a peptide toxin of scorpion venom[J]. Am J Physiol Cell Physiol,2004,287(5):C1328-C1341.
    [233] Fuller M D, Zhang Z R, Cui G,et al. The block of CFTR by scorpion venom is state-dependent[J]. Biophys J ,2005,89(6):3960-3975.
    [234] Fuller M D, Thompson C H, Zhang Z R, et al.State-dependent inhibition of CFTR chloride channels by a novel peptide toxin[J]. J Biol Chem,2007,282: 37545-37555.
    [235] Linsdell P.Inhibition of cystic fibrosis transmembrane conductance regulator chloride channel currents by arachidonic acid[J]. J Physiol Pharmacol Linsdell P, 2000 ,78(6):490-499.
    [236]Zhou J J, Linsdell P. Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel[J]. Eur J Pharmacol,2007 ,1,563(1-3):88-91.
    [237] Linsdell P. Eur J Pharmacol. Direct block of the cystic fibrosis transmembrane conductance regulator Cl- channel by butyrate and phenylbutyrate[J]. 2001,12;411(3):255-260.
    [238] Gong X D, Linsdell P, Cheung K H,et al. Indazole inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels in rat epididymal epithelial cells[J].Biol Reprod,2002,67(6): 1888-1896.
    [239] Gong X D, Wong Y L, Leung G P,et al. Lonidamine and analogue AF2785 block the cyclic adenosine 3', 5'-monophosphate-activated chloride current and chloride secretion in the rat epididymis[J]. Biol Reprod, 2000,63(3):833-838.
    [240] Gong X, Burbridge S M, Lewis A C, Mechanism of lonidamine inhibition of the CFTR chloride channe[J].Br J Pharmacol, 2002,137(6):928-936.
    [241] Fischer H, Machen T E, Widdicombe J H,et al.A novel extract SB-300 from the stem bark latex of Croton lechleri inhibits CFTR-mediated chloride secretion in human colonic epithelial cells[J]. J Ethnopharmacol,2004,93(2-3):351-357.
    [242] Pariwat P, Homvisasevongsa S, Muanprasat C, et al.A natural plant derived- dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion[J]. J Pharmacol Exp Ther, 2008,324(2): 798-805.
    [243] Becq F, Mettey Y, Gray M A,et al.Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel[J]. J Biol Chem, 1999,274(39):27415-27425.
    [244] Marivingt-Mounir C, Norez C, Dérand R,et al. Synthesis, SAR, crystal structure, and biological evaluation of benzoquinoliziniums as activators of wild-type and mutant cystic fibrosis transmembrane conductance regulator channels[J]. J Med Chem, 2004,47(4):962-972.
    [245]Duszyk M, MacVinish L, Cuthbert A W. Phenanthrolines – a new class of CFTR chloride channel openers[J]. Br J Pharmacol, 2001,134(4):853-864.
    [246] Al-Nakkash L, Hu S, Li M,et al.,A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs[J]. J Pharmacol Exp Ther, 2001,296(2):464-472.
    [247] Singh S, Syme C A, Singh A K,et al. Benzimidazolone Activators of Chloride Secretion: Potential Therapeutics for Cystic fibrosis and Chronic Obstructive Pulmonary Disease[J].J Pharmacol Exp Ther,2001,296(2):600-611.
    [248] Caci E, Folli C, Zegarra-Moran O,et al. CFTR activation in human bronchial epithelial cells by novel benzoflavone and benzimidazolone compounds[J].Am J Physiol Lung Cell Mol Physiol, 2003,285(1): L180-L188.
    [249] Bulteau L, Dérand R, Mettey Y,et al. Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells[J].Am J Physiol Cell Physiol,2000,279(6):C1925-C1937.
    [250] Arispe N, Ma J, Jacobson K A, et al. Direct activation of cystic fibrosis transmembrane conductance regulator channels by 8-cyclopentyl-1,3-dipropylxanthine (CPX) and 1,3-diallyl-8-cyclohexylxanthine (DAX[J]).J Biol Chem,1998,273(10): 5727-5734.
    [251] Cohen B E, Lee G, Jacobson K A, et al. 8-cyclopentyl-1,3-dipropylxanthine and other xanthines differentially bind to the wild-type and delta F508 first nucleotide binding fold (NBF-1) domains of the cystic fibrosis transmembrane conductance regulator[J].Biochemistry, 1997,36(21):6455-6461.
    [252] Chappe V, Mettey Y, Vierfond J M, et al. Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel[J].Br J Pharmacol,1998,123(4):683-693.
    [253] McCarty N A, Standaert T A,Teresi M, et al. A phase I randomized, multicenter trial of CPX in adult subjects with mild cystic fibrosis[J]. Pediatr Pulmonol,2002 Feb,33(2):90-98.
    [254] Guay-Broder C, Jacobson K A, Barnoy S,et al. A1 receptor antagonist 8-cyclopentyl-1,3- dipropylxanthine selectively activates chloride efflux from human epithelial and mouse fibroblast cell lines expressing the cystic fibrosis transmembrane regulator delta F508 mutation[J]. Biochemistry,1995 Jul 18,34(28):9079-9087.
    [255] Kunzelmann K, Briel M, Schreiber R, et al. No evidence for direct activation of the cystic fibrosis transmembrane conductance regulator by 8-cyclopentyl-1,3-dipropylxanthine[J].Cell Physiol Biochem,1998,8(4):185-193.
    [256] Pedemonte N, Boido D, Moran O, et al. Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations[J]. Mol Pharmacol,2005,68(6):1736-1746.
    [257] Pedemonte N, Diena T, Caci E, et al. Structure-activity relationship of 1,4-dihydropyridines as potentiators of the cystic fibrosis transmembrane conductance regulator chloride channel[J]. Mol Pharmacol,2007,72(1):197-207.
    [258]Hwang T C, Wang F, Yang I C, et al. Genistein potentiates wild-type and delta F508-CFTR channel activity[J]. Am J Physiol, 1997,273(3 Pt 1):C988-C998.
    [259] Cermak R, Vujicic Z, Kuhn G, et al.The secretory response of the rat colon to the flavonol quercetin is dependent on Ca2+-calmodulin[J]. Exp Physiol,2000,85(3): 255-261.
    [260]Ko W H, Law V W, Yip W C, et al. stimulation of chloride secretion by baicalein in isolated rat distal colon[J]. Am J Physiol Gastrointest Liver Physiol, 2002,282(3): G508-C518.
    [261] Sousa M, Ousingsawat J, Seitz R, et al. An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis[J].Mol Pharmacol, 2007,71(1):366-376.
    [262]Garcia-Villar R, Leng-Peschlow E, Ruckebusch Y. Effect of anthraquinone derivates on canine and rat intestinal motility[J].J Pharmac,1980,32:323-329.
    [263] Hardcastle J D, Wilkins J L. The action of sennosides and related compounds on human colon and rectum[J].Gut 1970,11:1038-1042.
    [264] Leng-Peschlow E. Dual effect of orally administered sennosides on large intertine transit and fluid absorption in the rat[J].J Pharm Pharmac, 1986,38:606-610.
    [265] Okada T, Uber den . Mechanisms der Sennaabfuhrung[J]. Tohoku J exp Med,1940,38:33-44
    [266] Capasso F, Mascolo N, Autore G, et al. Laxatives and the production of autacoids by rat colon[J].Pharm Pharmacol,1986,38:627-662.
    [267] E Beuble, A Schirgi-Degen. Serotonin antagonists inhibit sennoside induced fluid secretion and diarrhea[J]. Pharmacology, 1993,47(suppl 1):64-69.
    [268] Chignell C F.The effect of phenolphthalein and other purgative drugs on rat intestinal(Na+K+) adenosine triphosphatase[J]. Biochem Pharmac,1968,17:1207-1212.
    [269] Wanitschke R, Karbach U. Influence of rhein on rat colonic Na+,K+-ATPase and permeability in vitro[J]. Pharmacology, 1988,36 Suppl 1:98-103.
    [270] Beubler E, Kollar G. Stimulation of PGE2 synthesis and water and electrolyte secretion by senna anthraquinones is inhibited by indumenthacin[J].J Pharmac,1985,37:248-251.
    [271] Donowitz M, Wicks J, Battisti L,et al.Effect of Senokot on rat intestinal electrolyte transport. Evidence of Ca2+ dependence[J]. Gastroenterology, 1984 ,87(3):503-512.
    [272] K J Goerg, R Wanitschke, M Schwarz K H. Meyer zum buschenfelde.Rhein stimulates active chloride secretion in the short-circuited rat colonic mucosa[J]. Pharmacology, 1988,36:(suppl 1)111-119.
    [273] W Clauss, G Domokos, Elke Leng-Peschlow. Effect of Rhein on electrogenic chloride secretion in rabbit distal colon[J].Pharmacology, 1988,36:(suppl 1)104-110.
    [274] Beubler E, Kollar G. Prostaglandin mediated action of sennosides[J].Pharmacology, 1988,36(suppl 1):85-91.
    [275] Frieling T, Rupprecht C, Schemann M. Rhein stimulates electrogenic chloride secretion by activation of submucosal neurons in guinea pig colon[J].Pharmacology,1993,47(suppl 1):70-76.
    [276] Beubler E, Juan H. Effect of ricinoleic acid and other laxatives on net water flux and prostaglandin E release by the rat colon[J].J Pharm Pharmacol, 1979,31:681-685.
    [277] Verhaeren EHC, Verbruggen A H, Lemli JA.The effect of 2,4,6-traminopyrimidine on the increased mucosal permeability of guinea-pig colonic mucosa, following administration of 1,8-dihydroxyanthrax- quinone, salicylic acid and dinitrophenol[J].Pharm Weekbl, 1981a,3:111-115.
    [278] Verhaeren EHC, Dreessen M J, Lemli JA. Influence of 1,8-dihydroxyanthraquinone and loperamide on the paracellular permeability across colonic mucosa[J].J Pharmac, 1981b,33:526-528.
    [279] Verhaeren EHC, Geeraerts VCJ, Lemli JA. The antagonistic effect of morphine on rhein stimulated fluid ,electrolyte and glucose movements in guinea-pig perfused colon[J].J Pharm Pharmac,1987, 39:39-44
    [280]王云法.小剂量苄丙酮香豆素钠在治疗风湿性心脏病合并左心室血栓中的应用[J].徐州医学院学报,2001,21(30):238.
    [281]Chen K S, Wu C C, Chang F R, et al. Bioactive Coumarins from the Leaves of Murraya Omphalo- carpa [J]. Planta Medica,2003,69(7): 654-657..
    [282]Moore J P,Stevenson M. New targets for inhibitors of HIV-1 replication [J]. Nat Rev Mol Cell Biol,2000,1:40-49.
    [283]Miller M D,Hazuda D J. Newantiretroviral agents: Looking beyond protease and reverse transcriptase [J]. Curr Opin Microbiol,2001,4:535-539.
    [284] FDA talk paper: FDA approves Viread for HIV-1 infection. Information may be found at internet at: http://www.fda.gov/bbs/topics/ANSWERS/2001/ANS01111.html.
    [285]Swanstrom R, Erona J. Human immunodeficiency virus type-1 protease inhibitors: Therapeutic successes and failures, suppression and resistance [J]. Pharmacol Ther, 2000,86:145-170.
    [286]Loveday C. Nucleoside reverse transcriptase inhibitor resistance [J]. J AIDS 2001;26:S10-S24.
    [287]Pellegrin I, Garrigue I, Caumont A, et al. Persistence of zidovudine-resistance mutations in HIV-1 isolates from patients removed from zidovudine therapy for at least 3 years and switched to a stavudine-containing regimen [J]. AIDS(London,UK),2001, 15:1071-1073.
    [288] Vlietinck A J, De Bruyne T, Apers S, et al. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection [J]. Planta Med,1998, 64:97-109.
    [289] Lee T T, Kashiwada Y, Huang L, et al. Suksdorfin: An anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins,and synergistic effects with anti-AIDS nucleosides [J]. Bioorg Med Chem Lett,1994,2:1051-1056.
    [290]Huang L, Kashiwada Y, Cosentino L M, et al. 3',4'-Di-0-(-)-camphanoyl-(+)-cis- khellactone and Related Compounds: A New Class of Potent Anti-HIV Agents [J]. Bioorg Med Chem Lett, 1994, 4:593-598.
    [291]Kashman Y, Gustafson K R, Fuller R W, et al. HIV inhibitory natural products. Part 7. The calanolides,a novel HIVinhibitory class of coumarin derivatives from the tropical rainforest tree,Calophyllum lanigerum [J]. J Med Chem,1992,35: 2735-2743.
    [292]Dharmaratne HRW, Wanigasekera WMAP, Mata-Greenwood E, et al. Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated from Calophyllum cordato-oblongum[J]. Planta Med,1998,64:460-461.
    [293]Patil A D, Freyer A J, Eggleston D S, et al.The inophyllums,novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn[J]. J Med Chem,1993,36:4131-4138.
    [294] Spino C, Dodier M, Sotheeswaran S. Anti-HIV coumarins from Calophyllum seed oil[J]. Bioorg Med Chem Lett,1998,8:3475-3478.
    [295]McKee T C, Covington C D, Fuller R W, et al.Pyranocoumarins from tropical species of the genus Calophyllum: Achemotaxonomic study of extracts in the National Cancer Institute collection[J]. J Nat Prod,1998,61:1252-1256.
    [296]De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection[J]. Med Res Rev,2000,20:323-349.
    [297]Patil A D, Hertzberg R P, Dreyer G B, et al. Coumarin derivatives as retroviral inhibitors[J]. 1994,PCT:WO9414789.
    [298]Pellegrin I, Garrigue I, Caumont A, et al. Persistence of zidovudine-resistance mutations in HIV-1 isolates from patients removed from zidovudine therapy for at least 3 years and switched to a stavudine-containing regimen[J]. AIDS (London,UK),2001,272-1073.
    [299]Fellay J, Boubaker K, Ledergerber B, et al. Prevalence of adverse events associated with potent antiretroviral treatment: Swiss HIV Cohort Study[J]. Lancet,2001,358:1322-1327.
    [300]Vlietinck A J, De Bruyne T, Apers S, et al. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection[J]. Planta Med,1998,64:97-109.
    [301]Hudson J,T owrs GHN. Phytomedicines as antivirals[J]. Drugs Future,1999,24:295-320.
    [302]Yang S S, Cragg G M, Newman D J, et al. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics Program [J]. J Nat Prod,2001, 64:265-277.
    [303]Nishino H, Okuyama T, Takata M, et al. Studies on the anti-tumor-promoting activity of naturally occurring substances. IV. Pd-II [(+)anomalin,(+)praeruptorin B],a seselin-type coumarin,inhibits the promotion of skin tumor formation by 12-O-tetradecanoylphorbol-13-acetate in 7,12-dimethylbenz [a]anthracene-initiated mice[J]. Carcinogenesis,1990,11:1557-1561.
    [304]Tsai I L, Wun M F, Teng C M, et al. Anti-platelet aggregation constituents from Formosan Toddalia asiatica [J]. Phytochemistry,1998,48:1377-1382.
    [305]Currens M J, Mariner J M, McMahon J B, et al. Kinetic analysis of inhibition of human immunodef- iciency virus type-1 reverse transcriptase by calanolide A [J]. J Pharmacol Exp Ther,1996,279:652-661.
    [306]Buckheit R W, Russell J D, Xu Z Q, et al. Anti-HIV-1 activity of calanolides used in combination with other mechanistically diverse inhibitors of HIV-1 replication [J]. Antiviral Chem hemother, 2000, 11:321-327.
    [307] Sarawak Medichem Pharmaceuticals,Inc. Calanolide A development plan. www.sarawak-medichem. com/cala/dev.html.
    [308] Seo E K, Chai H B, Chagwedera T E, et al. -(4-Hydroxyphenethenyl)-4,7-dimethoxycoumarin, a new constituent of Monotes engleri [J]. Planta Med,2000,66(2):182-184.
    [309]Kofinas C, Chinou I, Loukis A, et al . Cytotoxic coumarins from the aerial parts of Tordylium apulum and their effects on a non-small-cell bronchial carcinoma line [J]. Planta Med,1998,64(2):174-176.
    [310]Chihiro Ito, Masataka Itoigawa, Shinya K, et al. Chemical constituents of Clausena excavata:isolation and structure elucidation of novel furanone-coumarins with inhibitory effects for tumor-promotion [J]. Nat Prod,2000,63:1218-1224.
    [311]Mizuno A, Takata M, Okada Y, et al . Structures of new coumarins and antitumor-promoting activity of coumarins from Angelica edulis [J]. Planta Med,1994,60:333-336.
    [312]Gilani A H, Shaheen E, Saeed S A, et a1.Hypotensive action of coumarin glycosides from Daucus carota[J]. Phytomedicine,2000,7(5):423-426.
    [313]Chang Tian-hui, Adachi Hideyuki, Okyyama Toru, et al . Effects of 3'-angeloyloxy-4'acetoxy-3',4'- dihydroseselin on cardiohemodynamics in anesthetized dogs[J]. Acta Pharmaco Sin,1994,15(6):507.
    [314]Gilani A H, Shaheen E, Saeed S A, et a1.Hypotensive action of coumarin glycosides from Daucus carota[J]. Phytomedicine,2000,7(5):423-426.
    [315]Campos-Toimil M, Orallo F, Santana L, et a1.Synthesis and vasorelaxant activity of new coumarin and furocoumarin derivatives[J]. Bioorg Med Chem Lett,2002,12(5):783-786.
    [316]Zeiher B G, Eichwald E, Zabner J, et al.A mouse model for theΔF508 allele of cystic fibrosis[J].J Clin Invest,1995,96(4):2051-2064.
    [317]van Doorninck J H, French P J, Verbeek E, et al.A mouse model for the cystic fibrosisΔF508 mutation[J].EMBO J,1995,14(18):4403-4411.
    [318]F Becq, T J Jensen, X Chang, et al. Phosphatase Inhibitors Activate Normal and Defective CFTR Chloride Channels[J]. Proc Natl Acad Sci U S A, 1994,91(19):9160-9164.
    [319]Smith S N, Delaney S J, Dorin J R, et a1.Effect of IBMX and alkaline phosphatase inhibitors on Cl- secretion in G551D cystic fibrosis mutant mice[J].Am J Physiol. 1998,274(2 Pt 1):C492-C499.
    [320]Schultz B D, Frizzell R A, Bridges R J.Rescue of dysfunctional ΔF508-CFTR chloride channel activity by IBMX[J].J Membr Biol. 1999,170(1):51-66.
    [321]Mills C L, Dorin J R, Davidson D J, et a1.Decreased beta-adrenergic stimulation of glycoprotein secretion in CF mice submandibular glands: reversal by the methylxanthine,IBMX[J]. Biochem Biophys Res Commun. 1995 ,215(2):674-681
    [322]Wang F, Zeltwanger S, Yang I C, et a1.Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects[J]. J Gen Physiol, 1998, 111(3):477-490.
    [323]Ko F N, Wu T S, Liou M J, et a1.Vasorelaxation of rat thoracic aorta caused by osthole isolated from Angelica pubescens[J].Eur J Pharmacol, 1992,219(1):29-34.
    [324]Wu S N, Lo Y K, Chen C C, et a1.Inhibitory effect of the plant-extract osthole on L-type calcium current in NG108-15 neuronal cells. Biochem Pharmacol[J]. 2002,63(2):199-206.
    [325]Pedemonte N, Sonawane N D, Taddei A, et a1.Phenylglycine and sulfonamide correctors of defective ΔF508 and G551D cystic fibrosis transmembrane conductance regulator chloride channel gating[J]. Mol Pharmacol,2005,67(5):1797-1807.
    [326] Yang H, Shelat AA, Guy RK, et a1.Nanomolar affinity small molecule correctors of defective ΔF508-CFTR chloride channel gating[J].J Biol Chem,2003,278(37):35079-35085.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.